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Abstract: Since their inception, deep-learning architectures have shown promising results for auto-

matic segmentation. However, despite the technical advances introduced by fully convolutional 

networks, generative adversarial networks or recurrent neural networks, and their usage in hybrid 

architectures, automatic segmentation in the medical field is still not used at scale. One main reason 

is related to data scarcity and quality, which in turn generates a lack of annotated data that hinder 

the generalization of the models. The second main issue refers to challenges in training deep models. 

This process uses large amounts of GPU memory (that might exceed current hardware limitations) 

and requires high training times. In this article, we want to prove that despite these issues, good 

results can be obtained even when using a lower resource architecture, thus opening the way for 

more researchers to employ and use deep neural networks. In achieving the multi-organ segmenta-

tion, we are employing modern pre-processing techniques, a smart model design and fusion be-

tween several models trained on the same dataset. Our architecture is compared against state-of-

the-art methods employed in a publicly available challenge and the notable results prove the effec-

tiveness of our method. 

Keywords: deep learning; multi-organ segmentation; fully convolutional neural networks;  

pre-processing; fusion 

 

1. Introduction 

Automated medical segmentation employed on human organs from computed to-

mography (CT) or magnetic resonance imaging (MRI) has the potential to help radiology 

practitioners perform day to day activities. The manual interpretation of the images is a 

“tedious and exhausting work that is further impacted by the large variations in pathol-

ogy between different individuals”, while the training of human experts is a complex and 

long-running process. All these factors indicate that the automatic segmentation of med-

ical images, computerized delineation of human organs, or even automated diagnosis can 

be helpful for doctors if they provide accurate results. 

1.1. Related Work 

Due to their good results, deep-learning (DL) architectures are one of the most used 

solutions for computer vision [1] and for multi-organ segmentation. Since they were first 

proposed by [2], fully convolutional networks (FCN), alongside the well-known variants 

“2D U-Net” [3], “3D U-Net” [4] and the “V-Net” [5], have been the most used and recog-

nized DL architectures. These DL networks are used for automatic segmentation in single 

or multi-organ scenarios with good results, but they are plagued by issues. The most im-

portant ones are: 

 Data scarcity—annotated datasets that can be used as training data for DL architec-

tures are hard to generate mainly because it is time intensive and costly to manually 

segment them by human experts; 

 Data quality—data can be plagued by different issues such as noise or heterogenic 

intensities and contrast; 
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 Class imbalance—in medical image processing, organ size, appearance or location 

vary greatly from individual to individual. This is even more significant when there 

are several lesions or tumors. One important corner case issue of class imbalance is 

related to small organs; 

 Challenges with training deep models—over-fitting (achieving a good fit of the DL 

model on the training/testing dataset, but not achieving the generalization to obtain 

correct results on new, unseen data), “reducing the time and the computational com-

plexity of deep learning networks” [6] and lowering the high amounts of GPU 

memory needed in order to train models that can provide satisfactory results. 

Proposed solutions to these issues are briefly summarized below. 

The creation of hybrid architectures, which combine traditional deep-learning net-

works with generative adversarial networks (GANs), can improve the segmentation re-

sults. GANs were initially proposed by [7] and they have the ability to create new datasets 

that closely resemble to the initial training set. The most obvious usage of a GAN network 

is to try to reduce the data scarcity issue. A successful GAN hybrid approach was used by 

[8] in thorax segmentation by employing “generator and discriminator networks that 

compete against each other in an adversarial learning process” and in abdomen organ 

segmentation by [9], who “cascaded convolutional networks with adversarial networks 

to alleviate data scarcity limitations”. 

Other proven hybrid architectures combine traditional DL networks with recurrent 

neural networks (RNNs). These networks are able to store the patterns of previous inputs 

and therefore can improve the segmentation results of the DL networks. Additionally, [10] 

designed a system consisting of U-Net networks and RNN networks in which “feature 

accumulation with recurrent residual convolutional layers” improves the segmentation 

outcome, while [11] presented a “U-Net-like network enhanced with bidirectional C-

LSTM”. 

One option employed to reduce training times is transfer learning. This is the ability 

to reuse the knowledge obtained when training a neural network and to transfer it to a 

new architecture [12]. Transfer learning in medical scenarios is performed either by re-

using parameters from networks pre-trained on common images [12] or by fine-tuning 

networks that were already trained for another organ or segmentation task. Transfer 

learning generates better results when transferring weights from networks that have sim-

ilar architectures. However, even on more differing architectures, it was proved that trans-

fer learning is more efficient than random initialization [13]. 

Data augmentation can alleviate some of the deep neural issues described above. Pre-

processing methods are executed before the training of a neural network. Methods such 

as the application of a set of affine transformation, e.g., flipping, scaling, rotating, mirror-

ing, and elastic deformation [14] to the training/testing data as well as augmenting color 

(grey) values [15] have proven results, and they can improve the segmentation results. 

Other pre-processing methods include bias/attenuation correction [16] and voxel intensity 

normalization [17]. 

Most recently, the GANs, “variational Bayes AE”, proposed by Kingma et al. [18], 

“adversarial data augmentation” put forward by Volpi et al. [19] and reinforcement learn-

ing as suggested by Cubuk et al. [20] have been employed to learn augmentation tech-

niques from the existing training data. 

Post-processing can be also applied to refine and smoothen the segmentations to 

make them more continuous or realistic. The most popular method applied in DL is the 

conditional random field proposed by Christ et al. [21]. 

One important solution for class imbalance is the use of a patch-based technique for 

learning. The training data are split into “multiple patches which can be either overlap-

ping or random patches” [22]. Overlapping patches offer better training results but are 

computationally intensive [23] while random patches provide higher variance and im-

proved results [24] but produce lower results for small organs as they might miss 
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completely the areas of interest. Other important works that demonstrate the improve-

ment capabilities of patch-wise training in 2D or 3D include [25,26]. 

Another solution was proposed by Dai et al. [27] in the form of a “critic network” 

that applies to the training phase the regular structures found in human physiology in 

order to correct the training data. Other proven resolution is to enlarge the network’s 

depth so that there are even more layers of convolutions that can learn the features [28]. 

Architectures that employ multi-modality approaches can alleviate class imbalance 

problems with solutions proposed by [29,30], while other authors used GAN networks to 

synthesize images from different modalities [26,31], with encouraging results. 

As previously stated, an important challenge of training deep neural networks is 

over-fitting. Besides the obvious solutions of increasing the training and testing data 

(which is not easily employable as human annotated datasets are time consuming to gen-

erate) there are several other applicable techniques. These are weight regularization [32], 

dropout [33] or ensemble learning [34]. 

Another challenge is to “reduce the time and the computational complexity of deep 

learning networks” [6]. Important works that propose solutions are [35,36]. Other authors 

tried to simplify the shape of DL networks with good results obtained by [37,38]. 

1.2. Aim 

Our aim was to prove that even an architecture that uses a lower-resource environ-

ment, can achieve good segmentation results that rank in the upper bracket of a recog-

nized multi-organ challenge or competition. In this way, all researchers can use deep neu-

ral networks to advance the knowledge field, regardless of the hardware capabilities. 

In line with this, we have imposed some constraints. The first one, was to employ a 

deep-learning architecture that can be trained using a maximum of 8 GB GPU. This is 

achievable using a medium budget video card. In this way we could prove that even by 

using a smaller memory capacity than present-day state-of-the-art articles (who use up to 

24 GB GPUs), good results can be obtained when using a solid DL architecture. 

The second constraint that we imposed to ourselves was to use a recognized, but still 

simple, DL network. We chose the U-Net 3D architecture that is widely used in research 

and has proven time and time again that is a good fit for medical segmentation. 

These are hard constraints considering today’s state-of-the-art in hardware capabili-

ties and the technical advances in DL, but even so, an architecture that uses a good design 

should obtain meaningful and consistent outcomes. 

2. Materials and Methods 

2.1. Dataset 

In order to design, train and test our proposed deep-learning architecture, we se-

lected the SegTHOR [39] challenge which addresses the problem of segmenting 4 thoracic 

organs at risk: esophagus, heart, aorta and trachea. 

The challenge provides 40 CTs “with manual segmentation while the test set contains 

20 CTs. The CT scans have 512 × 512 pixels size with in-plane resolution varying between 

0.90 mm and 1.37 mm per pixel, depending on the patient. The number of slices varies 

from 150 to 284 with a z-resolution between 2 mm and 3.7 mm. The most frequent resolu-

tion is 0.98 × 0.98 × 2.5 mm3” [39]. Figure 1. is a visual representation of one of the CTs 

provided by the challenge. 
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Figure 1. Axial and sagittal planes with annotated organs; source Lambert et al. [39]. 

The challenge’s authors evaluate the results independently using code that is auto-

matically run and which is also open source. The results are generated independently for 

each of the organ and the employed metrics are: 

 The overlap dice metric (DM), “defined as 2*intersection of automatic and manual 

areas/(sum of automatic and manual areas)” [39]; 

 The Hausdorff distance (HD), “defined as max(ha,hb), where ha is the maximum dis-

tance, for all automatic contour points, to the closest manual contour point and hb is 

the maximum distance, for all manual contour points, to the closest automatic con-

tour point” [39]. 

2.2. Proposed Deep-learning Architecture 

Our proposed architecture consists of a pipeline with four main components: a pre-

processing step, a 3D U-Net [4] trained for multi-organ segmentation, four separate 3D U-

Nets [4] for single organ segmentation and a fusion of results that will generate the final 

segmentation. The diagram of the architecture is presented in Figure 2. 

 

Figure 2. Proposed pipeline. 

2.2.1. Preprocessing 

The initial step in the pipeline is all about pre-processing. Besides patients’ morpho-

logical differences, CT scans are produced with varying voxel sizes because the CT scan-

ners inherently have different setups. All these factors produce different imaging artefacts 

which increase the complexity of segmentation. Therefore, the first step of pre-processing 

involves resampling the CT scans to normalize the slice thickness and also to reduce the 

image sizes (by a factor of 2). 
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The second step in pre-processing was to apply a clipping of the voxel values based 

on the Hounsfield scale for the organs of interest [40]. This clipping is based on Table 1 

and greatly helps the deep-learning model concentrate only on the values and body loca-

tions which are relevant. 

Table 1. Hounsfield scale for the organs of interest. 

Organ Minimum Accepted Value Maximum Accepted Value 

esophagus −1000 1000 

heart −400 600 

aorta −400 1600 

trachea −1000 200 

multi-organ −1000 1600 

In the third and final step, the images were normalized using a simple standard Z-

score normalization [17]. 

Deep-learning results are more accurate when employing a big dataset. Conversely, 

a small dataset will increase the model’s tendency to overfit. Unfortunately, the SegTHOR 

[39] dataset has only 40 training CTs; therefore, data augmentation techniques were used. 

These included: scaling, rotating, elastic deformation [14], augmenting color (grey) values 

[15], gamma correction and adding gaussian noise. All these augmentation techniques 

implied that two learning cycles could be executed using the same dataset but with altered 

or enhanced characteristics, which reduced the data scarcity issue. 

The preprocessing procedures were applied on the whole dataset. 

2.2.2. Model Description 

The segmentation architecture consists of 5 DL networks. For each organ a separate 

model was trained, while another model was trained in a multi-organ setup (all 4 organs). 

A standard U-Net [4] network was used in all training scenarios with a completely ordi-

nary setup: a depth of 4, 32 convolutional filters (3 × 3 × 3) in the initial layer, 64, 128 and 

256 filters in the subsequent convolutional layers, batch normalization, max pooling, 

RELU activation function for the hidden layers and Softmax activation function in the last 

output layer. 

Because a medium-memory GPU was employed and due to the size of CTs, there 

was not enough memory to train our models on the complete data captured in a CT. 

Therefore, a smart patching mechanism was used. This would take random chunks of 

smaller sized 3D parts of a CT and feed them to the model. The size of the chunks was 

based on the expected organ morphology, and the patch strategy was seconded by an 

overlapping of patches which also matched the expected organ dimension. For the multi-

organ model, a medium patch size and patch overlapping was used in order to accommo-

date all organ sizes. 

While striving to use the available memory to the maximum, the biggest possible 

patch sizes per model were obtained and detailed in Table 2, while the batch size was set 

to 2. We want to highlight that the size of the initial CTs was 512 × 512 pixels with number 

of slices that varied between 150 and 284. 

Table 2. Patch sizes. 

Network Patch Size (Pixels) Patch Overlapping (Pixels) 

esophagus 128 × 128 × 80 64 × 64 × 16 

heart 160 × 160 × 48 80 × 80 × 24 

aorta 144 × 144 × 64 72 × 72 × 32 

trachea 128 × 128 × 80 64 × 64 × 16 

multi-organ 144 × 144 × 64 72 × 72 × 32 
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The 40 CTs were split randomly into learning and testing datasets with a ratio of 

80:20, and a maximum of 500 epochs were executed for each different network. Higher 

learning rates were used in the initial phases to obtain a good set of parameters faster, 

while a more discrete learning rate was used in the final phase of learning to obtain the 

best possible parameter values. Different loss algorithms were used based on single or 

multi-organ learning. Therefore, Tversky loss [41] was used for single organs networks 

while the Tversky enhanced with cross-entropy was employed for the multi-organ net-

work. 

2.2.3. Fusion of Results 

The results from each individual network are merged thus obtaining the final seg-

mentation result. This process starts by taking the segmentation of the multi-organ net-

work and adding on top of them the results from each single organ network. This process 

followed four rules: 

 Merging will start with smaller or thinner organs to offer a boost to those organs that 

are harder to track. The order was: trachea, esophagus, aorta, and heart; 

 Voxels with the same segmentation on both multi-organ and one single organ net-

works are guaranteed to obey that segmentation result; 

 In case of mismatch between the multi-organ network result and the single network, 

the segmentation result that has the most neighboring voxels with the same segmen-

tation wins; 

 In case there are several segmentation results, or a clear winner based on neighbors 

cannot be achieved, the multi-organ segmentation has priority. This is based on the 

fact that the multi-organ segmentation has all the organs while the single organ net-

work incorporates results only for one organ type. 

2.2.4. Implementation 

For the implementation, the MISCNN https://github.com/frankkramer-lab/MIScnn 

(accessed on 1 May 2022) [42] open source library was used. This library provides 2D or 

3D DL model implementation and data I/O modules. For data augmentation we used 

batchgenerators by MIC@DKFZ which is Python package developed by “The Division of 

Medical Image Computing at the German Cancer Research Center (DKFZ) and the Ap-

plied Computer Vision Lab of the Helmholtz Imaging Platform”—

https://github.com/MIC-DKFZ/batchgenerators (accessed on 1 May 2022) [43]. 

Our complete Python implementation can be found at https://github.com/valentino-

grean/Multi-organ-segmentation-low-resource-environment (accessed on 29 September 

2022). 

3. Results 

The five DL networks that are part of the architecture were trained one by one on the 

same hardware with the maximum number of epochs set to 500. During the training pro-

cess, if the loss did not improve for 20 epochs, the learning rate would be decreased with 

a factor of 10, while the minimum allowed learning rate was set to 0.00001. The training 

process would be considered complete if the loss would not improve for 20 epochs using 

the minimum learning rate. With this implementation, the maximum number of epochs 

was never reached, and in practice it took around 350 epochs to fully train each model. 

From the computational time’s perspective, a complete training of one DL network took 

around 24 h. 

The current architecture managed to obtain as high as eighth place in the SegTHOR 

[39] challenge out of at least forty valid submissions. 

As per the SegTHOR documentation, the results were evaluated based on the “over-

lap Dice metric (DM)” and the “Hausdorff distance (HD)”. Therefore, two metrics are 
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computed for each organ, totaling eight different metrics. The final ranking is “based on 

the average of the 8 metrics”. 

As SegTHOR is an open challenge, new submissions can be added, and they will 

influence the raking. In Table 3. we present our best results next to the results for the 

highest-ranking user at the time of writing of this article. 

Table 3. Detailed results of our best submission. 

Best Overall Rank 8th Place    

 Esophagus Heart Trachea Aorta 

Dice for proposed method 0.8612 0.9449 0.9092 0.9346 

Dice for first ranked method 0.8889 0.9553 0.9278 0.9500 

Dice—ranking of the proposed method 

(highest rank) 
6 8 13 9 

Hausdorff for proposed method 0.2700 0.1698 0.2458 0.1891 

Hausdorff for first ranked method 0.1906 0.1249 0.1779 0.1193 

Hausdorff—ranking of the proposed method 

(highest rank) 
6 7 11 7 

The best results were obtained using our proposed fusion strategy from Section 2.2.3. 

In support of this ,we present, in Table 4, additional outcomes from different submissions 

that were obtained using other strategies. All of these results were automatically calcu-

lated by the SegTHOR challenge, making them objective elements of an ablation experi-

mentation. 

Table 4. Comparison between different strategies. 

Strategy Esophagus Heart Trachea Aorta 

Dice for proposed method 0.8612 0.9449 0.9092 0.9346 

Dice for merging single organ networks only 0.8520 0.9393 0.9055 0.9239 

Dice for multi-organ network 0.8356 0.9450 0.9078 0.9311 

Dice for intersecting network results 0.8287 0.9396 0.9035 0.9289 

Hausdorff for proposed method 0.2700 0.1698 0.2458 0.1891 

Hausdorff for merging single organ networks only 0.3898 0.1932 0.2555 0.2927 

Hausdorff for multi-organ network 0.3783 0.1611 0.2613 0.2107 

Hausdorff for intersecting network results 0.3753 0.1824 0.2751 0.2260 

As visual examples, we have provided Figure 3, which shows the automatic segmen-

tations using our proposed method for some of the patients from the SegTHOR dataset. 

For patient 01, the ground truth is provided as this is part of the training set. However, 

for patient 41, only our own segmentations are provided, as the ground truth is private to 

the SegTHOR team and is used in ranking the submissions. 
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Figure 3. (a) Ground truth SegTHOR patient 01, (b) automatic segmentation using our proposed 

method for SegTHOR patient 01, (c) automatic segmentation using our proposed method for 

SegTHOR patient 41. 

4. Discussion 

The architecture demonstrates that even thought a lower memory GPU was em-

ployed, results close to state of the art can be achieved. Other important contributions of 

the architecture are the novel patching mechanism that mimics the organ shape and em-

ploying the smart fusion of results between several deep neural networks. 

The best results were obtained for esophagus and the worst for trachea. We theorized 

that the poor results for the trachea stemmed from its morphological structure, having the 

lowest values on the Hounsfield scale. This was a challenge for our models that was ob-

served more on the multi-organ model than on the single organ network. 

Secondly, the esophagus and the trachea are two neighboring organs. The target to 

improve the results for trachea had a negative impact on the results for the esophagus and 

vice versa. We still tried to boost the scores for trachea by making it the first merged organ, 

but with limited effect. The issue came from the fact that the multi-organ network had low 

accuracy on the trachea segmentation in the first place (something that we could not alle-

viate with our model). 

We have tested the architecture on GPUs with higher total memory (16 GB and 24 

GB) that allowed us to use larger patches and larger batch sizes. Although we were able 

to replicate the results, we could not improve them. Thus, we theorize that the patching 

mechanism is efficient enough to alleviate most of the issues that arise from not being able 

to train in one step over the complete CT data. Regardless, we still succeeded in proving 

that, despite the imposed constraints (medium-sized GPU with only 8 GB of RAM, stand-

ard 3D U-NET), state-of-the-art results can be obtained. These were achieved by employ-

ing intensive and smart pre-processing, clever patching, using several deep neural net-

works, and merging their results in a consistent way. 
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As an immediate improvement to our proposed method, we can mention enlarging 

the dataset, the inclusion of GANs to reduce the data scarcity issue, or the addition of 

RRNs to improve the segmentation. 
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