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Abstract: Fact-checking systems have become important tools to verify fake and misguiding news.
These systems become more trustworthy when human-readable explanations accompany the veracity
labels. However, manual collection of these explanations is expensive and time-consuming. Recent
work has used extractive summarization to select a sufficient subset of the most important facts
from the ruling comments (RCs) of a professional journalist to obtain fact-checking explanations.
However, these explanations lack fluency and sentence coherence. In this work, we present an
iterative edit-based algorithm that uses only phrase-level edits to perform unsupervised post-editing
of disconnected RCs. To regulate our editing algorithm, we use a scoring function with components
including fluency and semantic preservation. In addition, we show the applicability of our approach
in a completely unsupervised setting. We experiment with two benchmark datasets, namely LIAR-
PLUS and PubHealth. We show that our model generates explanations that are fluent, readable,
non-redundant, and cover important information for the fact check.

Keywords: natural language generation; fact-checking; explainable AI

1. Introduction

In today’s era of social media, the spread of news is a click away, regardless of if it is
fake or real. However, the quick propagation of fake news has repercussions on peoples’
lives. To alleviate these consequences, independent teams of professional fact checkers
manually verify the veracity and credibility of news, which is time and labor-intensive,
making the process expensive and less scalable. Therefore, the need for accurate, scalable,
and explainable automatic fact-checking systems is inevitable [1].

Current automatic fact-checking systems perform veracity prediction for given claims
based on evidence documents (Thorne et al. [2], Augenstein et al. [3], inter alia), or based
on long lists of supporting ruling comments (RCs, Wang [4], Alhindi et al. [5]). RCs are
in-depth explanations for predicted veracity labels, but they are challenging to read and
not useful as explanations for human readers due to their sizable content.

Recent work [6,7] has thus proposed to use automatic summarization to select a subset
of sentences from long RCs and used them as short layman explanations. However, using
a purely extractive approach [6] means sentences are cherry-picked from different parts of
the corresponding RCs, and as a result, explanations are often disjoint and non-fluent.

While a Seq2Seq model trained on parallel data can partially alleviate these prob-
lems, as Kotonya and Toni [7] propose, it is an expensive affair in terms of the large
amount of data and compute required to train these models. Therefore, in this work, we
focus on unsupervised post-editing of explanations extracted from RCs. In recent studies,
researchers have addressed unsupervised post-editing to generate paraphrases [8] and
sentence simplifications [9]. However, they use small single sentences and perform ex-
haustive word-level or a combination of word and phrase-level edits, which has limited
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applicability for longer text inputs with multiple sentences, e.g., veracity explanations, due
to prohibitive convergence times.

Hence, we present a novel iterative edit-based algorithm that performs three edit opera-
tions (insertion, deletion, reorder), all at the phrase level. Figure 1 presents a qualitative
example from the PubHealth dataset [7], which illustrates how each post-editing step
contributes to creating explanations that are more readable, fluent, and creates a coherent
story, while also preserving the information important for the fact check.

EU suspends delivery of 10 million masks over quality issues.
Claim

After a first batch of 1.5 million masks was shipped to 17 of the 27
member states and Britain, 600,000 items did not have European
certificates and medical standards. As part of its efforts to tackle the
COVID-19 crisis, this month the EU's executive arm started
dispatching the masks to health care workers. (R) It was set to be
distributed in weekly installments over six weeks. (D) "We have
decided to suspend future deliveries of these masks," Commission
health spokesman Stefan De Keersmaecker said. (P)

Explanation from Ruling Comments

As part of its efforts to tackle the COVID-19 crisis, this month the
EU's executive arm started dispatching the masks to health care
workers. (R) After a first batch of 1.5 million masks was shipped to
17 of the 27 member states and Britain, 600,000 items did not have
European certificates and did not comply with (I) medical
standards. The Commission has decided to stop future deliveries of
these masks, De Keersmaecker said. (P)

Post-Edited Explanation

Label: False

Figure 1. Example of a post-edited explanation from PubHealth that was initially extracted from
ruling comments. We illustrate four post-editing steps: insertion (I), reordering (R), deletion (D), and
paraphrasing (P).

Our proposed method finds the best post-edited explanation candidate according to a
scoring function, ensuring the quality of explanations in fluency, semantic similarity, and
semantic preservation. To ensure that the sentences are grammatically correct, we also
perform grammar checking of the candidate explanations. As a second step, we apply
paraphrasing to further improve the conciseness and human readability of the explanations.

In summary, our main contributions include:
• To the best of our knowledge, this work is the first to explore an iterative unsupervised

edit-based algorithm using only phrase-level edits. The proposed algorithm also
leads to the first computationally feasible solutions for unsupervised post-editing of
long text inputs, such as veracity ruling comments.

• We show how combining an iterative algorithm with grammatical corrections, and
paraphrasing-based post-processing leads to fluent and easy-to-read explanations.

• We conduct extensive experiments on the LIAR-PLUS [4] and PubHealth [7] fact-
checking datasets. Our manual evaluation confirms that our approach improves the
fluency and conciseness of explanations.
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2. Related Work

The most closely related streams of approaches to our work are explainable fact
checking, generative approaches to explainability and post-editing for language generation.

2.1. Explainable Fact Checking

Recent work has produced fact-checking explanations by highlighting words in
tweets using neural attention [10]. However, their explanations are used only to eval-
uate and compare the proposed model with other baselines without neural attention.
Wu et al. [11] propose to model evidence documents with decision trees, which are inher-
ently interpretable ML models. In a recent study, Atanasova et al. [6] present a multi-task
approach to generate free-text explanations for political claims jointly with predicting
the veracity of claims. They formulate an extractive summarization task to select a few
important sentences from a long fact-checking report. Atanasova et al. [12] also perform
extractive explanation generation guided by a set of diagnostic properties of explanations
and evaluate on the FEVER [2] fact-checking dataset, where explanation sentences have to
be extracted from Wikipedia documents.

In the domain of public health claims, Kotonya and Toni [7] propose to generate
explanations separately from the task of veracity prediction. Mishra et al. [13] generate
summaries of evidence documents from the Web using an attention-based mechanism.
They show that their summaries perform better than using the original evidence documents
directly. Similarly to Atanasova et al. [6], Kotonya and Toni [7], we present a generative
approach for creating fact-checking explanations. In contrast to related work, we propose
an unsupervised post-editing approach to improve the fluency and readability of previously
extracted fact-checking explanations.

2.2. Generative Approaches to Explainability

Explainable AI [14] is important to encourage trust of blackbox model’s decisions
and increase their acceptability among users. While most work on explanation generation
propose methods to highlight portions of inputs (Camburu et al. [15], DeYoung et al. [16],
inter alia), some work focuses on generative approaches to explainability. Ref Camburu
et al. [15] propose combining an explanation generation and a target prediction model in
a pipeline or a joint model for Natural Language Inference with abstractive explanations
about the entailment of two sentences. They find that first explaining and then predicting
based on the explanation achieves better trust as the prediction is based on the right reasons.
Stammbach and Ash [17] propose few-shot training for the GPT-3 [18] model to explain
a fact check from retrieved evidence snippets. GPT-3, however, is a limited-access model
with high computational costs. As in our work, Kotonya and Toni [7] first extract evidence
sentences, which are then summarised by an abstractive summarisation model. The latter
is trained on the PubHealth dataset. In contrast, we are the first to focus on unsupervised
post-editing of explanations produced using automatic summarization.

2.3. Post-Editing for Language Generation

Previous work has addressed unsupervised post-editing for multiple tasks such as
paraphrase generation [8], sentence simplification [9] or sentence summarization [19].
However, all these tasks handle shorter inputs in comparison to the long multi-sentence
extractive explanations that we have. Furthermore, they perform exhaustive edit operations
at the word level and sometimes additionally at the phrase level, both of which increase
computation and inference complexity. Therefore, we present a novel approach that
performs a fixed number of edits only at the phrase level followed by grammar correction
and paraphrasing.

3. Method

Our method is comprised of two steps. First, we select sentences from RCs that serve
as extractive explanations for verifying claims (Section 3.1). We then apply a post-editing
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algorithm on the extractive explanations in order to improve their fluency and coherence
(Section 3.2).

3.1. Selecting Sentences for Post-Editing

Supervised Selection. To produce supervised extractive explanations, we use the
method implemented by Atanasova et al. [20] for the LIAR-PLUS dataset. We then adapt
the supervised method for the PubHealth dataset using the same pre-trained model as used
by Kotonya and Toni [7] for the dataset. The models used for the extractive explanations are
based on DistilBERT [21] for LIAR-PLUS, and SciBERT [22] for PubHealth, which allows
for direct comparison with Kotonya and Toni [7], Atanasova et al. [20].

We supervise explanation generation by k greedily selected sentences from each claim’s
RCs that achieve the highest ROUGE-2 F1 score when compared to the gold justification.
We choose k = 4 for LIAR-PLUS and k = 3 for PubHealth, the average number of sentences
in the veracity justifications in the corresponding datasets. The selected sentences are
positive gold labels, yE ∈ {0, 1}N , where N is the number of sentences in the RCs. We also
use the veracity labels yF ∈ YF for supervision.

Following Atanasova et al. [20], we then learn a multi-task model g(X) = (pE, pF).
Given the input X, comprised of a claim and the RCs, it predicts jointly the veracity
explanation pE and the veracity label pF, where pE ∈ R1,N selects sentences for explanation,
i.e., {0,1}, and pF ∈ Rm, with m = 6 for LIAR-PLUS, and m = 4 for PubHealth. Finally, we
optimise the joint cross-entropy loss function LMT = H(pE, yE) +H(pF, yF).

Unsupervised selection. We also experiment with unsupervised selection of sentences
to test the possibility to construct fluent fact-checking explanations in an entirely unsuper-
vised way. We use a Longformer [23] model, which was introduced for tasks with longer
input, instead of the sliding-window approach also used in Atanasova et al. [20], which
is without cross-window attention. We train a model h(X)=pF to predict the veracity of
a claim. We optimise a cross-entropy loss function LF =H(pF, yF) and select k sentences
pE′ ∈R1,N , {0, 1}, with the highest saliency scores. The saliency score of a sentence is the
sum of the saliency scores of its tokens. The saliency of a token is the gradient of the input
token w.r.t. the output [24]. We selected sentences using the raw gradients as Atanasova
et al. [25] show that different gradient-based methods yield similar results. As the selection
could be noisy [26], we consider these experiments as only complementary to the main
supervised results.

3.2. Post-Editing

Our post-editing is completely unsupervised and operates on sentences obtained in
Section 3.1. It is a search algorithm that evaluates the candidate sequence pC for a given
input sequence, where the input sequence is either pE for supervised selection or pE′ for
unsupervised selection. Below, we use pE as a representative of both pE and pE′ .

Given pE, we iteratively generate multiple candidates by performing phrase-level edits
as defined in Section 3.2.1. To evaluate a candidate explanation, we define a scoring function,
which is a product of multiple scorers, also known as a product-of-experts model [27]. Our
scoring function includes fluency and semantic preservation, and controls the length of the
candidate explanation (Section 3.2.2). We repeat the process for n steps and select the last
best-scoring candidate as our final output. We then use grammar correction (Section 3.2.4)
and paraphrasing (Section 3.2.5) to further ensure conciseness and human readability.

3.2.1. Candidate Sequence Generation

We generate candidate sequences by phrase-level edits. We use the off-the-shelf
syntactic parser from CoreNLP [28] to obtain the constituency tree of a candidate sequence
pC. As pC is long, we perform all operations at the phrase level. At each step t, our
algorithm first randomly picks one operation—insertion, deletion, or reordering, and then
randomly selects a phrase. For insertion, our algorithm inserts a <MASK> token before
the randomly selected phrase, and use RoBERTa to evaluate the posterior probability of a
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candidate word [29]. This functionality allows us to leverage the pre-training capabilities of
RoBERTa and inserts high-quality words that support the context of the overall explanation.
Furthermore, inserting a <MASK> token before a phrase prevents breaking other phrases
within the explanation, thus preserving their fluency.

The deletion operation deletes the randomly selected phrase, For the reorder opera-
tion we randomly select one phrase, which we call reorder phrase, and randomly select m
phrases, which we call anchor phrases. We reorder each anchor phrase with a reorder phrase
and obtain m candidate sequences. We feed these candidates to GPT2 and select the most
fluent candidate based on the fluency score given by Equation (1).

3.2.2. Scoring Functions

The scoring functions employed for our post-editing algorithm rely on pre-trained
models, such as RoBERTa [30] for semantic preservation, and GPT-2 [31] for fluency preser-
vation. Similar to our approach, most contemporary natural language processing methods
rely on pre-trained models. Related work also uses pre-trained models to improve fluency
and semantic similarity [9,32,33].

The fluency score ( f f lu) measures the language fluency of a candidate sequence. We
use pre-trained GPT2 model [31]. We use the joint likelihood of candidate pC:

f f lu(p
C) = ∏n

i=1 P(pC
i |p

C
1 , ...., pC

i−1) (1)

For semantic preservation, we compute similarities at both word and explanation
level between our source explanation (pE) and candidate sequence (pC) at time-step t.
The word-level semantic scorer evaluates the preserved amount of keyword information
in the candidate sequence. Similarly to Li et al. [29], we use RoBERTa (R) [30], a pre-
trained masked language model, to compute a contextual representation of the ith word
in an explanation as R(pE

i , pE). Here, pE = (pE
1 . . . pE

m) is an input sequence of words.
We then extract keywords from pE using Rake [34] and compute a word-level semantic
similarity score:

fw(pE, pC)= min
k∈kw(pE)

max
pC

i ∈pC
R(k, pE)ᵀR(pC

i , pC) (2)

which is the lowest cosine similarity among all keywords i.e., the least matched keyword
of pE.

The explanation-level semantic preservation scorer evaluates the cosine similarity
of two explanation vectors:

fe(pE, pC) = (pC)ᵀpE

||pC ||pE || (3)

We use SBERT [35] for obtaining embeddings for both pE, pC. Our overall semantic
score is the product of the word level and the explanation-level semantics scores:

fsem(pE, pC) = fw(pE, pC)β. fe(pE, pC)η (4)

where β, and η are hyperparameter weights for the separate scores.
Length score ( flen) This score encourages the generation of shorter sentences. It is

proportional to the inverse of the sequence length, i.e., the higher the length of a candidate
sentence, the lower its score. To control over-shortening, we reject explanations with fewer
than 40 tokens.

Named entity (NE) score ( fent) This score is a proxy for meaning preservation, since
NEs hold the key information within a sentence. We first identify NEs using an off-the-shelf
entity tagger (https://spacy.io/, accessed on 3 February 2021) and then count their number
in a given explanation.

Overall scoring Our overall scoring function is the product of individual scores:

f(p
C) = f f lu(p

C)α. fsem(pE, pC). flen(p
C)γ. fent(pC)δ (5)

https://spacy.io/
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where α, γ, and δ are hyperparameter weights for the different scores.

3.2.3. Iterative Edit-Based Algorithm

Given input explanations, our algorithm iteratively performs edit operations for n
steps to search for a highly scored candidate (pC). At each search step, it computes scores
for the previous sequence (pC−1) and candidate sequence using Equation (5). It selects a
candidate sequence if its score is larger than the previous one by a multiplicative factor rop:

fpC/ fpC−1 > rop (6)

For each edit operation, we use a separate threshold value rop. rop allows controlling
specific operations, as for the reorder operation, if pC gets a lower score than pC−1 then a
lower value of rop will enable selection of pC. In particular, it controls the exploration vs.
the overall score of the selected candidates stemming from the particular operation. In other
words, having a higher value for rop would lead to selecting candidates with higher overall
scores, but might lead to none or only a few operations of that type being selected. We pick
values of rop that result in selecting candidates with high scores, while also leading to a
similar number of selected candidates per operation type. We tune all hyperparameters,
including rop, n, etc., using the validation split of the LIAR-PLUS dataset.

3.2.4. Grammatical Correction

Once the best candidate explanation is selected, we apply a language toolkit over the
candidate explanation (https://github.com/jxmorris12/language_tool_python, accessed
on 2 April 2021), which detects grammatical errors such as capitalization and irrelevant
punctuation, and returns a corrected version of the explanation. Furthermore, to ensure that
we have no incomplete sentences, we remove sentences without verbs in the explanation.

3.2.5. Paraphrasing

Finally, to improve fluency and readability further, we use Pegasus [36], a model
pre-trained with an abstractive text summarization objective. It focuses on relevant input
parts to summarize the input semantics in a concise and more readable way. Since we want
our explanations to be both fluent and human-readable, we leverage this pre-trained model
without fine-tuning on downstream tasks. This way, after applying our iterative edit-based
algorithm with grammatical error correction and paraphrasing, we obtain explanations
that are fluent, coherent, and non-redundant.

4. Experiments
4.1. Datasets

We use two fact-checking datasets, LIAR-PLUS [4] and PubHealth [7]. These are the
only two available real-world fact-checking datasets that provide short veracity justifi-
cations along with claims, ruling comments, and veracity labels. LIAR-PLUS contains
10,146 training, 1278 validation, and 1255 test data points from the political domain. Pub-
Health contains 9817 training, 1227 validation, and 1235 test data points from the health
domain, including 447 claims about COVID-19. The labels used in LIAR-PLUS are {true,
false, half-true, barely-true, mostly-true, pants-on-fire}, and in PubHealth, {true, false,
mixture, unproven}.

While claims in LIAR-PLUS are only from PolitiFact, PubHealth contains claims from
eight fact-checking sources. PubHealth has also been manually curated, e.g., to exclude
poorly defined claims. Finally, the claims in PubHealth are more challenging to read than
those in LIAR-PLUS and other real-world fact-checking datasets.

4.2. Models

Our experiments include the following models; their hyperparameters are given in
Appendix F.

https://github.com/jxmorris12/language_tool_python
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(Un)Supervised Top-N extracts sentences from the RCs, which are later used as input to
our algorithm. The sentences are extracted in either a supervised or unsupervised way (see
Section 3.1).
(Un)Supervised Top-N+Edits-N generates explanations with the iterative edit-based al-
gorithm (Section 3.2.3) and grammar correction (Section 3.2.4). The model is fed with
sentences extracted from RCs in an (un)supervised way.
(Un)Supervised Top-N+Edits-N+Para generates explanations by paraphrasing the expla-
nations produced by Edits-N - (Un)Supervised (see Section 3.2.5).
Atanasova et al. [20] is a reference model that trains a multi-task system to predict veracity
labels and extract explanation sentences. The model extracts N sentences, where N is the
average number of the sentences in the justifications of each dataset. Kotonya and Toni [7]
is a baseline model that generates abstractive explanations with an average sentence length
of 3.
Lead-K [37] is a common lower-bound baseline for summarisation models, which selects
the first K sentences from the RCs.

4.3. Iterative Edit-Based Algorithm

The proposed scoring functions (Section 3.2.2) and the iterative edit-based algorithm
(Section 3.2.3) introduce hyper-parameters for controlling the importance of the individual
post-editing scores as well as the efficiency and effectiveness trade-off of the iterative
post-editing algorithm. We choose the hyper-parameter values with a standard hyper-
parameter search over several values over a held-out validation set (Appendix B). The hyper-
parameters enhance the proposed algorithm by making it adaptable to the specifics of the
downstream application task. For example, one can easily select the hyper-parameter values
depending on the required length, fluency, and semantic preservation of the produced
explanations.

We select the editing target and the editing operation at random as the space of the
possible operations and targets is computationally prohibitive, especially given long textual
inputs, such as veracity explanations. While we follow related work [8] by selecting these
at random, the scoring functions, as well as the threshold (rop) used in the interactive edit-
based algorithm, ensure that only fluent and semantically coherent sentences are selected
at each step.

4.4. Evaluation Overview

We perform both automatic and manual evaluations of the models above. We include
automatic ROUGE F1 scores (overlap of the generated explanations with the gold ones,
Section 5.1) for compatibility with prior work. We further include automatic measures for
assessing readability (see Section 5.2). While the latter was not included in prior work,
we consider readability an essential quality of an explanation, and thus report it. We
note, however, that the employed automatic measures are limited as they are based on
word-level statistics. Especially ROUGE F1 scores should be taken with a grain of salt,
as only exact matches of words are rewarded with higher scores, where paraphrases or
synonyms of words in the gold summary are not scored. Hence, we also conduct a manual
evaluation following Atanasova et al. [20] to further assess the quality of the generated
explanations with a user study. As manual evaluation is expensive to obtain, the latter is,
however, usually estimated based on small samples.

5. Automatic Evaluation and Results

As mentioned above, we use ROUGE F1 scores to compute overlap between the
generated explanations and the gold ones, and compute readability scores to assess how
challenging the produced explanations are to read.
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5.1. Automatic ROUGE Scores

Metrics. To evaluate the generated explanations w.r.t. the gold justifications, we
follow Kotonya and Toni [7], Atanasova et al. [20] and use measures from automatic text
summarisation – ROUGE-1, ROUGE-2, and ROUGE-L F1 scores. These account for n-gram
(1/2) and longest (L) overlap between generated and gold justification. The scores are
recall-oriented, i.e., they calculate how many of the n-grams in the gold text appear in the
generated one.

Caveats. Here, automatic evaluation with ROUGE scores is used to verify that the
generated explanations preserve information important for the fact check, as opposed to
generating completely unrelated text. Thus, we are interested in whether the ROUGE scores
of the post-edited explanations are close but not necessarily higher than the ROUGE scores
of the selected sentences from the RCs given as input. This work includes paraphrasing
and insertion of new words to improve the readability of the explanation, which, while
bearing the same meaning, necessarily results in lower ROUGE scores.

Results. In Table 1, we present the ROUGE score results. First, comparing the results
for the input Top-N sentences with the intermediate and final explanations generated
by our system, we see that, while very close, the ROUGE scores tend to decrease. For
PubHealth, we also see that the intermediate explanations always have higher ROUGE
scores compared to the final explanations from our system. These observations corroborate
two main assumptions about our system. First, our system manages to preserve a large
portion of the information important for explaining the veracity label, which is also present
in the justification. This is further corroborated by observing that the decrease in the
ROUGE scores is often not statistically significant (p < 0.05, except for some ROUGE-2 and
one ROUGE-L score). Second, the operations in the iterative editing and the subsequent
paraphrasing allow for the introduction of novel n-grams, which, while preserving the
meaning of the text, are not explicitly present in the gold justification, thus, affecting the
word-level ROUGE scores. We further discuss this in Section 7 and the Appendix E.

The ROUGE scores of the explanations generated by our post-editing algorithm when
fed with sentences selected in an unsupervised way are considerably lower than with the
supervised models. The latter illustrates that supervision for extracting the most important
sentences is important to obtain explanations close to the gold ones. Finally, the systems’
results are mostly above the LEAD-N scores, with a few exceptions for the unsupervised
explanations for LIAR-PLUS.

Table 1. ROUGE-1/2/L F1 scores (see Section 5.1), and readability measures (see Section 5.2) over the
test splits (for validation and ablations, see the Table A3 in appendix). Readability measures include
sample variance. In italics, we report results reported from prior work, where we do not always
have the outputs to compute readability. Underlined ROUGE scores of the Top-N+Edits-N and Top-
N+Edits-N+Para are statistically significant (p < 0.05) compared to the input Top-N ROUGE scores,
N = {5, 6}. Readability scores for Top-N+Edits-N and Top-N+Edits-N+Para are statistically significant
(p < 0.05) compared to Top-N, and to Atanasova et al. [6]-3/4, except for the score in purple.

Method R-1↗ R-2↗ R-L↗ Flesch↗ Dale–Chall↘
LIAR-PLUS

Baselines Lead-4 28.11 6.96 24.38 51.70 ± 14.85 8.72 ± 0.95
Lead-6 29.15 8.28 25.84 53.24 ± 12.18 8.42 ± 0.78

Supervised
Top-6 (Supervised) 34.42 12.36 30.58 58.39 ± 12.11 7.88 ± 0.80
Top-6+Edits-6 33.92 11.73 30.01 60.20 ± 12.08 7.74 ± 0.86
Top-6+Edits-6+Para 33.94 11.25 30.08 66.33 ± 11.09 7.41 ± 0.91

Unsupervised
Top-6 (Unsupervised) 29.63 7.58 25.86 53.32 ± 10.86 8.50 ± 0.73
Top-6+Edits-6 28.93 7.06 25.14 55.25 ± 12.03 8.46 ± 0.85
Top-6+Edits-6+Para 28.98 6.84 25.39 62.13 ± 11.16 8.10 ± 0.89

Atanasova et al. [6]-4 35.70 13.51 31.58 58.55 ± 13.70 7.97 ± 1.05
Justification - - - 58.81 ± 13.33 8.22 ± 1.07
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Table 1. Cont.

Method R-1↗ R-2↗ R-L↗ Flesch↗ Dale–Chall↘
PubHealth

Baselines
Lead-3 29.01 10.24 24.18 - -
Lead-3 23.05 6.28 19.27 44.43 ± 22.97 9.10 ± 1.32
Lead-5 23.73 6.86 20.67 45.95 ± 18.77 8.85 ± 1.03

Supervised
Top-5 (Supervised) 29.93 12.42 26.24 48.63 ± 14.14 8.67 ± 0.89
Top-5+Edits-5 29.38 11.16 25.41 53.79 ± 14.56 8.36 ± 0.97
Top-5+Edits-5+Para 28.40 9.56 24.37 61.38 ± 12.69 7.96 ± 0.98

Unsupervised
Top-5 (Unsupervised) 23.52 6.12 19.93 45.20 ± 14.36 8.94 ± 0.88
Top-5+Edits-5 23.09 5.56 19.44 50.74 ± 14.92 8.62 ± 0.99
Top-5+Edits-5+Para 23.35 5.38 19.56 60.06 ± 12.97 8.14 ± 0.95

Kotonya and Toni [7]-3 32.30 13.46 26.99 - -
Atanasova et al. [6]-3 33.55 13.12 29.41 48.72 ± 16.38 8.87 ± 1.09
Justification - - - 49.28 ± 19.08 9.15 ± 1.61

Overall observations. We note that while automatic measures can serve as sanity
checks and point to major discrepancies between generated explanations and gold ones,
related work in generating fact-checking explanations [20] has shown that the automatic
scores to some extent disagree with human evaluation studies, as they only capture word-
level overlap and cannot reflect improvements of explanation quality. Human evaluations
are therefore conducted for most summarisation models [38,39], which we include in
Section 6.

5.2. Readability Results

Metrics. Readability is a desirable property for fact-checking explanations, as expla-
nations that are challenging to read would fail to convey the reasons for the chosen veracity
label and would not improve the trust of end-users. To evaluate readability, we compute
Flesch Reading Ease [40] and Dale–Chall Readability Score [41]. The Flesch Reading Ease
metric gives a text a score between 1 and 100, where a score between 50 and 30 requires
college education and is difficult to read, a score between 50 and 60 requires a 10th to 12th
school grade and is still fairly difficult to read, a score between 60 and 70 is regarded as
plain English, which is easily understood by 13- to 15-year-old students. The Dale–Chall
Readability Score gives a text a score between 9.0 and 9.9 when it is easily understood
by a 13th to 15th-grade (college) student, a score between 8.0 and 8.9 when it is easily
understood by an 11th or 12th-grade student, a score between 7.0 and 7.9 when it is easily
understood by a 9th or 10th-grade student.

Results. Table 1 presents the readability results. We find that our iterative edit-based
algorithm consistently improves the reading ease of the explanations by up to 5.16 points,
and reduces the grade requirement by up to 0.32 points. Conducting paraphrasing fur-
ther improves the reading ease of the text by up to 9.32 points, and reduces the grade
requirement by up to 0.48 points. It is also worth noting that the explanations produced
by Atanasova et al. [20] as well as the gold justifications are fairly difficult to read and can
require even college education for grasping the explanation, while the explanations gener-
ated by our algorithm can be easily understood by 13- to 15-year-old students according to
the Flesch Reading Ease score.

Overall observations. Our results show that our method makes fact-checking expla-
nations less challenging to read and makes them accessible to a broader audience of up to
10th-grade students.

6. Manual Evaluation and Results

As automated ROUGE scores only account for word-level similarity between the
generated and the gold explanation, and the readability scores account only for surface-
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level characteristics of the explanation, we further conduct a manual evaluation of the
quality of the produced explanations.

6.1. Explanation Quality

We manually evaluate two explanations: the input Top-N sentences, and the final
explanations produced after paraphrasing (Edits-N+Para). We perform a manual evaluation
of the test explanations obtained from supervised selection for both datasets with two
annotators for each. Both annotators have a university-level education in English.

Metrics. We show a claim, veracity label, and two explanations to each annotator and
ask them to rank the explanations according to the following criteria. Coverage means the
explanation contains important and salient information for the fact check. Non-redundancy
implies the explanation does not contain any redundant/repeated/not relevant informa-
tion to the claim and the fact check. Non-contradiction checks if there is information
contradictory to the fact check. Fluency measures the grammatical correctness of the
explanation and if there is a coherent story. Overall measures the overall explanation
quality. Following Atanasova et al. [20], we allow annotators to give the same rank to both
explanations. We randomly sample 40 instances and do not provide the annotators with
information about the explanation type. We choose 40 instances following related work [20]
and work in the domain of automated summarisation [42], which use this low number of
annotators/annotations due to the incurring annotation costs.

Results. Table 2 presents the human evaluation results for the first task. Each row
indicates the annotator number and the number of times they ranked an explanation higher
for one criterion. Both refers to both explanations being equal. Our system’s explanations
achieve higher acceptance for non-redundancy and fluency for LIAR-PLUS. The results
are more pronounced for the PubHealth dataset, where our system’s explanations were
preferred in almost all metrics by both annotators. We hypothesise that PubHealth be-
ing a manually curated dataset leads to overall cleaner post-editing explanations, which
annotators prefer.

Table 2. Manual annotation results of explanation quality with two annotators for both datasets. Each
value indicates the relative proportion of when an annotator preferred a justification for a criterion.
The preferred method, out of the input Top-N and the output of our method, Top-N+Edits-N+Para,
is emboldened, Both indicates no preference.

LIAR-PLUS PubHealth
# Top-L E-N+P Both Top-L E-N+P Both

Coverage
1 42.5 0.0 57.5 27.5 60.0 12.5
2 40.0 5.0 55.0 22.5 20.0 57.5

Non-redundancy
1 10.0 87.5 2.5 10.0 82.5 7.5
2 7.5 10.0 82.5 7.5 75.0 17.5

Non-contradictory
1 32.5 5.0 62.5 7.5 10.0 82.5
2 10.0 7.5 82.5 20.0 15.0 65.0

Fluency
1 40.0 57.5 2.5 35.0 52.5 12.5
2 77.5 15.0 7.5 20.0 72.5 7.5

Overall Quality
1 57.5 42.5 0.0 35.0 62.5 2.5
2 62.5 15.0 22.5 25.0 67.5 7.5

6.2. Explanation Informativeness

Metrics. We also perform a manual evaluation for veracity prediction. We ask an-
notators to provide a veracity label for a claim and an explanation where, same as for
the evaluation of Explanation Quality, the explanations are either our system’s input or
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output. The annotators provide a veracity label for three-way classification; true, false, and
insufficient (see map to original labels for both datasets in Appendix A. We use 30 instances
of explanation type and perform evaluation for both datasets with two annotators for each
dataset and instance.

Results. For the LIAR-PLUS dataset, one annotator gave the correct label 80% times
for input and 67% times for the output explanations. The second annotator chose the
correct label 56% times using output explanations and 44% times using input explanations.
However, both annotators found at least 16% of explanations to be insufficient for the task
of veracity prediction (Table A1 in Appendix A).

For PubHealth, both annotators found each explanation to be useful for the task.
The first annotator chose the correct label 50% & 40% of the times for the given input &
output explanations. The second annotator chose the correct label in 70% of the cases
for both explanations. This corroborates that for a clean dataset such as PubHealth our
explanations help for the task of veracity prediction.

7. Discussion

Results from our automatic and manual evaluation suggest two main implications of
applying our post-editing algorithm over extracted RCs. First, with the automatic ROUGE
evaluation, we confirmed that the post-editing preserves a large portion of important
information that is contained in the gold explanation and is important for the fact check.
This was further supported by our manual evaluation of veracity predictions, where the
post-edited explanations have been most useful for predicting the correct label. We conjec-
ture the above indicates that our post-editing can be applied more generally to summaries
generated automatically for knowledge-intensive tasks, such as fact checking and question
answering, where the information needed for prediction has to be preserved.

Second, with both the automatic and manual evaluation, we also corroborate that our
proposed post-editing method improves several qualities of the generated explanations –
fluency, conciseness, and readability. The latter are important prerequisites for building
trust in automated fact-checking predictions as Thagard [43] find that people generally
prefer simpler, more general explanations with fewer causes. They can also contribute
to reaching a broader audience when conveying the veracity of the claim. Conciseness
and readability are also the downsides of current professional long and in-depth ruling
comments, which some leading fact-checking organisations, e.g., PolitiFact, (https://www.
politifact.com/, accessed on 1 April 2021) have slowly started addressing by including
short overview sections for the RCs.

8. Conclusions

In this work, we present an unsupervised post-editing approach to improve extractive
explanations for fact-checking. Our novel approach is based on an iterative edit-based
algorithm and rephrasing-based post-processing. In our experiments on two fact-checking
benchmarking datasets, we observe, in both the manual & automatic evaluation, that our
approaches generate fluent, coherent, and semantically preserved explanations.

For future work, an obvious next step is to investigate the applicability of our approach
for other downstream tasks, such as machine summarisation, where the requirements for
length and readability could vary depending on the end-user specifics. Furthermore, future
work could explore additional improvements regarding the computational complexity of
the proposed approach. For example, generative models trained with few-shot learning
from a few post-editing examples could be employed to perform efficiently and effectively
different editing operations. This would reduce the space of possible target positions
and editing operations, especially for long input texts, such as veracity ruling comments.
Finally, future work could explore other editing scores, e.g., scores optimising properties of
natural language explanations, such as whether the explanation can be used to simulate
the veracity prediction of the model.

https://www.politifact.com/
https://www.politifact.com/
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Appendix A. Manual Evaluation

As explained in the Section 6 of the main paper, we mapped user inputs (TRUE/FALSE)
for task two to the original labels for each dataset. For Liar, we map “true”, “mostly-true”,
“half-true” to TRUE and “false”, “pants-on-fire”, and “barely-true” to FALSE. In the Pub-
Health dataset, we map “true” to TRUE, “false” to FALSE. The “insufficient” label is
mapped to UNPROVEN. This way, once the mapping is done, we then compute the
number of matches and non-matches to obtain an overall accuracy for this subset.

We appointed annotators with a university-level education in English.

Table A1. Results of manual evaluation for second task, i.e., predicting veracity label. DT refers to
data type, # refers to annotator number, M/NM refers to number of matches/non-matches between
annotator labels and original labels and I refers to number of times annotators found an explanation
not sufficient to predict a label.

# DT LIAR-PLUS PubHealth
M NM I M NM I

1 Top-L 20 5 5 15 15 0
1 Edits-N+Para 14 7 9 12 18 0

2 Top-L 11 14 5 21 9 0
2 Edits-N+Para 13 10 7 21 9 0

Appendix B. Iterative Edit-Based Algorithm

We used the validation split of LIAR-PLUS to select the best hyperparameters for
both datasets. We use the weight of 1.5, 1.2, 1.4, 0.95 for α, η, γ, δ and 1.0 for β in our
scoring function. We set the thresholds as 0.94 for reordering, 0.97 for deletion, and 1.10 for
insertion. We keep all models – GPT-2, RoBERTa, and Pegasus, fixed and do not finetune
them on any in-house dataset. We run our search algorithm on a single V100-32 GB GPU
for 220 steps, which takes around 13 h for each split for both datasets.

Appendix C. Automatic Evaluation

In Tables A2 and A3, we provide results over both dev and test splits of the dataset
for the ROUGE and readability automatic evaluation. We additionally provide ablation
results for components of our approach. First, applying Pegasus directly on the extracted
sentences preserves a slightly larger amount of information when compared to applying
Pegasus on top of the iterative editing approach—up to 0.96 ROUGE-L scores, but the
readability scores are still lower—up to 4.28 Flesch Reading Ease points. We also show



Information 2022, 13, 500 13 of 18

results of the two parts included in the Edits step—the iterative editing and the grammar
correction. We find that the grammar correction improves the ROUGE scores with up to 8
ROUGE-L score points and up to 8 Flesch Reading Ease points.

Table A2. Flesch Reading Ease (Flesch) and Dale–Chall Readability Score (Dale–Chall) for Validation
(V) and Test (T) sets. Ablations are provided for the method as well – input selected sentences of
Top-6, iterative-editing (Edits-IE), grammatical corrections (Edits-Gram), paraphrasing (Para).

Method Flesch-V↗ Flesch-T↗ Dale-Chall-V↘ Dale-Chall-T↘
LIAR-PLUS

Justification 58.90 ± 13.38 58.81 ± 13.33 8.26 ± 1.08 8.22 ± 1.07
Atanasova et al. [6]-4 54.76 ± 11.53 58.55 ± 13.70 8.38 ± 0.76 7.97 ± 1.05

Sup.

Top-6 57.77 ± 11.54 58.39 ± 12.11 7.90 ± 0.81 7.88 ± 0.80
Top 6+Para 63.87 ± 10.60 64.44 ± 10.78 7.55 ± 0.76 7.52 ± 0.78
Top 6+Edits 55.70 ± 12.40 56.26 ± 14.12 6.50 ± 0.69 6.46 ± 0.80
Top 6+Edits+Gram 59.52 ± 11.98 60.20 ± 12.08 7.77 ± 0.88 7.74 ± 0.86
Top 6+Edits+Gram+Para 66.04 ± 10.74 66.33 ± 11.09 7.44 ± 0.85 7.41 ± 0.91

Unsup.

Top-6 52.84 ± 10.37 53.32 ± 10.86 8.51 ± 0.69 8.50 ± 0.73
Top 6+Para 59.33 ± 10.43 59.82 ± 10.58 8.13 ± 0.70 8.20 ± 0.80
Top 6+Edits 50.70 ± 11.09 50.92 ± 12.54 6.91 ± 0.50 6.96 ± 0.62
Top 6+Edits+Gram 54.76 ± 11.53 55.25 ± 12.03 8.38 ± 0.76 8.46 ± 0.85
Top 6+Edits+Gram+Para 61.80 ± 11.11 62.13 ± 11.16 8.01 ± 0.77 8.10 ± 0.89

PubHealth
Justification 48.19 ± 17.77 49.28 ± 19.08 9.21 ± 1.53 9.15 ± 1.61
Atanasova et al. [6]-3 49.68 ± 15.96 48.72 ± 16.38 8.81 ± 1.09 8.87 ± 1.09

Sup.

Top-5 49.56 ± 13.48 48.63 ± 14.14 8.63 ± 0.88 8.67 ± 0.89
Top 5+Para 57.52 ± 12.07 57.28 ± 12.35 8.18 ± 0.87 8.20 ± 0.88
Top 5+Edits 47.38 ± 14.61 46.22 ± 15.95 7.06 ± 0.67 7.10 ± 0.75
Top 5+Edits+Gram 54.30 ± 13.01 53.79 ± 14.56 8.32 ± 0.92 8.36 ± 0.97
Top 5+Edits+Gram+Para 61.51 ± 11.28 61.38 ± 12.69 7.95 ± 0.92 7.96 ± 0.98

Unsup.

Top-5 43.54 ± 17.96 45.20 ± 14.36 9.25 ± 1.13 8.94 ± 0.88
Top 5+Para 56.32 ± 11.41 55.78 ± 11.91 8.35 ± 0.83 8.39 ± 0.84
Top 5+Edits 42.70 ± 17.01 42.29 ± 17.34 7.34 ± 0.79 7.36 ± 0.80
Top 5+Edits+Gram 50.45 ± 14.45 50.74 ± 14.92 8.64 ± 0.95 8.62 ± 0.99
Top 5+Edits+Gram+Para 60.24 ± 11.77 60.06 ± 12.97 8.12 ± 0.93 8.14 ± 0.95

Table A3. ROUGE-1/2/L F1 scores (see Section 5.1) for the edited justifications, higher results are
better. Results in italics are those reported in the corresponding related work. Ablations are provided
for the method as well – input selected sentences of Top-6, iterative-editing (Edits-IE), grammatical
corrections (Edits-Gram), paraphrasing (Para).

Method Validation Test
R-1 R-2 R-L R-1 R-2 R-L

LIAR-PLUS

Baseline Lead-4 27.92 6.94 24.26 28.11 6.96 24.38
Lead-6 28.92 8.33 25.69 29.15 8.28 25.84

Supervised

Top-6 34.30 12.20 30.51 34.42 12.36 30.58
Top 6 + Para 34.49 11.51 30.72 34.60 11.79 30.79
Top 6 + Edits-IE 25.17 8.60 22.07 25.49 8.76 22.28
Top 6 + Edits-IE + Edits-Gram 34.07 11.59 30.14 33.92 11.73 30.01
Top-6 + Edits-IE + Edits-Gram + Para 34.20 11.05 30.29 33.94 11.25 30.08

Unsupervised

Top-6 29.24 7.99 25.83 29.63 7.58 25.86
Top 6 + Para 29.94 7.72 26.40 29.92 7.35 26.24
Top-6 + Edits-IE 21.49 5.67 18.77 22.73 5.56 19.51
Top 6 + Edits-IE + Edits-Gram 29.00 7.46 25.51 28.93 7.06 25.14
Top 6 + Edits-IE + Edits-Gram + Para 29.40 7.25 25.90 28.98 6.84 25.39

SOTA Atanasova et al. [6]-4 35.64 13.50 31.44 35.70 13.51 31.58
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Table A3. Cont.

Method Validation Test
R-1 R-2 R-L R-1 R-2 R-L

PubHealth

Baseline Lead-3 29.01 10.24 24.18
Lead-3 23.11 5.93 19.04 23.05 6.28 19.27
Lead-5 24.20 6.83 20.89 23.73 6.86 20.67

Supervised

Top-6 30.35 12.63 26.43 29.93 12.42 26.24
Top 5 + Para 29.76 10.75 25.47 29.43 10.69 25.51
Top 5 + Edits-IE 22.49 8.94 19.70 22.11 8.72 19.49
Top 5 + Edits-IE + Edits-Gram 29.58 11.18 25.54 29.38 11.16 25.41
Top 5 + Edits-IE + Edits-Gram + Para 28.82 9.68 24.51 28.40 9.56 24.37

Unsupervised

Top-5 23.94 6.13 20.04 23.52 6.12 19.93
Top 5 + Para 24.45 5.96 20.53 24.10 6.01 20.43
Top-5 + Edits-IE 18.26 4.49 15.50 18.09 4.41 15.48
Top 5 + Edits-IE + Edits-Gram 23.75 5.71 19.77 23.09 5.56 19.44
Top-5 + Edits-IE + Edits-Gram + Para 23.97 5.46 19.98 23.35 5.38 19.56

SOTA Kotonya and Toni [7]-3 32.30 13.46 26.99

Appendix D. Examples

Table A4 shows a qualitative example from the PubHealth dataset. We find that the
final post-processed explanation is more readable, fluent, and concise in comparison to the
originally selected explanation from RCs.

Table A4. Example explanations from Ruling Comments, Our iterative edit-based algorithm, and a
combination of our algorithm and post-processing from test split of Pubhealth dataset. Each color
presents an edit operation with Reordering, deletion, insertion, and paraphrasing.

Explanation from Ruling comments: Heavily-armed Muslims shouting “Allahu Akbar” open fire
campers and hikers in a park. A heavily armed group of Middle Eastern looking Muslim men was
arrested outside Los Angeles after opening fire upon hikers and campers in a large State Park in
the area. There was no evidence found that a crime had been committed by any of the subjects
who were detained and they were released. Moreover, the police report described the men only as
“males,” not “Middle Eastern males” or “Muslim males.” The web site that started this rumor was
Superstation95, which is not a “superstation” at all but rather a repository of misinformation from
Hal Turner, who in 2010 was sentenced to 33 months in prison for making death threats against
three federal judges. No credible news reports made any mention of the “Allahu Akbar” claim, and
no witnesses stated they had been “shot at” by the men while hiking or camping.

Explanation from iterative algorithm: Heavily-armed Muslims males shouting “Allahu Akbar”
open fire in a park. A heavily armed group of Middle Eastern looking Muslim men was arrested
after opening fire upon hikers and campers in a large State Park outside Los Angeles. There was
no evidence found that a crime had been committed by any of the subjects on campers and hikers.
Furthermore, the police report described the men only as “,” not “Middle Eastern” or “Muslim.”
The website that started this rumor was Superstation95, which is not a “superstation” at all but
rather a repository of misinformation from Hal Turner, who in 2010 was sentenced to 33 months
in prison for making death threats against three federal judges. No credible news reports made
any mention of the “Allahu Akbar” claim, and no witnesses stated they had been “shot at”.

Explanation from iterative algorithm + Post-processing: Muslims shout “Allahu Akbar” open
fire in a park. A heavily armed group of Middle Eastern looking Muslim men was arrested after
opening fire on hikers and campers in a large State Park outside Los Angeles. There was no
evidence that a crime had been committed by any of the campers or hikers. The website that started
this rumor was Superstation95, which is not a “superstation” at all but rather a repository of
misinformation from Hal Turner, who in 2010 was sentenced to 33 months in prison. There were
no credible news reports that mentioned the Allahu Akbar claim, and no witnesses that said they
had been shot at.

Claim: The media covered up an incident in San Bernardino during which several Muslim men
fired upon a number of Californian hikers.

Label False
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Appendix E. Novelty and Copy Rate

Table A5 presents additional statistics for the generated explanations from the test sets
of both datasets. First, we compute how many of the words from the input Top-N Ruling
Comments are preserved in the final explanation. We find that with the final step of the
post-editing process, up to 8% of the tokens from the Ruling comments are not found in the
final explanation. On the other hand, our post-editing approach generates up to 10% novel
words that are not previously found in the RCs. This could explain the lower results for the
ROUGE scores, which account only for exact token overlaps. Finally, while ROUGE scores
are recall-oriented, i.e., they compute how many of the words in the gold explanation can
be found in the candidate one, we compute a precision-oriented statistic of the words in
the candidate that can be found in the gold explanation. Surprisingly, while ROUGE scores
of our generated explanations decrease after post-processing, the reverse score increases,
pointing to improvements in the precision-oriented overlap with our method.

Table A5. Copy rate from the Ruling Comments, Novelty w.r.t the Ruling comments, and Coverage
% of words in the explanation that are found in the justification.

Method Copy Rate Novelty Gold Coverage

LIAR-PLUS
Top-6 Sup. 100 0 29.2 ± 11.4
Justification 41.4 ± 13.0 58.6 ± 13.0 100
Top-6+Edits-6 Sup. 98.5 ± 1.8 1.5 ± 1.8 30.7 ± 12.1
Top-6+Edits-6+Para Sup. 90.8 ± 4.8 9.2 ± 4.8 32.5 ± 12.6

PubHealth
Top-5 Sup. 100 0 26.3 ± 21.2
Justification 47.1 ± 21.0 52.9 ± 21.0 100
Top-5+Edits-6 Sup. 98.1 ± 3.4 1.8 ± 2.0 27.8 ± 21.3
Top-5+Edits-6+Para Sup. 90.4 ± 5.8 9.5 ± 5.2 28.5 ± 20.2

In addition, in LIAR/PubHealth, the average summary length is 136/142 tokens for
the extracted RCs, 89/86 for the gold justifications, 118.7/117.3 after iterative editing, and
98.5/94.7 after paraphrasing.

Appendix F. Experimental Setup

Selection of Ruling Comments

For the supervised selection of Ruling Comments, as described in Section 3.1, we follow
the implementation of the multi-task model of Atanasova et al. [20]. For LIAR-PLUS, we do
not conduct fine-tuning as the model is already optimised for the dataset. For PubHealth,
we change the base model to SciBERT, as the claims in PubHealth are from the health
domain and previous work [7] has shown that SciBERT outperforms BERTs for the domain.
In Table A6, we show the results for the fine-tuning we performed over the multi-task
architecture with a grid-search over the maximum length limit of the text and the weight
for the positive sentences in the explanation extraction training objective. We finally select
and use explanations generated with the multi-task model with a maximum text length of
1700, and a positive sentence weight of 5.

For the unsupervised selection of explanation sentences, we employ a Longformer
model. We construct the Longformer model with BERT as a base architecture and conduct
2000 additional fine-tuning steps for the newly added cross-attention weights to be opti-
mised. We then train models for both datasets supervised by veracity prediction. The most
salient sentences are selected as the sentences that have the highest sum of token saliencies.
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Table A6. Fine-tuning for PubHealth supervised multi-task model over positive sentence loss weight,
base model and maximum length.

Validation Test
Method R-1 R-2 R-L R-1 R-2 R-L

SciBERT, w-1, l-1200 26.00 7.29 21.41 25.78 7.71 21.42
SciBERT, w-1, l-1500 27.78 9.81 23.32 27.37 9.62 23.07
SciBERT, w-1, l-1700 28.73 11.27 24.42 28.45 11.32 24.21
SciBERT, w-2, l-1700 30.15 12.32 25.66 29.71 12.04 25.35
SciBERT, w-5, l-1700 30.96 12.59 26.54 30.79 12.31 26.38

Finally, we remove long sentences and questions from the Ruling Comments, where
the ROUGE score changes after filtering are illustrated in Table A7, which results in the
Top-N sentences, that are used as input for the post-editing method.

Table A7. Sentence clean-up of long sentences for LIAR-PLUS and PubHealth.

Validation Test
Method R-1 R-2 R-L R-1 R-2 R-L

LIAR-PLUS Unsup
Top-6 29.26 7.98 25.83 29.62 7.94 26.04
Filtered Top-6 29.52 7.90 25.98 29.60 7.96 25.94

LIAR-PLUS SUP
Top-6 34.42 12.35 30.64 34.49 12.54 30.67
Filtered Top-6 34.30 12.20 30.51 34.42 12.36 30.58

PubHealth Unsup
Top-5 23.78 6.23 19.95 23.13 6.08 19.63
Filtered Top-5 23.94 6.13 20.04 23.52 6.12 19.93

PubHealth SUP
Top-5 30.24 12.61 26.36 29.78 12.50 26.18
Filtered Top-5 30.35 12.63 26.43 29.93 12.42 26.24

These experiments were run on a single NVIDIA TitanRTX GPU with 24 GB memory
and 4 Intel Xeon Silver 4110 CPUs. Model training took ∼3 h.
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