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Abstract: At present, secure multi-party computing is an effective solution for organizations and 

institutions that want to derive greater value and benefit from the collaborative computing of their 

data. Most current secure multi-party computing solutions use encryption schemes that are not re-

sistant to quantum attacks, which is a security risk in today’s quickly growing quantum computing, 

and, when obtaining results, the result querier needs to collect the private keys of multiple data 

owners to jointly decrypt them, or there needs to be an interaction between the data owner and the 

querier during the decryption process. Based on the NTRU cryptosystem, which is resistant to quan-

tum computing attacks and has a simple and easy-to-implement structure, and combined with 

multi-key fully homomorphic encryption (MKFHE) and proxy re-encryption, this paper proposes a 

secure multi-party computing scheme based on NTRU-type multi-key fully homomorphic proxy 

re-encryption in the blockchain environment, using the blockchain as trusted storage and a trusted 

execution environment to provide data security for multi-party computing. The scheme meets the 

requirements of being verifiable, conspiracy-proof, individually decryptable by the querier, and re-

sistant to quantum attacks. 
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1. Introduction 

With the rapid development of communication technology and the steady advance-

ment of global information, data information owned by organizations or individuals can 

generate great value and wealth through communication and integration. To make full 

use of the value of data to obtain greater benefits, data interaction, and sharing, infor-

mation integration and utilization between different institutions and organizations have 

become urgent needs, among which collecting data from all parties for collaborative com-

puting is a typical scenario. Participants want to protect the security of data, protect the 

privacy of all parties, and ensure the fairness of computing in the process of data collec-

tion and use. The proposal and development of secure multi-party computation (SMPC) 

[1] provide an effective solution and technical support for the above requirements. In or-

der to protect the privacy of all parties and the security of their private data during the 

use of secure multi-party computation, it is necessary to continuously improve the secu-

rity of secure multi-party computation solutions. In addition, since the homomorphic en-

cryption algorithm (FHE) [2] can solve the problem of user data privacy protection in 

cloud computation and big data environments, it is also a research hotspot to combine the 

homomorphic encryption algorithm with secure multi-party computation. 

SMPC refers to the collaborative computation of a function by two or more partici-

pants in a collaborative computation, without trusting each other, using data held secretly 

by each party as the input. The privacy of each participant is protected by requiring each 

party to have no access to additional information beyond its own secret input and the 
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final result of the computation. Specifically, SMPC protects the privacy of each participant 

by means of the secret data held by the participants for P�, � = 1, … , n separate secret in-

puts held by ��, � = 1, … , n, in order to jointly compute a common function � with the 

values of �(��, ��, … , ��) = (��, ��, … , ��). Throughout the computation process, the par-

ticipant’s P� cannot learn anything other than the result of the computation and their own 

secret inputs (��, ��). The participants are not privy to any information other than the re-

sult of the computation and their own secret input. 

Fully homomorphic encryption is an encryption algorithm that allows direct manip-

ulation of encrypted data, which has the property that the result of the direct manipula-

tion of the ciphertext is the same as the result of manipulating the plaintext first and then 

encrypting it, a property that allows it to be applied in outsourced computing scenarios. 

Multi-key fully homomorphic encryption (MKFHE) was first proposed by A. López-Alt 

et al. [3], who used a modified NTRU scheme to construct an MFHE scheme. Multi-key 

fully homomorphic encryption is an encryption method that can process data encrypted 

and uploaded by multiple different keys, breaking the restriction that homomorphic en-

cryption can only process data encrypted by the same key, but, in the decryption method, 

the resultant querier needs to collect the private keys of multiple data owners to jointly 

decrypt the data or interaction between the data owner and the querier is required during 

the decryption process. To address the above issues, S. Yasuda et al. [4] proposed multi-

key homomorphic proxy re-encryption (MKH-PRE). The MKH-PRE scheme allows the 

data owner to encrypt the data with its own public key for multi-key homomorphic com-

putation, as well as allowing the ciphertext obtained from the homomorphic computation 

to be proxy re-encrypted, converting the resultant ciphertext into a new ciphertext that 

can only be decrypted by the resultant querier. The advantage of the NTRU cryptosystem 

is that it is resistant to quantum attacks, and the NTRU-based scheme is a much easier 

way to generate secret keys, using only modulo multiplication and modulo inverse oper-

ations, with a simple structure that is easy to implement. It can be used not only to con-

struct NTRU-based MKFHEs but also to construct proxy re-encryption schemes that 

transform ciphertext into data that can be decrypted with a querier key. 

1.1. Motivation and Contribution 

The encryption schemes used in most current secure multi-party computing schemes 

are not resistant to quantum attacks, which is currently a security risk with the rapid de-

velopment of quantum computing, and the SMPC scheme that uses MKFHE cannot be 

decrypted separately by the querier when obtaining the computation results. Therefore, 

it is necessary to design a secure multi-party computing scheme that is resistant to quan-

tum attacks and can be decrypted individually by the querier. 

The main research contributions of this paper are as follows: 

1. A secure multi-party computation scheme based on NTRU-type [5] multi-key fully 

homomorphic encryption proxy re-encryption is proposed. The use of proxy re-en-

cryption solves the problem that the multi-key homomorphic encryption scheme 

cannot be decrypted separately when the result is obtained, and the data owner can 

go offline after encrypting the uploaded data and does not have to stay online during 

secure multi-party computation. 

2. A scheme combining the blockchain with an NTRU multi-key fully homomorphic 

encryption agent re-encryption secure multi-party computing scheme is proposed. 

The decentralized, transparent, and non-tamper characteristics of the blockchain are 

utilized to achieve the traceability and verifiability of the scheme and prevent collu-

sion of the participants. 

3. The security proof and comparison with other solutions demonstrate that this secure 

multi-party computing solution meets the requirements of being independent of 

trusted third parties, verifiable, privacy-protected, collusion-proof, individually de-

cryptable by the querier, and resistant to quantum attacks. 
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1.2. Paper Structure 

The rest of this paper is organized as follows: Section 2 presents related works. Sec-

tion 3 describes the scheme model, the steps of the scheme operation, the algorithms in-

volved, and the security model used. Section 4 proves the security of the scheme. Section 

5 compares the scheme with other relevant SMPC schemes. The conclusion is provided in 

Section 6. 

2. Related Work 

YAO first proposed a two-party secure computation method in [6] using the “mil-

lionaire problem”. Goldreich and others extended the two-party computation model to a 

basic multi-party computation model [7]. Using this as a starting point, the security of 

SMPC schemes has been a concern. To provide a trusted execution environment for 

SMPC, some researchers have chosen to perform secure multi-party computing through 

trusted third parties, such as Wu Y et al. who constructed a generic server-assisted secure 

multi-party computing protocol for secure execution of collaborative computing tasks in 

cloud computing [8]. However, trusted third parties are vulnerable to attacks forming a 

single point of failure and also have the potential to be complicit with malicious parties. 

Researchers found that blockchains can provide a more secure execution environ-

ment for SMPC. The open, transparent, and tamper-evident nature of blockchain can pro-

vide a means of verification and traceability for SMPC, and the incentive mechanism can 

effectively prevent complicity from occurring. H. Gao et al. proposed a BFR-MPC scheme 

in combination with the blockchain [9] that encourages all participants to cooperate 

through an incentive mechanism and maintains a public reputation system in the scheme, 

in which honest participants gain more and more benefits while corrupt participants are 

increasingly punished. Y. Yang et al. proposed Block-SMPC, a blockchain-based SMPC 

scheme [10], which ensures data integrity and authentication by using the blockchain, in-

troduces a multi-party computer system based on homomorphic encryption, and im-

proves privacy security by separating the authority of homomorphic keys and ciphertexts. 

Liu et al. proposed a secure multi-party computing protocol, BPLSM, for ubiquitous data 

privacy protection in combination with blockchain technology [11]. It achieves on-chain 

signature verification, a guarantee of commitment, the correctness of encrypted values 

and address hiding, and off-chain combined transaction commitment using the property 

of Pederson’s additive homomorphism to construct a secure multi-party computation 

scheme that can sign different messages in combination with the Schnorr protocol. 

The secure multi-party computation scheme in the above study improves the security 

of SMPC with the help of blockchain features, but the scheme cannot be decrypted sepa-

rately by the querier when obtaining the computation result. In order to meet the require-

ment of being able to carry out decryption individually, T. Wang et al. [12] proposed a 

secure, high-performance sharing and multi-party computing model by combining the 

features of the blockchain, based on a combination of on-chain storage and off-chain stor-

age, and, in this storage environment, data are shared by using proxy re-encryption. How-

ever, most of the encryption algorithms involved in the above scheme are based on large 

integer decomposition or discrete logarithm difficulty problems, which do not have the 

ability to resist quantum attacks. 

To solve these problems, this paper proposes a secure multi-party computing scheme 

based on a multi-key homomorphic proxy re-encryption scheme and an NTRU-based 

MKFHE scheme [13,14] with resistance to quantum attacks in the blockchain environ-

ment. 
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3. SMPC Scheme with Multi-Key Fully Homomorphic Proxy Re-Encryption 

3.1. System Model 

The system consists of several components: the data owner, the data querier (in gen-

eral, the data owner, but possibly also the authorized user), the computation network, the 

SMPC contract, the InterPlanetary File System (IPFS) [15], and the blockchain. The system 

architecture is shown in Figure 1. The functions of each part of the system are as follows: 

 Data owner 

As the data provider of secure multi-party computation, the data owner owns the 

original data as the input of the computation. To ensure the privacy and data security of 

all parties, the data must be encrypted by the data owner before being used as the input 

of the computation. 

 Result inquirer 

As the receiver of the computation result, the result inquirer is generally the data 

owner or the authorized user who does not provide the data. With the support of the 

proxy re-encryption algorithm, the result inquirer can decrypt the encrypted computation 

result through their own private key and obtain the calculation result. 

 Blockchain 

The blockchain participates in the process as a trusted storage and execution envi-

ronment. This scheme provides resistance to quantum attacks through proxy re-encryp-

tion to enable the result querier to decrypt the ciphertext result alone. At the same time, 

open, transparent, and untampered information stored on the blockchain can be verified 

as proof. 

 IPFS 

IPFS is used to store encrypted raw data as off-chain storage to save storage space. A 

Bloom filter [16] generates index values, and then IPFS uploads the data keywords, index 

values, and storage address to the blockchain. SMPC nodes look up the data storage ad-

dress on the blockchain and then download the encrypted data from IPFS to local storage 

for calculation. 

 SMPC Contracts 

Data owners, data inquirers, and SMPC nodes need to register with the SMPC con-

tract before the calculation begins. Participants (SMPC nodes or users) pay a deposit to 

the SMPC contract, and the SMPC contract returns a unique ID to the registrant. The data 

inquirers send their public keys to the SMPC contract, which generates the proxy re-en-

cryption key. The computation function in the contract is agreed upon in advance by the 

participants of the secure multi-party calculation so that the code can be written and de-

ployed on the blockchain platform to automatically trigger the execution of the agreed 

computation without human intervention. 

 Computing networks 

The SMPC computing network undertakes the task of data calculation. It queries the 

corresponding encrypted data on IPFS as the input and performs the calculation on the 

encrypted data consistently with the agreed calculation function according to the SMPC 

contract. The obtained encryption results are sent to each data interrogator after the agent 

re-encryption operation. 
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Figure 1. System model diagram. 

3.2. Program Steps 

The steps in the operation of the system are shown in Figure 2. 

1. Initially, the data owner, the data querier, and the SMPC node register with the SMPC 

contract, which distributes a unique ID to each registered node, while the SMPC node 

pays a deposit to the contract. 

2. The data owner generates keywords for the original data to be involved in the oper-

ation and then encrypts the data to be involved in the operation with its own public 

key and uploads them to IPFS, where a Bloom filter generates the index value of the 

encrypted data. The data owner uploads the keywords generated from the original 

data and the storage address of the encrypted data. 

3. The computing network node interacts with the blockchain by querying keywords, 

querying the corresponding block to obtain the storage address of the required en-

crypted information, and obtaining the encrypted data from the IPFS data storage 

address for calculation. 

4. The data querier sends its public key to the SMPC contract, and the ciphertext result 

after the homomorphic calculation is converted into the ciphertext result encrypted 

by the data querier’s public key through the NTRU proxy re-encryption algorithm. 

To obtain the final calculation result, the data querier only needs to decrypt the cal-

culation result returned by the computing network with its own private key. The 

contract is carried out in a sandbox isolation environment, and the blockchain re-

wards or deducts the deposit based on whether the node is honest or not. 
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Figure 2. Timing diagram of system operation. 

5. At the end of the calculation, the blockchain validation node checks whether any dis-

honest nodes have committed mischief before or after the calculation process. If this 

does not happen, the deposit of each node will be returned as is; if this happens, the 

deposit of the honest node will be returned, and the deposit of the dishonest node 

will be deducted and distributed as a reward to the honest node as a punishment. 

In order to enable the nodes in the scheme to reach consensus quickly while ensuring 

security during the operation, the Score Grouping-practical Byzantine fault-tolerant (SG-

PBFT) consensus algorithm, which is based on a modified version of the practical Byzan-

tine fault-tolerant (PBFT) algorithm [17] proposed in the literature [18], is used in the 

scheme. 

The SG-PBFT sets the initial score of N sequential random nodes as 100 points and 

divides them into a consensus node set and a candidate node set. The consensus node 

executes the consensus process, while the candidate node does not participate in the con-

sensus process and only receives the consensus results. The primary node is selected by 

p = vmodCN. CN represents the agreed number of nodes. When the primary node p is 

attacked or fails, the view v will be changed, and the recalculated primary node will re-

place it. 

When the nodes reach a consensus, the master node will send the confirmed results 

to all consensus nodes and update the score of the node. If the result of the node is con-

sistent with the consensus result, one point will be added. Otherwise, five points will be 

deducted. The m nodes with the lowest score will be removed from the consensus node 
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set and attached to the end of the candidate node set. The m nodes with the highest score 

in the candidate set will be added to the consensus node set and renumbered. 

The SG-PBFT renumbers and adjusts nodes after each agreement is reached. This en-

sures that the identity of the primary node is hidden and therefore resistant to distributed 

denial of service (DDoS) attacks. In the SG-PBFT, even if all malicious nodes join together, 

they can only send no more than 1/3 of the total number of messages. Malicious nodes 

cannot reach a consensus, therefore the SG-PBFT can resist selective attacks. The SG-PBFT 

operating process is shown in Figure 3. The “x” on the line indicates that the node is a 

failed node. 

 

Figure 3. SG-PBFT operating diagram. 
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The algorithms in the scheme are divided into four parts: the initialization algorithm, 

the key generation algorithm, the multi-key homomorphic encryption algorithm, and the 

proxy re-encryption algorithm. The operations in the scheme are all performed on the ring 
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of the computational key ��� in the multi-key homomorphic encryption algorithm. 
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� = −�� + �(mod�) is calculated. Set � = (�, 1) ∈ ��
�×�, randomly select the error vector 

�� from the distribution ���
, and calculate g= −�� + ��(mod�) ∈ ��

��
. Output the pri-

vate key �� = � and the public key �� = (�, �, �). 

The data owner and the result querier generate their respective public key �� and 

private key �� by means of a key generation algorithm. 

 Multi-key homomorphic encryption algorithm 

The components of the multi-key homomorphic encryption algorithm include the 

computational key generation algorithm EvkGen, the encryption algorithm Enc, the ci-

phertext extension algorithm CtxtExtend, and the homomorphic computation algorithm 

Eval. 

EvkGen(��, ��, ��) → ���: Randomly select s in the distribution �, randomly select 

��, ��, ��  in the distribution �� , calculate ���� = ��� + �� + �����(mod�) and ���� =

�� + �� + ��(mod�), and output the computation key ��� = [����|����]. 

The computational key generation algorithm EvkGen generates the computational 

key ��� using the public parameters, the public key �� of the data owner, and the pri-

vate key ��. 

Enc(��, �) ⟶ � : Randomly selects �, �  in the distribution � , set δ = ⌊�/�⌋ , and 

compute the ciphertext � = �� + � + δ�(mod�). 

The data owner uses the encryption algorithm Enc to encrypt the data they need to 

participate in the operation and then generates a cipher text and uploads it to IPFS. 

CtxtExtend(��, ��, . . , ��) → ��
∗: Let the number of ciphertexts involved in this operation 

be s and �� = (��, ��, . . , ���
) ∈ ��

��. The corresponding user ID set is �����
, ����

, . . , ����
�, � =

1, 2, … , � . Let � = max (��, ��, … , ��)  and output the k-dimensional ciphertext ��
∗ =

(��
∗, ��

∗, … , ��
∗) ∈ ��

� where 

��
∗ = �

��, � = ��, 1 ≤ � ≤ ��

0, others
 (1)

Eval(��, ��, ���): Calling CtxtExtend(��, ��) gives ��
∗, ��

∗ ∈ ��
� by calculation. Then homo-

morphic addition or multiplication is performed. 

1. HAdd(��
∗, ��

∗ ): Compute and output the ciphertext � = ��
∗+��

∗ (mod�). 

2. HMult(��
∗, ��

∗ , evk): Calculate �� = ⌊�/� × ��
∗ ⊗��

∗ ⌉(mod�) and output the ciphertext 

� = Reline(��, evk) ∈ ��
�. 

 Proxy re-encryption algorithm 

Proxy re-encryption algorithms include the re-encryption key generation algorithm 

RKGen, the re-encryption algorithm ReEnc, and the re-encrypted ciphertext decryption 

algorithm PRDec. The algorithms are used to re-encrypt the ciphertext after the homo-

morphic encryption calculation into a ciphertext that can be decrypted by the resultant 

querier’s private key. 

RKGen(���, ���) → ���→�: Select ��� from �� and let �� = � + ��
� ⊗ ��, where �� =

(0 ∥ 1) ∈ ℤ�. Select ��, �� ≥ 2log� + 2λ, from {0,1}��×� and compute and output ���→� =

���→� = ��, �� + � �
���

� (mod�) ∈ ��
�×�. 

ReEnc(���→�, … , ���→�, �) → �� : Let � = (��, . . , ��)  and calculate and output �� =

∑ ���→����(��)
�
��� (mod�) ∈ ��

�. 

PRDec(���, ��) → m : Let �� = (��, 1)  and compute and output m = ⌊(�/

�)〈��, ��〉�(mod�). 
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3.4. Security Model 

The scheme uses the definition of security from the literature [5] for the MKH-PRE 

scheme. The definition designs an IND-CPA security game between a challenger and an 

adversary �. The re-encryption process is represented using a directed acyclic graph, 

such that � is the set of edges in the re-encryption graph. During the game, the adversary 

can initiate an interrogation of the challenger about the re-encryption key generation 

based on the re-encryption graph. The formal definition of a secure game is as follows: 

 Preparation phase 

The challenger sends the generated public parameters Setup(1�) → �� to the adver-

sary �. 

Generate honest keys. The number of honest keys received by the challenger from 

� is ��, and the challenger generates (���, ���), � = 1, … , �� and sends the ��� to �. Let 

�� be the set of honest public keys. 

Generate non-honest keys. The number of non-honest keys received by the chal-

lenger from � is ��, and the challenger generates (���, ���), � = 1, … , �� and sends the 

��� to �. Let �� be the set of non-honest public keys. 

 Inquiry phase 

The adversary can initiate a polynomial inquiry of any order. 

Generate the re-encryption key. � sends (�, �) to the challenger. If �, � ∈ ��, and 

there is a directed acyclic graph � = (��, � ∪ (�, �)), then the challenger adds (�, �) to � 

and sends the generated re-encryption key for i to j RKGen(���, ���) → ���→� to �; other-

wise, ⊥ is returned. 

Re-encryption. �  sends (�, �, �) to the challenger. If �, � ∈ �� , and = �� , the chal-

lenger returns ⊥. Otherwise, the challenger sends a ciphertext re-encrypted with the j’s 

public key �� sent to �; otherwise, ⊥ is returned. 

 Challenge phase. 

The plaintext space is �. Take ��, �� ∈ �, and �� ∈ ��. � sends (��, ��, ��) to the 

challenger, who chooses a random bit � ∈ {0,1}, generates �� by Enc(����, ��), and re-

turns it to �. � can only initiate a challenging inquiry once. 

 Judgment phase. 

� outputs one bit �� ∈ {0,1}. In this game, the advantage of adversary � is defined 

as 

Adv�������,�
������� (λ) =∣ Pr[�� = �] −

1

2
∣ (2)

If, for any probabilistic polynomial time adversary � there is 

Adv�������,�
������� (λ) = negl(λ) (3)

then, the scheme is IND-CPA safe. 

4. Proof of Safety 

Here, we demonstrate the safety of the MKH-PRE scheme. If the RLWE assumption, 

the decisional small polynomial ratio (DSPR) [20] assumption, and the cyclic safety as-

sumption are difficult, then the MKHE scheme in this paper is IND-CPA safe. 

The security of the PRE process is considered below. Here, we demonstrate the secu-

rity of the PRE process through an IND-CPA security game between a challenger and an 

adversary �. � is an adversary in arbitrary probabilistic polynomial time, which has 

access to the re-encryption key generation and evolution RKGen and the re-encryption 

oracle machine ReEnc and can only initiate queries for generating re-encryption keys 

based on the re-encryption graph. Consider the following set of security games: 

Game 0. The IND-CPA safe game was defined in the previous section. Assuming 

�� = {1, … , �}, �� = {� + 1, … , �}. According to the topological order determined by the 
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re-encryption graph, if � < �, then there are no edges from � to �, i.e., � can only be ini-

tiated in the � > � case of a re-encryption key ���→� of the query. 

Divide Game k, � = 1, … , �, into two categories, Game. 1 k and Game. 2 k. 

Game. 1 k. When � initiates a query to generate an honest key, for all � < �, the 

challenger randomly draws �� and �� in the uniform distributions �� and ��
��

, respec-

tively, to generate the public key; for all � < � ≤ �, the challenger generates the public 

key by KeyGen(��) ⟶ (��, ��). The rest of the operation is the same as Game. 2 k-1. 

Game. 2 k. When A initiates the query to generate the re-encryption key, the chal-

lenger generates the re-encryption key ���→� by drawing a random matrix from ��
�×��

 

for all � < � ≤ � ; for � < �, � ≤ � , the challenger generates the re-encryption key by 

RKGen(���, ���) → ���→�. The rest of the operation is the same as Game. 2 k. 

Game End. When � initiates a challenge query, the challenger generates the cipher-

text � through random sampling, and the rest of the operation is the same as Game. 2 N. 

The strengths of � in each game are assessed separately as follows: 

Because Game 0 is an IND-CPA safe game of the original MKH-PRE scheme, 

Adv�������,�
������� (λ) = Adv�

���� �(λ)  (4)

In Game. 1 k, the re-encryption key ���→�  generated by the challenger satisfies 

���→� = ���→� = ��, �� + � �
���

� (mod�) when � < � , where ��  is randomly selected in 

the uniform distribution of {0,1}��×� and �� ≥ 2log� + 2λ. Since �� and � are randomly 

selected from the uniform distribution when � < �, �� = � + ��
� ⊗ �� is also subject to 

the uniform distribution. According to the residual hash lemma, H and X are subject to 

uniform distributions, so �� and �� are statistically indistinguishable from a matrix ran-

domly drawn from a uniform distribution. The results show that ���→� is statistically in-

distinguishable from the random matrix extracted from the uniform distribution, meaning 

that Game. 1 k and Game. 2 k are statistically indistinguishable. Therefore, there is 

�Adv�
����.� �(λ)−Adv�

����.� �(λ)� = negl(λ)  (5)

Adversary � constructs a PPT algorithm � to distinguish the RLWE distribution 

from the uniform distribution, and the sample � ∈ �� input to � comes from the RLWE 

distribution or one of the uniform distributions. 

 Preparation phase 

� calculates �� = (��
�‖… ‖���

� ) and randomly extracts ��, �� from the uniform dis-

tribution ��, ��
��

. Q sends � = �� + � �
��

� to �. 

Generate honest keys   

When � initiates an honest key generation query, the response of � is as follows: 

When � < �, � randomly selects ��, ��  from the uniform distribution ��, ��
��

 and 

lets ��� = (��, ��). 

When � = �, � lets ��� = (��, ��). 

When � > �, � generates the public key by KeyGen(��) ⟶ (���, ���). 

Finally, � sends ���, � ∈ {1, … , �} to �. 

Generate dishonest keys 

When �  initiates a generate dishonest keys query, �  calculates KeyGen(�) ⟶

(���, ���) and sends (���, ���) to �. 

 Inquiry phase. 

Generate re-encryption keys 

When � initiates a generate re-encryption key query (�, �), if �, � < �, then � re-

turns ���→� ∈ ��
�×� randomly selected from the uniform distribution; if �, � > �, then � 

returns RKGen(���, ���) → ���→�. 

Re-encryption 

When �  initiates a re-encryption query (��, … , ��, �, �) , �  returns 

ReEnc(����→�, … , ����→�, c) → c� to �. 
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 Challenge phase. 

��, �� ∈ �, and �� ∈ ��  are selected. �  starts the query (��, ��, ��), and � ran-

domly selects a bit � ∈ {0,1}, generating �� by Enc(����, ��) and returning it to �. 

 Judgment phase. 

� ceases the query and outputs bits �� ∈ {0,1}. Then, Q outputs 1 if � = ��, or 0 oth-

erwise. 

If the RLWE distribution is entered in �, then � simulates Game. 2 k−1. The first 

rows of ��  and ��  are both random quantities that obey a uniform distribution, so � 

also obeys a uniform distribution. In addition, the distributions of �� ≈ −(�||1)� are the 

same as in the actual game. In the previous game, ���→� was replaced by a randomly se-

lected matrix from a uniform distribution, where � simulates Game. 2 k-1. If the uniform 

distribution is entered in �, then � simulates Game.1 k. From the above analysis, the 

RLWE assumption, and the DSPR assumption, it follows that: 

�Adv�
����.� ���(λ)−Adv�

����.� �(λ)� = negl(λ)   (6)

The ciphertext in Game End is drawn randomly from a uniform distribution; in 

Game. 2 N, all public keys are replaced in the previous games with vectors drawn ran-

domly from a uniform distribution, and the polynomial drawn randomly from a uniform 

distribution is statistically indistinguishable from the ciphertext output by the encryption 

algorithm under the RLWE assumption; therefore, Game. 2 N is statistically indistinguish-

able from Game End. 

�Adv�
����.� �(λ)−Adv�

���� ���(λ)� = negl(λ)  (7)

The advantages of � in Game End are: 

Adv�
���� ���(λ) = negl(λ)     (8)

Based on the above analysis, it can be concluded that 

(Adv�������,�
������� (λ)

≤ ��Adv�
����.� ���(λ)−Adv�

����.� �(λ)� + �Adv�
����.� �(λ)−Adv�

���� ���(λ)�

�

���

+ Adv�
���� ���(λ) = negl(λ)  

(9)

Therefore, the solution in this paper is IND-CPA safe. 

5. Comparison of Programs 

Constructed by Y. Wu et al. to address the problem of secure execution of collabora-

tive computing tasks in cloud computing, a generic server-assisted secure multi-party 

computing protocol [8] was proposed without complicity between the server and client; 

however, the scheme also relies on the participation of trusted third parties, cannot pre-

vent complicity, and does not have a reliable means of verification of the computing pro-

cess. To make the scheme verifiable, researchers have used the properties of the block-

chain to add verifiability to the scheme while providing privacy protection by introducing 

the blockchain in the scheme construction. Examples include H. Gao et al.’s blockchain-

based BFR-MPC scheme [9], Y. Yang et al.’ s SMPC scheme Block-SMPC [10], and Liu et 

al.’s BPLSM [11], a secure multi-party computing protocol for ubiquitous data privacy 

protection combined with the blockchain technology. The above schemes make improve-

ments to the scheme via the blockchain but require joint decryption by multiple querying 

parties when obtaining the results. T. Wang et al. [12] proposed a sharing and multi-party 

computation mode scheme in combination with the blockchain, using proxy re-encryp-

tion for data sharing so that querying parties can carry out decryption individually, but 

none of the encryption methods used in the above schemes are resistant to quantum at-

tacks. 
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This scheme performs multi-party secure computation on the blockchain and pays a 

deposit during the computation of a transaction via a smart contract to prevent complicity 

between participants. The NTRU-based scheme design provides the scheme with re-

sistance to quantum attacks. The decryption of ciphertext results by the result querier 

alone is achieved through proxy re-encryption, and the data owner can go offline after 

uploading the data and public key. The specific performance comparison is shown in Ta-

ble 1. As can be seen from the table, the scheme can meet the requirements of not relying 

on trusted third parties, being verifiable, having privacy protection, being anti-complicity, 

being individually decryptable by the querier, and being resistant to quantum attacks. 

Table 1. Performance comparison of this paper with other SMPC solutions. 

Literature 

Not Relying on 

Trusted Third 

Parties 

Verifiable Privacy Anti-Conspiracy 
Individual Decryption 

Available to Enquirers 

Resistant to 

Quantum  

Attacks 

[8]  × × √ × × × 

[9] √ √ √ √ × × 

[10] √ √ √ √ × × 

[11] √ √ √ - × × 

[12] √ √ √ - √ × 

This paper √ √ √ √ √ √ 

In the table, “√” means that the scheme can meet this requirement, “×” means that the scheme cannot 

meet this requirement, and “-” means that the literature does not describe whether the scheme can 

meet this requirement. 

6. Conclusions 

In this paper, to solve the problem that the encryption schemes used in most current 

secure multi-party computation schemes are not resistant to quantum attacks, and the 

secure multi-party computation schemes constructed via MKFHE cannot be decrypted by 

the result querier alone when the result is obtained, an NTRU-type multi-key fully homo-

morphic proxy re-encryption secure multi-party computation scheme in the blockchain 

environment was proposed. By designing a multi-key fully homomorphic encryption al-

gorithm and a proxy re-encryption algorithm under the NTRU cryptosystem, the scheme 

meets the requirements of individual decryption by the querier, offline access by the data 

owner after uploading encrypted data, and resistance to quantum attacks. At the same 

time, the decentralized, immutable, open, and transparent nature of the blockchain pro-

vides a trusted execution environment for the scheme, providing a traceable and verifiable 

means of data. The blockchain’s incentives encourage honest cooperation between the 

various computing participants and prevent complicity. 

The security of the scheme is based on the RLWE problem and the DSPR assumption, 

which is not a standard cryptographic assumption. Although there is no efficient way to 

break the DSPR assumption for the small-modulus case, it can be assumed that the DSPR 

assumption is secure, but this issue needs attention. Therefore, how to construct a secure 

multi-party computation scheme with NTRU-type multi-key fully homomorphic proxy 

re-encryption whose security depends only on the RLWE problem requires further re-

search. In addition, how to apply the scheme proposed in this paper in the actual multi-

party computation scenario is also an important research direction. 
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