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Abstract: Since their inception, deep-learning architectures have shown promising results for au-
tomatic segmentation. However, despite the technical advances introduced by fully convolutional
networks, generative adversarial networks or recurrent neural networks, and their usage in hybrid
architectures, automatic segmentation in the medical field is still not used at scale. One main reason
is related to data scarcity and quality, which in turn generates a lack of annotated data that hinder the
generalization of the models. The second main issue refers to challenges in training deep models.
This process uses large amounts of GPU memory (that might exceed current hardware limitations)
and requires high training times. In this article, we want to prove that despite these issues, good
results can be obtained even when using a lower resource architecture, thus opening the way for more
researchers to employ and use deep neural networks. In achieving the multi-organ segmentation,
we are employing modern pre-processing techniques, a smart model design and fusion between
several models trained on the same dataset. Our architecture is compared against state-of-the-art
methods employed in a publicly available challenge and the notable results prove the effectiveness of
our method.

Keywords: deep learning; multi-organ segmentation; fully convolutional neural networks; pre-
processing; fusion

1. Introduction

Automated medical segmentation employed on human organs from computed to-
mography (CT) or magnetic resonance imaging (MRI) has the potential to help radiology
practitioners perform day to day activities. The manual interpretation of the images is a
“tedious and exhausting work that is further impacted by the large variations in pathology
between different individuals”, while the training of human experts is a complex and
long-running process. All these factors indicate that the automatic segmentation of medical
images, computerized delineation of human organs, or even automated diagnosis can be
helpful for doctors if they provide accurate results.

1.1. Related Work

Due to their good results, deep-learning (DL) architectures are one of the most used
solutions for computer vision [1] and for multi-organ segmentation. Since they were
first proposed by [2], fully convolutional networks (FCN), alongside the well-known
variants “2D U-Net” [3], “3D U-Net” [4] and the “V-Net” [5], have been the most used and
recognized DL architectures. These DL networks are used for automatic segmentation in
single or multi-organ scenarios with good results, but they are plagued by issues. The most
important ones are:

• Data scarcity—annotated datasets that can be used as training data for DL architectures
are hard to generate mainly because it is time intensive and costly to manually segment
them by human experts;

• Data quality—data can be plagued by different issues such as noise or heterogenic
intensities and contrast;
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• Class imbalance—in medical image processing, organ size, appearance or location
vary greatly from individual to individual. This is even more significant when there
are several lesions or tumors. One important corner case issue of class imbalance is
related to small organs;

• Challenges with training deep models—over-fitting (achieving a good fit of the DL
model on the training/testing dataset, but not achieving the generalization to obtain
correct results on new, unseen data), “reducing the time and the computational com-
plexity of deep learning networks” [6] and lowering the high amounts of GPU memory
needed in order to train models that can provide satisfactory results.

Proposed solutions to these issues are briefly summarized below.
The creation of hybrid architectures, which combine traditional deep-learning net-

works with generative adversarial networks (GANs), can improve the segmentation results.
GANs were initially proposed by [7] and they have the ability to create new datasets that
closely resemble to the initial training set. The most obvious usage of a GAN network is to
try to reduce the data scarcity issue. A successful GAN hybrid approach was used by [8] in
thorax segmentation by employing “generator and discriminator networks that compete
against each other in an adversarial learning process” and in abdomen organ segmentation
by [9], who “cascaded convolutional networks with adversarial networks to alleviate data
scarcity limitations”.

Other proven hybrid architectures combine traditional DL networks with recurrent
neural networks (RNNs). These networks are able to store the patterns of previous inputs
and therefore can improve the segmentation results of the DL networks. Additionally, [10]
designed a system consisting of U-Net networks and RNN networks in which “feature
accumulation with recurrent residual convolutional layers” improves the segmentation
outcome, while [11] presented a “U-Net-like network enhanced with bidirectional C-
LSTM”.

One option employed to reduce training times is transfer learning. This is the ability
to reuse the knowledge obtained when training a neural network and to transfer it to
a new architecture [12]. Transfer learning in medical scenarios is performed either by
re-using parameters from networks pre-trained on common images [12] or by fine-tuning
networks that were already trained for another organ or segmentation task. Transfer
learning generates better results when transferring weights from networks that have similar
architectures. However, even on more differing architectures, it was proved that transfer
learning is more efficient than random initialization [13].

Data augmentation can alleviate some of the deep neural issues described above.
Pre-processing methods are executed before the training of a neural network. Methods
such as the application of a set of affine transformation, e.g., flipping, scaling, rotating,
mirroring, and elastic deformation [14] to the training/testing data as well as augmenting
color (grey) values [15] have proven results, and they can improve the segmentation results.
Other pre-processing methods include bias/attenuation correction [16] and voxel intensity
normalization [17].

Most recently, the GANs, “variational Bayes AE”, proposed by Kingma et al. [18],
“adversarial data augmentation” put forward by Volpi et al. [19] and reinforcement learning
as suggested by Cubuk et al. [20] have been employed to learn augmentation techniques
from the existing training data.

Post-processing can be also applied to refine and smoothen the segmentations to
make them more continuous or realistic. The most popular method applied in DL is the
conditional random field proposed by Christ et al. [21].

One important solution for class imbalance is the use of a patch-based technique for
learning. The training data are split into “multiple patches which can be either overlapping
or random patches” [22]. Overlapping patches offer better training results but are com-
putationally intensive [23] while random patches provide higher variance and improved
results [24] but produce lower results for small organs as they might miss completely the
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areas of interest. Other important works that demonstrate the improvement capabilities of
patch-wise training in 2D or 3D include [25,26].

Another solution was proposed by Dai et al. [27] in the form of a “critic network” that
applies to the training phase the regular structures found in human physiology in order to
correct the training data. Other proven resolution is to enlarge the network’s depth so that
there are even more layers of convolutions that can learn the features [28].

Architectures that employ multi-modality approaches can alleviate class imbalance
problems with solutions proposed by [29,30], while other authors used GAN networks to
synthesize images from different modalities [26,31], with encouraging results.

As previously stated, an important challenge of training deep neural networks is over-
fitting. Besides the obvious solutions of increasing the training and testing data (which is
not easily employable as human annotated datasets are time consuming to generate) there
are several other applicable techniques. These are weight regularization [32], dropout [33]
or ensemble learning [34].

Another challenge is to “reduce the time and the computational complexity of deep
learning networks” [6]. Important works that propose solutions are [35,36]. Other authors
tried to simplify the shape of DL networks with good results obtained by [37,38].

1.2. Aim

Our aim was to prove that even an architecture that uses a lower-resource environment,
can achieve good segmentation results that rank in the upper bracket of a recognized multi-
organ challenge or competition. In this way, all researchers can use deep neural networks
to advance the knowledge field, regardless of the hardware capabilities.

In line with this, we have imposed some constraints. The first one, was to employ
a deep-learning architecture that can be trained using a maximum of 8 GB GPU. This is
achievable using a medium budget video card. In this way we could prove that even by
using a smaller memory capacity than present-day state-of-the-art articles (who use up to
24 GB GPUs), good results can be obtained when using a solid DL architecture.

The second constraint that we imposed to ourselves was to use a recognized, but still
simple, DL network. We chose the U-Net 3D architecture that is widely used in research
and has proven time and time again that is a good fit for medical segmentation.

These are hard constraints considering today’s state-of-the-art in hardware capabilities
and the technical advances in DL, but even so, an architecture that uses a good design
should obtain meaningful and consistent outcomes.

2. Materials and Methods
2.1. Dataset

In order to design, train and test our proposed deep-learning architecture, we selected
the SegTHOR [39] challenge which addresses the problem of segmenting 4 thoracic organs
at risk: esophagus, heart, aorta and trachea.

The challenge provides 40 CTs “with manual segmentation while the test set contains
20 CTs. The CT scans have 512 × 512 pixels size with in-plane resolution varying between
0.90 mm and 1.37 mm per pixel, depending on the patient. The number of slices varies from
150 to 284 with a z-resolution between 2 mm and 3.7 mm. The most frequent resolution is
0.98 × 0.98 × 2.5 mm3” [39]. Figure 1. is a visual representation of one of the CTs provided
by the challenge.
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Figure 1. Axial and sagittal planes with annotated organs; source Lambert et al. [39].

The challenge’s authors evaluate the results independently using code that is automat-
ically run and which is also open source. The results are generated independently for each
of the organ and the employed metrics are:

• The overlap dice metric (DM), “defined as 2*intersection of automatic and manual
areas/(sum of automatic and manual areas)” [39];

• The Hausdorff distance (HD), “defined as max(ha,hb), where ha is the maximum
distance, for all automatic contour points, to the closest manual contour point and
hb is the maximum distance, for all manual contour points, to the closest automatic
contour point” [39].

2.2. Proposed Deep-Learning Architecture

Our proposed architecture consists of a pipeline with four main components: a pre-
processing step, a 3D U-Net [4] trained for multi-organ segmentation, four separate 3D
U-Nets [4] for single organ segmentation and a fusion of results that will generate the final
segmentation. The diagram of the architecture is presented in Figure 2.
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Figure 2. Proposed pipeline.

2.2.1. Preprocessing

The initial step in the pipeline is all about pre-processing. Besides patients’ morpholog-
ical differences, CT scans are produced with varying voxel sizes because the CT scanners
inherently have different setups. All these factors produce different imaging artefacts which
increase the complexity of segmentation. Therefore, the first step of pre-processing involves
resampling the CT scans to normalize the slice thickness and also to reduce the image sizes
(by a factor of 2).

The second step in pre-processing was to apply a clipping of the voxel values based
on the Hounsfield scale for the organs of interest [40]. This clipping is based on Table 1 and
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greatly helps the deep-learning model concentrate only on the values and body locations
which are relevant.

Table 1. Hounsfield scale for the organs of interest.

Organ Minimum Accepted Value Maximum Accepted Value

esophagus −1000 1000
heart −400 600
aorta −400 1600

trachea −1000 200
multi-organ −1000 1600

In the third and final step, the images were normalized using a simple standard Z-score
normalization [17].

Deep-learning results are more accurate when employing a big dataset. Conversely, a
small dataset will increase the model’s tendency to overfit. Unfortunately, the SegTHOR [39]
dataset has only 40 training CTs; therefore, data augmentation techniques were used. These
included: scaling, rotating, elastic deformation [14], augmenting color (grey) values [15],
gamma correction and adding gaussian noise. All these augmentation techniques implied
that two learning cycles could be executed using the same dataset but with altered or
enhanced characteristics, which reduced the data scarcity issue.

The preprocessing procedures were applied on the whole dataset.

2.2.2. Model Description

The segmentation architecture consists of 5 DL networks. For each organ a separate
model was trained, while another model was trained in a multi-organ setup (all 4 organs).
A standard U-Net [4] network was used in all training scenarios with a completely ordi-
nary setup: a depth of 4, 32 convolutional filters (3 × 3 × 3) in the initial layer, 64, 128
and 256 filters in the subsequent convolutional layers, batch normalization, max pooling,
RELU activation function for the hidden layers and Softmax activation function in the last
output layer.

Because a medium-memory GPU was employed and due to the size of CTs, there was
not enough memory to train our models on the complete data captured in a CT. Therefore, a
smart patching mechanism was used. This would take random chunks of smaller sized 3D
parts of a CT and feed them to the model. The size of the chunks was based on the expected
organ morphology, and the patch strategy was seconded by an overlapping of patches
which also matched the expected organ dimension. For the multi-organ model, a medium
patch size and patch overlapping was used in order to accommodate all organ sizes.

While striving to use the available memory to the maximum, the biggest possible
patch sizes per model were obtained and detailed in Table 2, while the batch size was set to
2. We want to highlight that the size of the initial CTs was 512 × 512 pixels with number of
slices that varied between 150 and 284.

Table 2. Patch sizes.

Network Patch Size (Pixels) Patch Overlapping (Pixels)

esophagus 128 × 128 × 80 64 × 64 × 16
heart 160 × 160 × 48 80 × 80 × 24
aorta 144 × 144 × 64 72 × 72 × 32

trachea 128 × 128 × 80 64 × 64 × 16
multi-organ 144 × 144 × 64 72 × 72 × 32

The 40 CTs were split randomly into learning and testing datasets with a ratio of
80:20, and a maximum of 500 epochs were executed for each different network. Higher
learning rates were used in the initial phases to obtain a good set of parameters faster,
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while a more discrete learning rate was used in the final phase of learning to obtain the
best possible parameter values. Different loss algorithms were used based on single or
multi-organ learning. Therefore, Tversky loss [41] was used for single organs networks
while the Tversky enhanced with cross-entropy was employed for the multi-organ network.

2.2.3. Fusion of Results

The results from each individual network are merged thus obtaining the final segmen-
tation result. This process starts by taking the segmentation of the multi-organ network and
adding on top of them the results from each single organ network. This process followed
four rules:

• Merging will start with smaller or thinner organs to offer a boost to those organs that
are harder to track. The order was: trachea, esophagus, aorta, and heart;

• Voxels with the same segmentation on both multi-organ and one single organ networks
are guaranteed to obey that segmentation result;

• In case of mismatch between the multi-organ network result and the single network,
the segmentation result that has the most neighboring voxels with the same segmenta-
tion wins;

• In case there are several segmentation results, or a clear winner based on neighbors
cannot be achieved, the multi-organ segmentation has priority. This is based on the fact
that the multi-organ segmentation has all the organs while the single organ network
incorporates results only for one organ type.

2.2.4. Implementation

For the implementation, the MISCNN https://github.com/frankkramer-lab/MIScnn
(accessed on 1 May 2022) [42] open source library was used. This library provides 2D or
3D DL model implementation and data I/O modules. For data augmentation we used
batchgenerators by MIC@DKFZ which is Python package developed by “The Division of
Medical Image Computing at the German Cancer Research Center (DKFZ) and the Applied
Computer Vision Lab of the Helmholtz Imaging Platform”—https://github.com/MIC-D
KFZ/batchgenerators (accessed on 1 May 2022) [43].

Our complete Python implementation can be found at https://github.com/valenti
nogrean/Multi-organ-segmentation-low-resource-environment (accessed on 28 Septem-
ber 2022).

3. Results

The five DL networks that are part of the architecture were trained one by one on
the same hardware with the maximum number of epochs set to 500. During the training
process, if the loss did not improve for 20 epochs, the learning rate would be decreased with
a factor of 10, while the minimum allowed learning rate was set to 0.00001. The training
process would be considered complete if the loss would not improve for 20 epochs using
the minimum learning rate. With this implementation, the maximum number of epochs
was never reached, and in practice it took around 350 epochs to fully train each model.
From the computational time’s perspective, a complete training of one DL network took
around 24 h.

The current architecture managed to obtain as high as eighth place in the SegTHOR [39]
challenge out of at least forty valid submissions.

As per the SegTHOR documentation, the results were evaluated based on the “overlap
Dice metric (DM)” and the “Hausdorff distance (HD)”. Therefore, two metrics are com-
puted for each organ, totaling eight different metrics. The final ranking is “based on the
average of the 8 metrics”.

As SegTHOR is an open challenge, new submissions can be added, and they will
influence the raking. In Table 3. we present our best results next to the results for the
highest-ranking user at the time of writing of this article.

https://github.com/frankkramer-lab/MIScnn
https://github.com/MIC-DKFZ/batchgenerators
https://github.com/MIC-DKFZ/batchgenerators
https://github.com/valentinogrean/Multi-organ-segmentation-low-resource-environment
https://github.com/valentinogrean/Multi-organ-segmentation-low-resource-environment
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Table 3. Detailed results of our best submission.

Best Overall Rank 8th Place

Esophagus Heart Trachea Aorta

Dice for proposed method 0.8612 0.9449 0.9092 0.9346
Dice for first ranked method 0.8889 0.9553 0.9278 0.9500

Dice—ranking of the proposed method
(highest rank) 6 8 13 9

Hausdorff for proposed method 0.2700 0.1698 0.2458 0.1891
Hausdorff for first ranked method 0.1906 0.1249 0.1779 0.1193

Hausdorff—ranking of the proposed
method (highest rank) 6 7 11 7

The best results were obtained using our proposed fusion strategy from Section 2.2.3.
In support of this, we present, in Table 4, additional outcomes from different submissions
that were obtained using other strategies. All of these results were automatically calculated
by the SegTHOR challenge, making them objective elements of an ablation experimentation.

Table 4. Comparison between different strategies.

Strategy Esophagus Heart Trachea Aorta

Dice for proposed method 0.8612 0.9449 0.9092 0.9346
Dice for merging single organ networks only 0.8520 0.9393 0.9055 0.9239

Dice for multi-organ network 0.8356 0.9450 0.9078 0.9311
Dice for intersecting network results 0.8287 0.9396 0.9035 0.9289

Hausdorff for proposed method 0.2700 0.1698 0.2458 0.1891
Hausdorff for merging single organ

networks only 0.3898 0.1932 0.2555 0.2927

Hausdorff for multi-organ network 0.3783 0.1611 0.2613 0.2107
Hausdorff for intersecting network results 0.3753 0.1824 0.2751 0.2260

As visual examples, we have provided Figure 3, which shows the automatic segmen-
tations using our proposed method for some of the patients from the SegTHOR dataset.
For patient 01, the ground truth is provided as this is part of the training set. However, for
patient 41, only our own segmentations are provided, as the ground truth is private to the
SegTHOR team and is used in ranking the submissions.
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4. Discussion

The architecture demonstrates that even thought a lower memory GPU was employed,
results close to state of the art can be achieved. Other important contributions of the
architecture are the novel patching mechanism that mimics the organ shape and employing
the smart fusion of results between several deep neural networks.

The best results were obtained for esophagus and the worst for trachea. We theorized
that the poor results for the trachea stemmed from its morphological structure, having
the lowest values on the Hounsfield scale. This was a challenge for our models that was
observed more on the multi-organ model than on the single organ network.

Secondly, the esophagus and the trachea are two neighboring organs. The target to
improve the results for trachea had a negative impact on the results for the esophagus and
vice versa. We still tried to boost the scores for trachea by making it the first merged organ,
but with limited effect. The issue came from the fact that the multi-organ network had
low accuracy on the trachea segmentation in the first place (something that we could not
alleviate with our model).

We have tested the architecture on GPUs with higher total memory (16 GB and 24 GB)
that allowed us to use larger patches and larger batch sizes. Although we were able to
replicate the results, we could not improve them. Thus, we theorize that the patching
mechanism is efficient enough to alleviate most of the issues that arise from not being able
to train in one step over the complete CT data. Regardless, we still succeeded in proving
that, despite the imposed constraints (medium-sized GPU with only 8 GB of RAM, standard
3D U-NET), state-of-the-art results can be obtained. These were achieved by employing
intensive and smart pre-processing, clever patching, using several deep neural networks,
and merging their results in a consistent way.
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As an immediate improvement to our proposed method, we can mention enlarging
the dataset, the inclusion of GANs to reduce the data scarcity issue, or the addition of RRNs
to improve the segmentation.
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