

Information 2022, 13, 481. https://doi.org/10.3390/info13100481 www.mdpi.com/journal/information

Article

A Blockchain-Based Secure Multi-Party Computation Scheme

with Multi-Key Fully Homomorphic Proxy Re-Encryption

Yongbo Jiang, Yuan Zhou * and Tao Feng *

School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China

* Correspondence: zhouyxy@163.com (Y.Z.); fengt@lut.edu.cn (T.F.)

Abstract: At present, secure multi-party computing is an effective solution for organizations and

institutions that want to derive greater value and benefit from the collaborative computing of their

data. Most current secure multi-party computing solutions use encryption schemes that are not re-

sistant to quantum attacks, which is a security risk in today’s quickly growing quantum computing,

and, when obtaining results, the result querier needs to collect the private keys of multiple data

owners to jointly decrypt them, or there needs to be an interaction between the data owner and the

querier during the decryption process. Based on the NTRU cryptosystem, which is resistant to quan-

tum computing attacks and has a simple and easy-to-implement structure, and combined with

multi-key fully homomorphic encryption (MKFHE) and proxy re-encryption, this paper proposes a

secure multi-party computing scheme based on NTRU-type multi-key fully homomorphic proxy

re-encryption in the blockchain environment, using the blockchain as trusted storage and a trusted

execution environment to provide data security for multi-party computing. The scheme meets the

requirements of being verifiable, conspiracy-proof, individually decryptable by the querier, and re-

sistant to quantum attacks.

Keywords: secure multi-party computation; blockchain; multi-key homomorphic encryption;

NTRU

1. Introduction

With the rapid development of communication technology and the steady advance-

ment of global information, data information owned by organizations or individuals can

generate great value and wealth through communication and integration. To make full

use of the value of data to obtain greater benefits, data interaction, and sharing, infor-

mation integration and utilization between different institutions and organizations have

become urgent needs, among which collecting data from all parties for collaborative com-

puting is a typical scenario. Participants want to protect the security of data, protect the

privacy of all parties, and ensure the fairness of computing in the process of data collec-

tion and use. The proposal and development of secure multi-party computation (SMPC)

[1] provide an effective solution and technical support for the above requirements. In or-

der to protect the privacy of all parties and the security of their private data during the

use of secure multi-party computation, it is necessary to continuously improve the secu-

rity of secure multi-party computation solutions. In addition, since the homomorphic en-

cryption algorithm (FHE) [2] can solve the problem of user data privacy protection in

cloud computation and big data environments, it is also a research hotspot to combine the

homomorphic encryption algorithm with secure multi-party computation.

SMPC refers to the collaborative computation of a function by two or more partici-

pants in a collaborative computation, without trusting each other, using data held secretly

by each party as the input. The privacy of each participant is protected by requiring each

party to have no access to additional information beyond its own secret input and the

Citation: Jiang, Y.; Zhou, Y.; Feng, T.

A Blockchain-Based Secure

Multi-Party Computation Scheme

with Multi-Key Fully Homomorphic

Proxy Re-Encryption. Information

2022, 13, 481. https://doi.org/

10.3390/info13100481

Academic Editor:

Muhammad Azeem Akbar

Received: 17 August 2022

Accepted: 4 October 2022

Published: 6 October 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Information 2022, 13, 481 2 of 13

final result of the computation. Specifically, SMPC protects the privacy of each participant

by means of the secret data held by the participants for P�, � = 1, … , n separate secret in-

puts held by ��, � = 1, … , n, in order to jointly compute a common function � with the

values of �(��, ��, … , ��) = (��, ��, … , ��). Throughout the computation process, the par-

ticipant’s P� cannot learn anything other than the result of the computation and their own

secret inputs (��, ��). The participants are not privy to any information other than the re-

sult of the computation and their own secret input.

Fully homomorphic encryption is an encryption algorithm that allows direct manip-

ulation of encrypted data, which has the property that the result of the direct manipula-

tion of the ciphertext is the same as the result of manipulating the plaintext first and then

encrypting it, a property that allows it to be applied in outsourced computing scenarios.

Multi-key fully homomorphic encryption (MKFHE) was first proposed by A. López-Alt

et al. [3], who used a modified NTRU scheme to construct an MFHE scheme. Multi-key

fully homomorphic encryption is an encryption method that can process data encrypted

and uploaded by multiple different keys, breaking the restriction that homomorphic en-

cryption can only process data encrypted by the same key, but, in the decryption method,

the resultant querier needs to collect the private keys of multiple data owners to jointly

decrypt the data or interaction between the data owner and the querier is required during

the decryption process. To address the above issues, S. Yasuda et al. [4] proposed multi-

key homomorphic proxy re-encryption (MKH-PRE). The MKH-PRE scheme allows the

data owner to encrypt the data with its own public key for multi-key homomorphic com-

putation, as well as allowing the ciphertext obtained from the homomorphic computation

to be proxy re-encrypted, converting the resultant ciphertext into a new ciphertext that

can only be decrypted by the resultant querier. The advantage of the NTRU cryptosystem

is that it is resistant to quantum attacks, and the NTRU-based scheme is a much easier

way to generate secret keys, using only modulo multiplication and modulo inverse oper-

ations, with a simple structure that is easy to implement. It can be used not only to con-

struct NTRU-based MKFHEs but also to construct proxy re-encryption schemes that

transform ciphertext into data that can be decrypted with a querier key.

1.1. Motivation and Contribution

The encryption schemes used in most current secure multi-party computing schemes

are not resistant to quantum attacks, which is currently a security risk with the rapid de-

velopment of quantum computing, and the SMPC scheme that uses MKFHE cannot be

decrypted separately by the querier when obtaining the computation results. Therefore,

it is necessary to design a secure multi-party computing scheme that is resistant to quan-

tum attacks and can be decrypted individually by the querier.

The main research contributions of this paper are as follows:

1. A secure multi-party computation scheme based on NTRU-type [5] multi-key fully

homomorphic encryption proxy re-encryption is proposed. The use of proxy re-en-

cryption solves the problem that the multi-key homomorphic encryption scheme

cannot be decrypted separately when the result is obtained, and the data owner can

go offline after encrypting the uploaded data and does not have to stay online during

secure multi-party computation.

2. A scheme combining the blockchain with an NTRU multi-key fully homomorphic

encryption agent re-encryption secure multi-party computing scheme is proposed.

The decentralized, transparent, and non-tamper characteristics of the blockchain are

utilized to achieve the traceability and verifiability of the scheme and prevent collu-

sion of the participants.

3. The security proof and comparison with other solutions demonstrate that this secure

multi-party computing solution meets the requirements of being independent of

trusted third parties, verifiable, privacy-protected, collusion-proof, individually de-

cryptable by the querier, and resistant to quantum attacks.

Information 2022, 13, 481 3 of 13

1.2. Paper Structure

The rest of this paper is organized as follows: Section 2 presents related works. Sec-

tion 3 describes the scheme model, the steps of the scheme operation, the algorithms in-

volved, and the security model used. Section 4 proves the security of the scheme. Section

5 compares the scheme with other relevant SMPC schemes. The conclusion is provided in

Section 6.

2. Related Work

YAO first proposed a two-party secure computation method in [6] using the “mil-

lionaire problem”. Goldreich and others extended the two-party computation model to a

basic multi-party computation model [7]. Using this as a starting point, the security of

SMPC schemes has been a concern. To provide a trusted execution environment for

SMPC, some researchers have chosen to perform secure multi-party computing through

trusted third parties, such as Wu Y et al. who constructed a generic server-assisted secure

multi-party computing protocol for secure execution of collaborative computing tasks in

cloud computing [8]. However, trusted third parties are vulnerable to attacks forming a

single point of failure and also have the potential to be complicit with malicious parties.

Researchers found that blockchains can provide a more secure execution environ-

ment for SMPC. The open, transparent, and tamper-evident nature of blockchain can pro-

vide a means of verification and traceability for SMPC, and the incentive mechanism can

effectively prevent complicity from occurring. H. Gao et al. proposed a BFR-MPC scheme

in combination with the blockchain [9] that encourages all participants to cooperate

through an incentive mechanism and maintains a public reputation system in the scheme,

in which honest participants gain more and more benefits while corrupt participants are

increasingly punished. Y. Yang et al. proposed Block-SMPC, a blockchain-based SMPC

scheme [10], which ensures data integrity and authentication by using the blockchain, in-

troduces a multi-party computer system based on homomorphic encryption, and im-

proves privacy security by separating the authority of homomorphic keys and ciphertexts.

Liu et al. proposed a secure multi-party computing protocol, BPLSM, for ubiquitous data

privacy protection in combination with blockchain technology [11]. It achieves on-chain

signature verification, a guarantee of commitment, the correctness of encrypted values

and address hiding, and off-chain combined transaction commitment using the property

of Pederson’s additive homomorphism to construct a secure multi-party computation

scheme that can sign different messages in combination with the Schnorr protocol.

The secure multi-party computation scheme in the above study improves the security

of SMPC with the help of blockchain features, but the scheme cannot be decrypted sepa-

rately by the querier when obtaining the computation result. In order to meet the require-

ment of being able to carry out decryption individually, T. Wang et al. [12] proposed a

secure, high-performance sharing and multi-party computing model by combining the

features of the blockchain, based on a combination of on-chain storage and off-chain stor-

age, and, in this storage environment, data are shared by using proxy re-encryption. How-

ever, most of the encryption algorithms involved in the above scheme are based on large

integer decomposition or discrete logarithm difficulty problems, which do not have the

ability to resist quantum attacks.

To solve these problems, this paper proposes a secure multi-party computing scheme

based on a multi-key homomorphic proxy re-encryption scheme and an NTRU-based

MKFHE scheme [13,14] with resistance to quantum attacks in the blockchain environ-

ment.

Information 2022, 13, 481 4 of 13

3. SMPC Scheme with Multi-Key Fully Homomorphic Proxy Re-Encryption

3.1. System Model

The system consists of several components: the data owner, the data querier (in gen-

eral, the data owner, but possibly also the authorized user), the computation network, the

SMPC contract, the InterPlanetary File System (IPFS) [15], and the blockchain. The system

architecture is shown in Figure 1. The functions of each part of the system are as follows:

 Data owner

As the data provider of secure multi-party computation, the data owner owns the

original data as the input of the computation. To ensure the privacy and data security of

all parties, the data must be encrypted by the data owner before being used as the input

of the computation.

 Result inquirer

As the receiver of the computation result, the result inquirer is generally the data

owner or the authorized user who does not provide the data. With the support of the

proxy re-encryption algorithm, the result inquirer can decrypt the encrypted computation

result through their own private key and obtain the calculation result.

 Blockchain

The blockchain participates in the process as a trusted storage and execution envi-

ronment. This scheme provides resistance to quantum attacks through proxy re-encryp-

tion to enable the result querier to decrypt the ciphertext result alone. At the same time,

open, transparent, and untampered information stored on the blockchain can be verified

as proof.

 IPFS

IPFS is used to store encrypted raw data as off-chain storage to save storage space. A

Bloom filter [16] generates index values, and then IPFS uploads the data keywords, index

values, and storage address to the blockchain. SMPC nodes look up the data storage ad-

dress on the blockchain and then download the encrypted data from IPFS to local storage

for calculation.

 SMPC Contracts

Data owners, data inquirers, and SMPC nodes need to register with the SMPC con-

tract before the calculation begins. Participants (SMPC nodes or users) pay a deposit to

the SMPC contract, and the SMPC contract returns a unique ID to the registrant. The data

inquirers send their public keys to the SMPC contract, which generates the proxy re-en-

cryption key. The computation function in the contract is agreed upon in advance by the

participants of the secure multi-party calculation so that the code can be written and de-

ployed on the blockchain platform to automatically trigger the execution of the agreed

computation without human intervention.

 Computing networks

The SMPC computing network undertakes the task of data calculation. It queries the

corresponding encrypted data on IPFS as the input and performs the calculation on the

encrypted data consistently with the agreed calculation function according to the SMPC

contract. The obtained encryption results are sent to each data interrogator after the agent

re-encryption operation.

Information 2022, 13, 481 5 of 13

Block
N－1

Txs

Block
N

Txs

Block
N＋1

Txs

Block-chain

MPC Contract

Calculate
node

Calculate
node

Calculate
node

Calculate
node

Calculate
node

Calculate
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Computing networkIPFS

Sandbox

Result
inquirer

Data owner

①Register

①Register

①Register/Pay the deposit
⑩Send calculation request

⑬Check to update global status

②Return unique ID

②Return unique ID

②Return unique ID
⑪Start calculation

③Upload data
ciphertext
encrypted with
data owner‘s pk,
data keywords

④Sending
the public
key of the
result
searchers

⑧Query data

⑨Return
encrypted
data and the
pk of the
results
inquirers

⑤Upload data
keywords, index,
stored addresses
to the blockchain

⑥Query the
address of the
data store

⑦Return the
address of the
data store

⑫Send the final result to
the result searchers

Figure 1. System model diagram.

3.2. Program Steps

The steps in the operation of the system are shown in Figure 2.

1. Initially, the data owner, the data querier, and the SMPC node register with the SMPC

contract, which distributes a unique ID to each registered node, while the SMPC node

pays a deposit to the contract.

2. The data owner generates keywords for the original data to be involved in the oper-

ation and then encrypts the data to be involved in the operation with its own public

key and uploads them to IPFS, where a Bloom filter generates the index value of the

encrypted data. The data owner uploads the keywords generated from the original

data and the storage address of the encrypted data.

3. The computing network node interacts with the blockchain by querying keywords,

querying the corresponding block to obtain the storage address of the required en-

crypted information, and obtaining the encrypted data from the IPFS data storage

address for calculation.

4. The data querier sends its public key to the SMPC contract, and the ciphertext result

after the homomorphic calculation is converted into the ciphertext result encrypted

by the data querier’s public key through the NTRU proxy re-encryption algorithm.

To obtain the final calculation result, the data querier only needs to decrypt the cal-

culation result returned by the computing network with its own private key. The

contract is carried out in a sandbox isolation environment, and the blockchain re-

wards or deducts the deposit based on whether the node is honest or not.

Information 2022, 13, 481 6 of 13

Results
inquirers

Computing
network

MPC Contract IPFSData owner Blockchain

1.Register

1.Register
1.Register

 Pay the deposit

4.Upload data ciphertext encrypted with data owner's pk and data keywords

7.Upload data keywords,
 index stored addresses
 to the blockchain

8.Query the address of the data store

5.Sending the public key of the result searchers

3.Generate raw
 data keywords

2.Return unique ID

2.Return unique ID

2.Return unique ID

15.Send the final result
to the result searchers

11.Return encrypted data and
the pk of the results inquirers

14.The data is computed
 to obtain the result and
converted into ciphertext
encrypted with the results
inquirers public key

6.Bloom filter generate
 encrypted data Index

10.Query data

9.Return the address of the data store

12.Send calculation request

13.Start calculation

Figure 2. Timing diagram of system operation.

5. At the end of the calculation, the blockchain validation node checks whether any dis-

honest nodes have committed mischief before or after the calculation process. If this

does not happen, the deposit of each node will be returned as is; if this happens, the

deposit of the honest node will be returned, and the deposit of the dishonest node

will be deducted and distributed as a reward to the honest node as a punishment.

In order to enable the nodes in the scheme to reach consensus quickly while ensuring

security during the operation, the Score Grouping-practical Byzantine fault-tolerant (SG-

PBFT) consensus algorithm, which is based on a modified version of the practical Byzan-

tine fault-tolerant (PBFT) algorithm [17] proposed in the literature [18], is used in the

scheme.

The SG-PBFT sets the initial score of N sequential random nodes as 100 points and

divides them into a consensus node set and a candidate node set. The consensus node

executes the consensus process, while the candidate node does not participate in the con-

sensus process and only receives the consensus results. The primary node is selected by

p = vmodCN. CN represents the agreed number of nodes. When the primary node p is

attacked or fails, the view v will be changed, and the recalculated primary node will re-

place it.

When the nodes reach a consensus, the master node will send the confirmed results

to all consensus nodes and update the score of the node. If the result of the node is con-

sistent with the consensus result, one point will be added. Otherwise, five points will be

deducted. The m nodes with the lowest score will be removed from the consensus node

Information 2022, 13, 481 7 of 13

set and attached to the end of the candidate node set. The m nodes with the highest score

in the candidate set will be added to the consensus node set and renumbered.

The SG-PBFT renumbers and adjusts nodes after each agreement is reached. This en-

sures that the identity of the primary node is hidden and therefore resistant to distributed

denial of service (DDoS) attacks. In the SG-PBFT, even if all malicious nodes join together,

they can only send no more than 1/3 of the total number of messages. Malicious nodes

cannot reach a consensus, therefore the SG-PBFT can resist selective attacks. The SG-PBFT

operating process is shown in Figure 3. The “x” on the line indicates that the node is a

failed node.

Figure 3. SG-PBFT operating diagram.

3.3. Algorithm Construction

The algorithms in the scheme are divided into four parts: the initialization algorithm,

the key generation algorithm, the multi-key homomorphic encryption algorithm, and the

proxy re-encryption algorithm. The operations in the scheme are all performed on the ring

� = ℤ[X]/��(�), over which � is a prime number, and Φ�(�) is a partitioned circle pol-

ynomial of the degree � = �(�). Let �� = �/��.

 Initialization algorithm

Setup(1�) ⟶ ��: Enter the security parameters’ � to generate ring learning with er-

rors (RLWE) [19] with dimension n, the plaintext modulus �, the ciphertext modulus �,

and the ring � distribution over the ring �, �. Vector � and matrix � are extracted ran-

domly on the uniform distributions �(��
�) and �(��

�×�) of ring R, respectively, and

then a common parameter �� = (�, �, �, �, �, �, �) is output.

The public parameter �� is used as the input to the key generation algorithm for the

generation of keys by the data owner and the result querier in addition to the generation

of the computational key ��� in the multi-key homomorphic encryption algorithm.

 Key generation algorithm

KeyGen(��) ⟶ (���, ���): Randomly select ��, � in the distribution �; it is required

that the extracted �� is reversible in ��. Calculate � = ��� + 1(mod�), ��� ∈ ��, and let

� = �����(mod�). The error vector � is randomly selected from the distribution ��, and

request pre-prepare prepare response reply
C

p

1

2

3

4

Consensus
Nodes Set

Candidate
Nodes Set

Information 2022, 13, 481 8 of 13

� = −�� + �(mod�) is calculated. Set � = (�, 1) ∈ ��
�×�, randomly select the error vector

�� from the distribution ���
, and calculate g= −�� + ��(mod�) ∈ ��

��
. Output the pri-

vate key �� = � and the public key �� = (�, �, �).

The data owner and the result querier generate their respective public key �� and

private key �� by means of a key generation algorithm.

 Multi-key homomorphic encryption algorithm

The components of the multi-key homomorphic encryption algorithm include the

computational key generation algorithm EvkGen, the encryption algorithm Enc, the ci-

phertext extension algorithm CtxtExtend, and the homomorphic computation algorithm

Eval.

EvkGen(��, ��, ��) → ���: Randomly select s in the distribution �, randomly select

��, ��, �� in the distribution �� , calculate ���� = ��� + �� + �����(mod�) and ���� =

�� + �� + ��(mod�), and output the computation key ��� = [����|����].

The computational key generation algorithm EvkGen generates the computational

key ��� using the public parameters, the public key �� of the data owner, and the pri-

vate key ��.

Enc(��, �) ⟶ � : Randomly selects �, � in the distribution � , set δ = ⌊�/�⌋ , and

compute the ciphertext � = �� + � + δ�(mod�).

The data owner uses the encryption algorithm Enc to encrypt the data they need to

participate in the operation and then generates a cipher text and uploads it to IPFS.

CtxtExtend(��, ��, . . , ��) → ��
∗: Let the number of ciphertexts involved in this operation

be s and �� = (��, ��, . . , ���
) ∈ ��

��. The corresponding user ID set is �����
, ����

, . . , ����
�, � =

1, 2, … , � . Let � = max (��, ��, … , ��) and output the k-dimensional ciphertext ��
∗ =

(��
∗, ��

∗, … , ��
∗) ∈ ��

� where

��
∗ = �

��, � = ��, 1 ≤ � ≤ ��

0, others
 (1)

Eval(��, ��, ���): Calling CtxtExtend(��, ��) gives ��
∗, ��

∗ ∈ ��
� by calculation. Then homo-

morphic addition or multiplication is performed.

1. HAdd(��
∗, ��

∗): Compute and output the ciphertext � = ��
∗+��

∗ (mod�).

2. HMult(��
∗, ��

∗ , evk): Calculate �� = ⌊�/� × ��
∗ ⊗��

∗ ⌉(mod�) and output the ciphertext

� = Reline(��, evk) ∈ ��
�.

 Proxy re-encryption algorithm

Proxy re-encryption algorithms include the re-encryption key generation algorithm

RKGen, the re-encryption algorithm ReEnc, and the re-encrypted ciphertext decryption

algorithm PRDec. The algorithms are used to re-encrypt the ciphertext after the homo-

morphic encryption calculation into a ciphertext that can be decrypted by the resultant

querier’s private key.

RKGen(���, ���) → ���→�: Select ��� from �� and let �� = � + ��
� ⊗ ��, where �� =

(0 ∥ 1) ∈ ℤ�. Select ��, �� ≥ 2log� + 2λ, from {0,1}��×� and compute and output ���→� =

���→� = ��, �� + � �
���

� (mod�) ∈ ��
�×�.

ReEnc(���→�, … , ���→�, �) → �� : Let � = (��, . . , ��) and calculate and output �� =

∑ ���→����(��)
�
��� (mod�) ∈ ��

�.

PRDec(���, ��) → m : Let �� = (��, 1) and compute and output m = ⌊(�/

�)〈��, ��〉�(mod�).

Information 2022, 13, 481 9 of 13

3.4. Security Model

The scheme uses the definition of security from the literature [5] for the MKH-PRE

scheme. The definition designs an IND-CPA security game between a challenger and an

adversary �. The re-encryption process is represented using a directed acyclic graph,

such that � is the set of edges in the re-encryption graph. During the game, the adversary

can initiate an interrogation of the challenger about the re-encryption key generation

based on the re-encryption graph. The formal definition of a secure game is as follows:

 Preparation phase

The challenger sends the generated public parameters Setup(1�) → �� to the adver-

sary �.

Generate honest keys. The number of honest keys received by the challenger from

� is ��, and the challenger generates (���, ���), � = 1, … , �� and sends the ��� to �. Let

�� be the set of honest public keys.

Generate non-honest keys. The number of non-honest keys received by the chal-

lenger from � is ��, and the challenger generates (���, ���), � = 1, … , �� and sends the

��� to �. Let �� be the set of non-honest public keys.

 Inquiry phase

The adversary can initiate a polynomial inquiry of any order.

Generate the re-encryption key. � sends (�, �) to the challenger. If �, � ∈ ��, and

there is a directed acyclic graph � = (��, � ∪ (�, �)), then the challenger adds (�, �) to �

and sends the generated re-encryption key for i to j RKGen(���, ���) → ���→� to �; other-

wise, ⊥ is returned.

Re-encryption. � sends (�, �, �) to the challenger. If �, � ∈ �� , and = �� , the chal-

lenger returns ⊥. Otherwise, the challenger sends a ciphertext re-encrypted with the j’s

public key �� sent to �; otherwise, ⊥ is returned.

 Challenge phase.

The plaintext space is �. Take ��, �� ∈ �, and �� ∈ ��. � sends (��, ��, ��) to the

challenger, who chooses a random bit � ∈ {0,1}, generates �� by Enc(����, ��), and re-

turns it to �. � can only initiate a challenging inquiry once.

 Judgment phase.

� outputs one bit �� ∈ {0,1}. In this game, the advantage of adversary � is defined

as

Adv�������,�
������� (λ) =∣ Pr[�� = �] −

1

2
∣ (2)

If, for any probabilistic polynomial time adversary � there is

Adv�������,�
������� (λ) = negl(λ) (3)

then, the scheme is IND-CPA safe.

4. Proof of Safety

Here, we demonstrate the safety of the MKH-PRE scheme. If the RLWE assumption,

the decisional small polynomial ratio (DSPR) [20] assumption, and the cyclic safety as-

sumption are difficult, then the MKHE scheme in this paper is IND-CPA safe.

The security of the PRE process is considered below. Here, we demonstrate the secu-

rity of the PRE process through an IND-CPA security game between a challenger and an

adversary �. � is an adversary in arbitrary probabilistic polynomial time, which has

access to the re-encryption key generation and evolution RKGen and the re-encryption

oracle machine ReEnc and can only initiate queries for generating re-encryption keys

based on the re-encryption graph. Consider the following set of security games:

Game 0. The IND-CPA safe game was defined in the previous section. Assuming

�� = {1, … , �}, �� = {� + 1, … , �}. According to the topological order determined by the

Information 2022, 13, 481 10 of 13

re-encryption graph, if � < �, then there are no edges from � to �, i.e., � can only be ini-

tiated in the � > � case of a re-encryption key ���→� of the query.

Divide Game k, � = 1, … , �, into two categories, Game. 1 k and Game. 2 k.

Game. 1 k. When � initiates a query to generate an honest key, for all � < �, the

challenger randomly draws �� and �� in the uniform distributions �� and ��
��

, respec-

tively, to generate the public key; for all � < � ≤ �, the challenger generates the public

key by KeyGen(��) ⟶ (��, ��). The rest of the operation is the same as Game. 2 k-1.

Game. 2 k. When A initiates the query to generate the re-encryption key, the chal-

lenger generates the re-encryption key ���→� by drawing a random matrix from ��
�×��

for all � < � ≤ � ; for � < �, � ≤ � , the challenger generates the re-encryption key by

RKGen(���, ���) → ���→�. The rest of the operation is the same as Game. 2 k.

Game End. When � initiates a challenge query, the challenger generates the cipher-

text � through random sampling, and the rest of the operation is the same as Game. 2 N.

The strengths of � in each game are assessed separately as follows:

Because Game 0 is an IND-CPA safe game of the original MKH-PRE scheme,

Adv�������,�
������� (λ) = Adv�

���� �(λ) (4)

In Game. 1 k, the re-encryption key ���→� generated by the challenger satisfies

���→� = ���→� = ��, �� + � �
���

� (mod�) when � < � , where �� is randomly selected in

the uniform distribution of {0,1}��×� and �� ≥ 2log� + 2λ. Since �� and � are randomly

selected from the uniform distribution when � < �, �� = � + ��
� ⊗ �� is also subject to

the uniform distribution. According to the residual hash lemma, H and X are subject to

uniform distributions, so �� and �� are statistically indistinguishable from a matrix ran-

domly drawn from a uniform distribution. The results show that ���→� is statistically in-

distinguishable from the random matrix extracted from the uniform distribution, meaning

that Game. 1 k and Game. 2 k are statistically indistinguishable. Therefore, there is

�Adv�
����.� �(λ)−Adv�

����.� �(λ)� = negl(λ) (5)

Adversary � constructs a PPT algorithm � to distinguish the RLWE distribution

from the uniform distribution, and the sample � ∈ �� input to � comes from the RLWE

distribution or one of the uniform distributions.

 Preparation phase

� calculates �� = (��
�‖… ‖���

�) and randomly extracts ��, �� from the uniform dis-

tribution ��, ��
��

. Q sends � = �� + � �
��

� to �.

Generate honest keys

When � initiates an honest key generation query, the response of � is as follows:

When � < �, � randomly selects ��, �� from the uniform distribution ��, ��
��

 and

lets ��� = (��, ��).

When � = �, � lets ��� = (��, ��).

When � > �, � generates the public key by KeyGen(��) ⟶ (���, ���).

Finally, � sends ���, � ∈ {1, … , �} to �.

Generate dishonest keys

When � initiates a generate dishonest keys query, � calculates KeyGen(�) ⟶

(���, ���) and sends (���, ���) to �.

 Inquiry phase.

Generate re-encryption keys

When � initiates a generate re-encryption key query (�, �), if �, � < �, then � re-

turns ���→� ∈ ��
�×� randomly selected from the uniform distribution; if �, � > �, then �

returns RKGen(���, ���) → ���→�.

Re-encryption

When � initiates a re-encryption query (��, … , ��, �, �) , � returns

ReEnc(����→�, … , ����→�, c) → c� to �.

Information 2022, 13, 481 11 of 13

 Challenge phase.

��, �� ∈ �, and �� ∈ �� are selected. � starts the query (��, ��, ��), and � ran-

domly selects a bit � ∈ {0,1}, generating �� by Enc(����, ��) and returning it to �.

 Judgment phase.

� ceases the query and outputs bits �� ∈ {0,1}. Then, Q outputs 1 if � = ��, or 0 oth-

erwise.

If the RLWE distribution is entered in �, then � simulates Game. 2 k−1. The first

rows of �� and �� are both random quantities that obey a uniform distribution, so �

also obeys a uniform distribution. In addition, the distributions of �� ≈ −(�||1)� are the

same as in the actual game. In the previous game, ���→� was replaced by a randomly se-

lected matrix from a uniform distribution, where � simulates Game. 2 k-1. If the uniform

distribution is entered in �, then � simulates Game.1 k. From the above analysis, the

RLWE assumption, and the DSPR assumption, it follows that:

�Adv�
����.� ���(λ)−Adv�

����.� �(λ)� = negl(λ) (6)

The ciphertext in Game End is drawn randomly from a uniform distribution; in

Game. 2 N, all public keys are replaced in the previous games with vectors drawn ran-

domly from a uniform distribution, and the polynomial drawn randomly from a uniform

distribution is statistically indistinguishable from the ciphertext output by the encryption

algorithm under the RLWE assumption; therefore, Game. 2 N is statistically indistinguish-

able from Game End.

�Adv�
����.� �(λ)−Adv�

���� ���(λ)� = negl(λ) (7)

The advantages of � in Game End are:

Adv�
���� ���(λ) = negl(λ) (8)

Based on the above analysis, it can be concluded that

(Adv�������,�
������� (λ)

≤ ��Adv�
����.� ���(λ)−Adv�

����.� �(λ)� + �Adv�
����.� �(λ)−Adv�

���� ���(λ)�

�

���

+ Adv�
���� ���(λ) = negl(λ)

(9)

Therefore, the solution in this paper is IND-CPA safe.

5. Comparison of Programs

Constructed by Y. Wu et al. to address the problem of secure execution of collabora-

tive computing tasks in cloud computing, a generic server-assisted secure multi-party

computing protocol [8] was proposed without complicity between the server and client;

however, the scheme also relies on the participation of trusted third parties, cannot pre-

vent complicity, and does not have a reliable means of verification of the computing pro-

cess. To make the scheme verifiable, researchers have used the properties of the block-

chain to add verifiability to the scheme while providing privacy protection by introducing

the blockchain in the scheme construction. Examples include H. Gao et al.’s blockchain-

based BFR-MPC scheme [9], Y. Yang et al.’ s SMPC scheme Block-SMPC [10], and Liu et

al.’s BPLSM [11], a secure multi-party computing protocol for ubiquitous data privacy

protection combined with the blockchain technology. The above schemes make improve-

ments to the scheme via the blockchain but require joint decryption by multiple querying

parties when obtaining the results. T. Wang et al. [12] proposed a sharing and multi-party

computation mode scheme in combination with the blockchain, using proxy re-encryp-

tion for data sharing so that querying parties can carry out decryption individually, but

none of the encryption methods used in the above schemes are resistant to quantum at-

tacks.

Information 2022, 13, 481 12 of 13

This scheme performs multi-party secure computation on the blockchain and pays a

deposit during the computation of a transaction via a smart contract to prevent complicity

between participants. The NTRU-based scheme design provides the scheme with re-

sistance to quantum attacks. The decryption of ciphertext results by the result querier

alone is achieved through proxy re-encryption, and the data owner can go offline after

uploading the data and public key. The specific performance comparison is shown in Ta-

ble 1. As can be seen from the table, the scheme can meet the requirements of not relying

on trusted third parties, being verifiable, having privacy protection, being anti-complicity,

being individually decryptable by the querier, and being resistant to quantum attacks.

Table 1. Performance comparison of this paper with other SMPC solutions.

Literature

Not Relying on

Trusted Third

Parties

Verifiable Privacy Anti-Conspiracy
Individual Decryption

Available to Enquirers

Resistant to

Quantum

Attacks

[8] × × √ × × ×

[9] √ √ √ √ × ×

[10] √ √ √ √ × ×

[11] √ √ √ - × ×

[12] √ √ √ - √ ×

This paper √ √ √ √ √ √

In the table, “√” means that the scheme can meet this requirement, “×” means that the scheme cannot

meet this requirement, and “-” means that the literature does not describe whether the scheme can

meet this requirement.

6. Conclusions

In this paper, to solve the problem that the encryption schemes used in most current

secure multi-party computation schemes are not resistant to quantum attacks, and the

secure multi-party computation schemes constructed via MKFHE cannot be decrypted by

the result querier alone when the result is obtained, an NTRU-type multi-key fully homo-

morphic proxy re-encryption secure multi-party computation scheme in the blockchain

environment was proposed. By designing a multi-key fully homomorphic encryption al-

gorithm and a proxy re-encryption algorithm under the NTRU cryptosystem, the scheme

meets the requirements of individual decryption by the querier, offline access by the data

owner after uploading encrypted data, and resistance to quantum attacks. At the same

time, the decentralized, immutable, open, and transparent nature of the blockchain pro-

vides a trusted execution environment for the scheme, providing a traceable and verifiable

means of data. The blockchain’s incentives encourage honest cooperation between the

various computing participants and prevent complicity.

The security of the scheme is based on the RLWE problem and the DSPR assumption,

which is not a standard cryptographic assumption. Although there is no efficient way to

break the DSPR assumption for the small-modulus case, it can be assumed that the DSPR

assumption is secure, but this issue needs attention. Therefore, how to construct a secure

multi-party computation scheme with NTRU-type multi-key fully homomorphic proxy

re-encryption whose security depends only on the RLWE problem requires further re-

search. In addition, how to apply the scheme proposed in this paper in the actual multi-

party computation scenario is also an important research direction.

Author Contributions: Conceptualization, Y.J. and Y.Z.; formal analysis, Y.J., Y.Z., and T.F.; super-

vision, Y.J., Y.Z., and T.F.; validation, Y.J. and Y.Z.; writing—original draft, Y.J. and Y.Z.; writing—

review and editing, T.F. All authors have read and agreed to the published version of the manu-

script.

Information 2022, 13, 481 13 of 13

Funding: This research was funded by the National Natural Science Foundation of China, grant

numbers 62162039 and 61762060, and the Foundation for the Key Research and Development Pro-

gram of Gansu Province, China, grant number 20YF3GA016.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yang, Y.; Huang, X.; Liu, X. A Comprehensive Survey on Secure Outsourced Computation and Its Applications. IEEE Access

2019, 7, 159426–159465. https://doi.org/10.1109/access.2019.2949782.

2. Akl, S.G.; Assem, I. Fully homomorphic encryption: A general framework and implementations. Int. J. Parallel Emergent Dis-

tribted Syst. 2020, 35, 493–498. https://doi.org/10.1080/17445760.2018.1553041.

3. López-Alt, A.; Tromer, E.; Vaikuntanathan, V. Multikey fully homomorphic encryption and applications. SIAM J. Comput. 2017,

46, 1827–1892. https://doi.org/10.1137/14100124x.

4. Yasuda, S.; Koseki, Y.; Hiromasa, R. Multi-key homomorphic proxy re-encryption. International Conference on Information

Security, Guildford, UK, 9–12 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 328–346.

https://doi.org/10.1007/978-3-319-99136-8_18.

5. Stehlé, D.; Steinfeld, R. Making NTRU as secure as worst-case problems over ideal lattices. In Proceedings of the Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, 15–19 May 2011; Springer:

Berlin/Heidelberg, Germany, 2011; pp. 27–47. https://doi.org/10.1007/978-3-642-20465-4_4.

6. Yao, A.C. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on Foundations of Computer

Science, Chicago, IL, USA, 3–5 November 1982; pp. 160–164. https://doi.org/10.1109/sfcs.1982.38.

7. Micali, S.; Goldreich, O.; Wigderson, A. How to play any mental game. In Proceedings of the Nineteenth ACM Symp. on Theory

of Computing, STOC. 1987; ACM New York, NY, USA, 25-27 May 1987; pp. 218–229. https://doi.org/10.1145/28395.28420.

8. Wu, Y.; Wang, X.; Susilo, W. Generic server-aided secure multi-party computation in cloud computing. Comput. Stand. Interfaces

2022, 79, 103552. https://doi.org/10.1016/j.csi.2021.103552.

9. Gao, H.; Ma, Z.; Luo, S.; Wang, Z. BFR-MPC: A Blockchain-Based Fair and Robust Multi-Party Computation Scheme. IEEE

Access 2019, 7, 110439–110450. https://doi.org/10.1109/access.2019.2934147.

10. Yang, Y.; Wei, L.; Wu, J. Block-smpc: A blockchain-based secure multi-party computation for privacy-protected data sharing.

In Proceedings of the 2020 2nd International Conference on Blockchain Technology 2020, Hilo, HI, USA, 12–14 March 2020; pp.

46–51. https://doi.org/10.1145/3390566.3391664.

11. Liu, F.; Yang, J.; Kong, D.; Qi, J. A Secure Multi-party Computation Protocol Combines Pederson Commitment with Schnorr

Signature for Blockchain. In Proceedings of the 2020 IEEE 20th International Conference on Communication Technology (ICCT),

Nanning, China, 28–31 October 2020; pp. 57–63. https://doi.org/10.1109/icct50939.2020.9295819.

12. Liu, F.; Yang, J.; Li, Z.; Qi, J. A secure multi-party computation protocol for universal data privacy protection based on block-

chain. J. Computer. Res. Dev. 2021, 58, 281–290.

13. Che, X.; Zhou, T.; Li, N. Optimization of NTRU multi-key homomorphic encryption scheme. Eng. Sci. Technol. 2020, 52, 186–

193.

14. Che, X.; Zhou, T.; Li, N. Modified multi-key fully homomorphic encryption based on NTRU cryptosystem without key-switch-

ing. Tsinghua Sci. Technol. 2020, 25, 564–578. https://doi.org/10.26599/tst.2019.9010076.

15. Daniel, E.; Tschorsch, F. IPFS and Friends: A Qualitative Comparison of Next Generation Peer-to-Peer Data Networks. IEEE

Commun. Surveys. Tutor. 2022, 24, 31–52. https://doi.org/10.1109/comst.2022.3143147.

16. Hua, W.; Gao, Y.; Lyu, M.; Xie, P. Research on Bloom filter: A survey. J. Comput. Appl. 2022, 42, 1729–1747.

17. Wan, S.; Li, M.; Liu, G.; Wang, C. Recent advances in consensus protocols for blockchain: A survey. Wirel. Netw. 2020, 26, 5579–

5593. https://doi.org/10.1007/s11276-019-02195-0.

18. Xu, G.; Bai, H.; Xing, J. SG-PBFT: A secure and highly efficient distributed blockchain PBFT consensus algorithm for intelligent

Internet of vehicles. J. Parallel Distrib. Comput. 2022, 164, 1–11. https://doi.org/10.1016/j.jpdc.2022.01.029.

19. Lyubashevsky, V.; Peikert, C.; Regev, O. On ideal lattices and learning with errors over rings. In Theory and Application of Cryp-

tographic Techniques; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6110, pp. 1–23. https://doi.org/10.1007/978-3-642-

13190-5_1.

20. López-Alt, A.; Tromer, E.; Vaikuntanathan, V. On-the-fly multiparty computation on the cloud via multikey fullyhomomorphic

encryption. In Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, New York, NY, USA, 20–

22 May 2012; pp. 1219–1234. https://doi.org/10.1145/2213977.2214086.

