
Citation: Zhang, C.; Gan, Y.; Yang, R.

Adaptive Propagation Graph

Convolutional Networks Based on

Attention Mechanism. Information

2022, 13, 471. https://doi.org/

10.3390/info13100471

Academic Editor:

Birgitta Dresp-Langley

Received: 15 July 2022

Accepted: 17 September 2022

Published: 30 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Adaptive Propagation Graph Convolutional Networks Based on
Attention Mechanism
Chenfang Zhang 1,* , Yong Gan 2 and Ruisen Yang 1

1 School of Computer Communication and Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450002, China

2 School of Computer Communication and Engineering, Zhengzhou Institute of Engineering and Technology,
Zhengzhou 450002, China

* Correspondence: 8459055287wudi@gmail.com

Abstract: The main steps in a graph neural network are message propagation and aggregation
between nodes. Message propagation allows messages from distant nodes in the graph to be
transmitted to the central node, while feature aggregation allows the central node to obtain messages
regarding its neighbors and update itself, so that it can express deep-layer features. Because the
graph structure data have no local translation invariance, the number of neighbors of each central
node is different, and there is no order, there are two difficulties: (1) how to design a reliable message
propagation method to better express all network topologies; (2) how to design a feature aggregation
function so that it can weigh local features and global features. In this paper, a new adaptive
propagation graph convolutional network model based on the attention mechanism (APAT-GCN)
is proposed, which enables GNNs to adaptively complete the process of message propagation and
feature aggregation, according to the neighbors of the central node, and set the influence degree of
local and global messages on the aggregation of the central node. Compared with other classical
models, this method is superior to the baseline model and can improve the accuracy of node- and
graph-level classification tasks in downstream tasks.

Keywords: graph neural networks; convolutional network; attention mechanism; adaptive propagation

1. Introduction

In the last decade, convolutional neural networks have made significant achievements
in images, videos, and texts because they can extract potentially effective information
from Euclidean spatial data [1]. The reason is that convolutional neural networks can
extract potentially useful information from Euclidean spatial data. In the case of images,
for example, which are regular lattices with structural information, convolutional neural
networks can exploit their translational invariance and local connectivity, so that a particular
type of convolutional kernel can always extract meaningful features from image [2].

However, in addition to structured data, such as images, video, and text, there is
also a large amount of unstructured data in real life, such as social networks, citation
networks, protein networks, and traffic networks with graph structures. In these non-
Euclidean spaces, there are tasks such as node classification [3], connection prediction [4],
graph classification [5], and others. For example, in e-commerce, graph-based learning
systems can use the interaction between users and products to make highly accurate
recommendations; in chemistry, molecules are modeled as graphs whose biological activity
needs to be identified for drug discovery; in citation networks, papers are interlinked by
citations and need to be classified into different groups. For these irregular data objects,
ordinary convolutional networks are not as effective as they could be. Since graph structure
data may be irregular, a graph may have unordered nodes of unequal size, and nodes from
a graph may have different numbers of neighbors. This leads to some important operations

Information 2022, 13, 471. https://doi.org/10.3390/info13100471 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13100471
https://doi.org/10.3390/info13100471
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-7978-0200
https://doi.org/10.3390/info13100471
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13100471?type=check_update&version=2

Information 2022, 13, 471 2 of 11

(e.g., convolution) that are easy to compute in the image domain, but difficult to apply to
graphs [6].

2. Related Work

Researchers have started to migrate classical CNN networks to non-Euclidean spaces,
and the development of graph convolutional neural networks has been divided into two
main directions: spectral domain- and null domain-based [7].

Based on the spectral domain of the graph convolutional neural network using graph
signal theory, through the Fourier transform to convert the graph structure data into the
spectral domain, using the Laplace matrix and other operators to carry out a process of
noise reduction, the processing is completed and then converted to the original empty
domain through the Fourier transform [8]. The key in this method is filter selection, and
different choices lead to different results, resulting in different GCN algorithms, based on
the spectral domain [9].

The first is the spectral CNN proposed by Le Cun in 2014, which mimics the properties
of CNNs by overlaying multilayer networks, adding nonlinear activation functions, and
defining graph convolution kernels at each layer for forming a graph convolutional neural
network, with all operations performed in the spectral domain of the nodes [10]. However,
its explicit use of Laplacian matrix eigen decomposition and dense eigenvector matrix
multiplication is difficult to ground on large-scale graphs, thus leading to the problem of
non-localization of the convolution kernels. The Chebyshev spectral CNN proposed in 2016
parameterizes the convolution kernel by K Chebyshev polynomial approximations [11],
and the new convolution kernel is a polynomial combination of the eigenvalues of the
original Laplacian matrix, so that local information is taken into account. So that only the
parameters and polynomials to be learned are retained in the convolution theorem results,
the number of parameters and computational complexity is greatly reduced, and graphical
convolutional neural networks become practical. However, since GNNs based on spectral
domains essentially make use of the Laplace matrix of a particular graph, GNN models
learned on a particular graph cannot be used for other graphs and new nodes. Wavelet
neural networks (GWNNs) were proposed in 2019 [12]. The wavelet transform was used,
instead of the Fourier transform, to implement the convolution theorem to transform and
extract features from the graph signal, whose basis low can be obtained by Chebyshev
polynomial approximation, thus avoiding the high cost of the characteristic decomposition
of the Prussian matrix, and with localization, making the wavelet transform matrix very
sparse and greatly reducing the computational effort, which can be flexibly applied to
different task scenarios by adjusting the hyperparameters in the heat kernel function.

Based on the fact that null domain of the graph convolutional neural network did not
start from the graph signal theory, but directly from the nodes in the graph considered, by
defining the aggregation function to aggregate the features of each central node and its
neighboring nodes, they are generally divided into two steps: the aggregation function will
act on each node and its neighboring nodes to get the local structure of the node expression;
the update function will act on itself and the local structure of the expression to get the
current new expression of the node [13]. The update function is applied to itself and the
local structure expression to obtain a new expression for the current node. When dealing
with image problems, convolutional neural networks use a fixed size kernel to extract
features from images. When faced with graph structure data, it is not feasible to still use
a fixed-size kernel as the number of first-order neighbors of each node in the network is
different, because the perceptual field of the convolutional kernel will be different and
nodes of the graph lack order, so a more conventional approach is to select the center node
and a fixed number of neighboring nodes, thus sorting the selected nodes. From another
perspective, spatially-based ConvGNNs share the same philosophy as RecGNNs, in terms
of message propagation, i.e., the convolutional operation of a spatial graph is essentially
the propagation of node information along the edges.

Information 2022, 13, 471 3 of 11

In the PATCHY-SAN, proposed in 2016 [14], for each input graph, the PATCHY-SAN
method first determines a sequence of nodes. Then, for each node in the sequence, a neigh-
borhood of exactly k nodes is extracted and normalized, and the normalized neighborhood
is used as the perceptual field of the current node; finally, similar to the perceptual field
of a CNN, some feature learning components (e.g., convolutional layers, sense layers) can
be applied to the normalized neighborhood. PATCHY-SAN is computationally efficient,
natively supports parallel computation, and can be used for large graphs. Graph-SAGE [15],
proposed in 2017, does a separate linear transformation of the node’s attribute features and
sampled neighboring node features and then merges the two and performs another linear
transformation to obtain the target node’s feature representation. Finally, the resulting
target node representation can be used for downstream tasks. The introduction of a fixed
number of random neighborhood samples can limit the number of nodes to be processed to
a certain interval, thus eliminating the need to input the entire graph, improving computa-
tional efficiency, and transforming the straightforward node representation of only one local
structure into a node-inductive representation corresponding to multiple local structures,
effectively preventing training overfitting and enhancing generalization capabilities.

3. Models and Definitions
3.1. APAT-GCN Model

The core of the method introduced in Chapter 2 is to aggregate the surrounding
information to the central node; then, after multiple layers of convolution, the central node
can obtain the message of the distant nodes. However, after multiple convolutions, the
features aggregated by all the central nodes become increasingly smooth, i.e., the features
are similar across nodes, which makes the subsequent downstream tasks not perform well.
The reason for this is that the above graph convolutional neural network method cannot
obtain global information and can only stay on local aggregation. Moreover, the above
methods do not take the different effects of different neighboring nodes on the central node
when aggregating into account, but simply add them up, which will result in the central
node not capturing the information that is useful to it.

To address these issues, a new graph convolutional neural network model is proposed
in this paper: adaptive propagation graph convolutional network, based on attention
mechanism APAT-GCN. This model has an adaptive propagation stopper at each node
that can individually calculate whether the node needs to continue with the next layer of
convolution, so that each node performs a different number of layers of convolution, as we
will argue in the experimental section. The need to assign different layers of convolution to
each node is demonstrated in the experimental section. In addition, the model makes use
of an attention mechanism to assign different weights to each node, so that the central node
can find the information that is useful to it when convolving. To alleviate the transition
smoothing problem during deep convolution, a fraction of unqualified nodes is actively
discarded as disconnected in each neighbor node sampling phase.

The model first samples the neighbors of the central node, adds the obtained neighbor-
ing nodes to the attention coefficients, and then assigns different weights to them during the
aggregation process. After the aggregation is completed, the adaptive propagation stopper
of the central node determines whether the next convolution operation is required; if not,
the final feature representation of the node is derived. In Figure 1, hv and hNi represent
the features of the central node’s neighbors after the aggregation function, and the dashed
lines indicate the node connections that were not sampled. More details are described in
Figure 2. The adaptive propagation graph convolutional network, based on the attention
mechanism proposed in this paper, has the following three contributions:

1. Setting a different number of convolutional layers for each node, which can speed up
training, while reducing memory consumption.

2. Sampling of neighboring nodes and discarding some of them can alleviate the problem
of over-smoothing during deep convolution.

Information 2022, 13, 471 4 of 11

3. Introducing an attention mechanism, so that the central nodes can access more infor-
mation useful to them when aggregating.

Information 2022, 13, x FOR PEER REVIEW 4 of 12

1. Setting a different number of convolutional layers for each node, which can speed up

training, while reducing memory consumption.

2. Sampling of neighboring nodes and discarding some of them can alleviate the prob-

lem of over-smoothing during deep convolution.

3. Introducing an attention mechanism, so that the central nodes can access more infor-

mation useful to them when aggregating.

Figure 1. APAT-GCN framework.

Figure 2. The picture shows the propagation process of a node. In the first step, node 1 propagates

one step and finds 3, 6, and 7. In the second step, it propagates two steps and finds 4 and 2. In the

third step, it propagates three steps. Then, 5 is found, but, at this time, the adaptive stop propagator

of nodes 2 and 7 stops the propagation of nodes 2 and 7, so the features of these two nodes should

be removed in this step.

3.2. Definition of Graph

A graph is a collection of entity relationships, e.g., an individual in a social network

is a node and relationships with other people are edges, each article in a citation network

is a node, and the citation relationships between articles are edges. The graph is, thus,

defined as G (,)V E= , where V is the set of all nodes in the graph  1 2, ,..., nV v v v=

, n is the number of nodes in the graph G , and E is the set of edges in the graph G

 (,) | ,i j i jE v v v v V=  , with the edges representing the relationship between two en-

tity objects. We use X to denote the features of nodes on graph G, where
n dX R 

denotes the features of the thi node. The adjacency matrix
1, (,)

0, .

i j

ij

v v E
A

otherwise


= 



 and

degree matrix ii ijj
D A=  can be defined based on the connections between the nodes

in the graph. For the node classification task, we know some of the nodes T V and

have labeled the nodes i T with their true values iy to classify the other unlabeled

nodes. The same is true for the graph classification task.

3.3. Designing and Training Deep Graph Convolutions

Message propagation neural network MPNN [16], a generic form of GCN, for node-

specific updates, is summarized as follows.

({ () | })i j ih F f x j N=  (1)

Figure 1. APAT-GCN framework.

Information 2022, 13, x FOR PEER REVIEW 4 of 12

1. Setting a different number of convolutional layers for each node, which can speed up

training, while reducing memory consumption.

2. Sampling of neighboring nodes and discarding some of them can alleviate the prob-

lem of over-smoothing during deep convolution.

3. Introducing an attention mechanism, so that the central nodes can access more infor-

mation useful to them when aggregating.

Figure 1. APAT-GCN framework.

Figure 2. The picture shows the propagation process of a node. In the first step, node 1 propagates

one step and finds 3, 6, and 7. In the second step, it propagates two steps and finds 4 and 2. In the

third step, it propagates three steps. Then, 5 is found, but, at this time, the adaptive stop propagator

of nodes 2 and 7 stops the propagation of nodes 2 and 7, so the features of these two nodes should

be removed in this step.

3.2. Definition of Graph

A graph is a collection of entity relationships, e.g., an individual in a social network

is a node and relationships with other people are edges, each article in a citation network

is a node, and the citation relationships between articles are edges. The graph is, thus,

defined as G (,)V E= , where V is the set of all nodes in the graph  1 2, ,..., nV v v v=

, n is the number of nodes in the graph G , and E is the set of edges in the graph G

 (,) | ,i j i jE v v v v V=  , with the edges representing the relationship between two en-

tity objects. We use X to denote the features of nodes on graph G, where
n dX R 

denotes the features of the thi node. The adjacency matrix
1, (,)

0, .

i j

ij

v v E
A

otherwise


= 



 and

degree matrix ii ijj
D A=  can be defined based on the connections between the nodes

in the graph. For the node classification task, we know some of the nodes T V and

have labeled the nodes i T with their true values iy to classify the other unlabeled

nodes. The same is true for the graph classification task.

3.3. Designing and Training Deep Graph Convolutions

Message propagation neural network MPNN [16], a generic form of GCN, for node-

specific updates, is summarized as follows.

({ () | })i j ih F f x j N=  (1)

Figure 2. The picture shows the propagation process of a node. In the first step, node 1 propagates
one step and finds 3, 6, and 7. In the second step, it propagates two steps and finds 4 and 2. In the
third step, it propagates three steps. Then, 5 is found, but, at this time, the adaptive stop propagator
of nodes 2 and 7 stops the propagation of nodes 2 and 7, so the features of these two nodes should be
removed in this step.

3.2. Definition of Graph

A graph is a collection of entity relationships, e.g., an individual in a social network is
a node and relationships with other people are edges, each article in a citation network is a
node, and the citation relationships between articles are edges. The graph is, thus, defined as
G = (V, E), where V is the set of all nodes in the graph V = {v1, v2, . . . , vn}, n is the number
of nodes in the graph G, and E is the set of edges in the graph G E =

{
(vi, vj)

∣∣vi, vj ∈ V
}

,
with the edges representing the relationship between two entity objects. We use X to denote
the features of nodes on graph G, where X ∈ Rn×d denotes the features of the ith node. The

adjacency matrix Aij =

{
1, (vi, vj) ∈ E
0, otherwise.

and degree matrix Dii = ∑j Aij can be defined

based on the connections between the nodes in the graph. For the node classification task,
we know some of the nodes T ∈ V and have labeled the nodes i ∈ T with their true values
yi to classify the other unlabeled nodes. The same is true for the graph classification task.

3.3. Designing and Training Deep Graph Convolutions

Message propagation neural network MPNN [16], a generic form of GCN, for node-
specific updates, is summarized as follows.

hi = F(
{

f (xj)
∣∣j ∈ Ni

}
) (1)

where f (xj) is the node message propagation method, and F is the node aggregation
method. The method mentioned in the previous section is a specific design improvement
of f (xj) and F. Once the specific network has been designed, the cross-entropy loss can be
used to optimize our model parameters, as with other convolutional neural networks.

f ∗ = argmin

{
∑
i∈T

yi · log(f (xi))

}
(2)

Information 2022, 13, 471 5 of 11

4. Adaptive Aggregated Graph Convolutional Network
4.1. Graph Centrality Sampling

Before the graph convolutional neural network can start working, the nodes used
need to be sampled. In graph-SGAE, the authors propose a small batch training method
using random sampling, but the results of random sampling may not be the most valuable
nodes needed for the model. To make the sampling as fair and convincing as possible, this
paper uses an alternative sampling method, using the graph centrality [17] as a criterion
for evaluating the importance of a sample. Graph centrality is the inverse of the maximum
value of the shortest path length between a point and other points in the connectivity
component of the point. The result of this calculation indicates whether the point is at the
center of the graph or not. In the experimental section, we compare the effects of graph
centrality sampling and random sampling of the model results.

For graph structure data, the importance of the nodes can be calculated using the
defined adjacency matrix and then ranked, from which, the important set of nodes can be
selected and used for training. As shown in Figure 3, the sampling process is as follows.

1. Adjacency matrix of the input graph structure data.
2. Calculate the centrality of each node in the adjacency matrix, and then obtain a portion

of the nodes with higher scores from their neighbors.
3. Remove the obtained nodes from the adjacency matrix to obtain a new adjacency matrix.
4. Repeat steps 2 and 3, until the number of neighboring nodes obtained is sufficient.
5. Feed all selected nodes into the model for training.

CG(vi) =
1

maxd(vi)
(3)

Information 2022, 13, x FOR PEER REVIEW 5 of 12

where ()jf x is the node message propagation method, and ()F is the node aggrega-

tion method. The method mentioned in the previous section is a specific design improve-

ment of ()jf x and ()F . Once the specific network has been designed, the cross-en-

tropy loss can be used to optimize our model parameters, as with other convolutional

neural networks.

()()* arg min logi i

i T

f y f


 
=  

 
 x (2)

4. Adaptive Aggregated Graph Convolutional Network

4.1. Graph Centrality Sampling

Before the graph convolutional neural network can start working, the nodes used

need to be sampled. In graph-SGAE, the authors propose a small batch training method

using random sampling, but the results of random sampling may not be the most valuable

nodes needed for the model. To make the sampling as fair and convincing as possible, this

paper uses an alternative sampling method, using the graph centrality [17] as a criterion

for evaluating the importance of a sample. Graph centrality is the inverse of the maximum

value of the shortest path length between a point and other points in the connectivity

component of the point. The result of this calculation indicates whether the point is at the

center of the graph or not. In the experimental section, we compare the effects of graph

centrality sampling and random sampling of the model results.

For graph structure data, the importance of the nodes can be calculated using the defined

adjacency matrix and then ranked, from which, the important set of nodes can be selected

and used for training. As shown in Figure 3, the sampling process is as follows.

1. Adjacency matrix of the input graph structure data.

2. Calculate the centrality of each node in the adjacency matrix, and then obtain a por-

tion of the nodes with higher scores from their neighbors.

3. Remove the obtained nodes from the adjacency matrix to obtain a new adjacency

matrix.

4. Repeat steps 2 and 3, until the number of neighboring nodes obtained is sufficient.

5. Feed all selected nodes into the model for training.

Figure 3. Neighborhood sampling.

1
()

max ()
G i

i

C v
d v

= (3)

4.2. Adaptive Propagation Stop

In general, graphical convolutional neural networks have a single constant maximum

number of propagation steps set and shared by each node, whereas our model binds an

adaptive propagation stopper to each node, as shown in the Figure 4, which can be

Figure 3. Neighborhood sampling.

4.2. Adaptive Propagation Stop

In general, graphical convolutional neural networks have a single constant maximum
number of propagation steps set and shared by each node, whereas our model binds an
adaptive propagation stopper to each node, as shown in the Figure 4, which can be changed
during training to indicate whether the node needs to continue propagation and can be
made to adjust the propagation range by setting hyperparameters to achieve both local and
global propagation. The stopping probability of each node can be expressed as follows.

hk
i = S(Qhk

i + q) (4)

where Q and q are the parameters used for training and represent the probability that a
node i will stop at the k layer. To ensure that the number of propagation steps remains
reasonable, we restrict the range of propagation. First, we fix a maximum number of
propagation steps T. Second, we define the budget of the propagation process using the
sum of the number of stopping propagations.

Ki = min

{
k′ :

k′

∑
k=1

hk
i >= 1− ε

}
(5)

Information 2022, 13, 471 6 of 11

where 1− ε is used to ensure that propagation can be achieved at least once and stops
when the propagation step k = Ki is reached. Thus, the final expression for the stopping
probability after combining the various scenarios is as follows.

pk
i =


Ri = 1 =

ki−1
∑

k=1
hk

i , i f k = Ki or k = T

Ki
∑

k=1
hk

i , otherwise.
(6)

this calculates the stopping probability of each node, which is then used to choose whether
to stop or continue propagation when node propagation is performed; when propagation
is stopped, the features of that node are no longer updated.

hk+1
i =

1
Ki

Ki

∑
k=1

pk
i hk

i + (1− pk
i)h

k−1
i (7)

where hk+1
i denotes the node characteristics of node i after the k + 1st propagation, after

adding the adaptive propagation stopper. It can be seen that, if the node is judged to
have stopped after the kth propagation, then the result of the kth update is utilized for
subsequent updates.

Information 2022, 13, x FOR PEER REVIEW 6 of 12

changed during training to indicate whether the node needs to continue propagation and

can be made to adjust the propagation range by setting hyperparameters to achieve both

local and global propagation. The stopping probability of each node can be expressed as

follows.

Figure 4. Adaptive propagation stop unit.

where Q and q are the parameters used for training and represent the probability that a node i

will stop at the k layer. To ensure that the number of propagation steps remains reasonable, we

restrict the range of propagation. First, we fix a maximum number of propagation steps T. Second,

we define the budget of the propagation process using the sum of the number of stopping propaga-

tions.

1

min : 1
k

k

i i

k

K k h 


=

 
= = − 

 
 (5)

where 1 − is used to ensure that propagation can be achieved at least once and stops when the

propagation step ik K= is reached. Thus, the final expression for the stopping probability after

combining the various scenarios is as follows.

1

1

1

1 ,

, .

i

i

k
k

i i i

kk

i K
k

i

k

R h if k K or k T

p

h otherwise

−

=

=


= = = =


= 








 (6)

this calculates the stopping probability of each node, which is then used to choose whether to stop

or continue propagation when node propagation is performed; when propagation is stopped, the

features of that node are no longer updated.

1 1

1

1
(1)

iK
k k k k k

i i i i i

ki

h p h p h
K

+ −

=

= + − (7)

where
1k

ih +
 denotes the node characteristics of node i after the 1k st+ propagation, after add-

ing the adaptive propagation stopper. It can be seen that, if the node is judged to have stopped after

the kth propagation, then the result of the kth update is utilized for subsequent updates.

The adaptive propagation stopper we designed takes its cue from the RNN model

[18], inspired by the fact that node updates at each layer of the network need to make use

of the features of the nodes updated in the previous layer.

1 0

2 1 1

(,)

(,)

 ...

i

o

i

o

i j i

i j i

h x

h f h W j N

h f h W j N

=

= 

= 

 (8)

()k k

i ih S Qh q= + (4)

Figure 4. Adaptive propagation stop unit.

The adaptive propagation stopper we designed takes its cue from the RNN model [18],
inspired by the fact that node updates at each layer of the network need to make use of the
features of the nodes updated in the previous layer.

ho
i = xi

h1
i = f (h0

j , Wo|j ∈ Ni)

h2
i = f (h1

j , W1|j ∈ Ni)

. . .

(8)

to allow the central node to freely receive both global and local information, we set the
propagation cost Si, which indicates the number of propagation steps required for the
update of the ith node.

Si = Ki + Ri (9)

if L is used to indicate the cost of loss, then use:

L̂ = L + a ∑
i∈V

Si (10)

Si = Ki + Ri (11)

where a represents a balancing factor over local and global propagation, i.e., the extent of
propagation that can be controlled by the adjustment of a.

Information 2022, 13, 471 7 of 11

4.3. Attention Mechanism

In order for the central node to obtain really useful information, we need to calculate
the influence of the neighboring nodes of the central node vi on itself (including vi itself),
assign different weights to the neighboring nodes, and, for the central node i, this is shown
in Figure 5, calculate the correlation coefficient between the sampled neighboring nodes
and it.

eij = ϕ(Whi
∥∥Whj) (12)

where j ∈ Ni. The correlation coefficient is then normalized to obtain the attention coefficient.

αij =
exp(LeakyRelu eij)

∑
k∈Ni

exp(LeakyRelu eik)
(13)

Information 2022, 13, x FOR PEER REVIEW 7 of 12

to allow the central node to freely receive both global and local information, we set the propagation

cost iS , which indicates the number of propagation steps required for the update of the thi node.

i i iS K R= + (9)

if L is used to indicate the cost of loss, then use:.

i

i V

L L a S


= +  (10)

i i iS K R= + (11)

where a represents a balancing factor over local and global propagation, i.e., the extent of propa-

gation that can be controlled by the adjustment of a .

4.3. Attention Mechanism

In order for the central node to obtain really useful information, we need to calculate

the influence of the neighboring nodes of the central node iv on itself (including iv it-

self), assign different weights to the neighboring nodes, and, for the central node i , this

is shown in Figure 5, calculate the correlation coefficient between the sampled neighbor-

ing nodes and it.

Figure 5. Schematic diagram of the attention mechanism.

()ij i je Wh Wh= (12)

where ij N . The correlation coefficient is then normalized to obtain the attention coefficient.

exp()

exp()
i

ij

ik

ij

k N

LeakyRelu

LeakyRe elu

e




=


(13)

Once the attention coefficients are obtained, they are put into the aggregation func-

tion, together with the node features and pre-training weight matrix, and then the feature

fusion operation can be performed.

i

i

k k k

i ij N

j

N

h h W=  (14)

where
k

ij denotes the attention coefficient of neighbor node j to central node i at the k th

layer of the convolutional network, and
kW denotes the weight matrix of central node i to each

neighbor node at the k th layer of the convolutional network. A multi-headed attention mecha-

nism can also be introduced to enhance the expression of feature fusion [19].

5. Experimental Analysis

Figure 5. Schematic diagram of the attention mechanism.

Once the attention coefficients are obtained, they are put into the aggregation function,
together with the node features and pre-training weight matrix, and then the feature fusion
operation can be performed.

hk
i =

|Ni |

∑
j

αk
ijhNi W

k (14)

where αk
ij denotes the attention coefficient of neighbor node j to central node i at the k th

layer of the convolutional network, and Wk denotes the weight matrix of central node i to
each neighbor node at the k th layer of the convolutional network. A multi-headed attention
mechanism can also be introduced to enhance the expression of feature fusion [19].

5. Experimental Analysis
5.1. Data Set and Experimental Setup

There are a large number of real-life practical tasks that can be abstracted into graph-
structured data, and the application scenarios are numerous. Graphs contain nodes and
edges. The downstream tasks of graph neural networks are mainly at the node, edge, and
graph levels. At the node level, node-specific classification can be performed, for example,
in citation datasets and to classify similar papers. At the edge level, link prediction can be
performed, for example, to infer whether two people know each other in social networks.
At the graph level, graph classification can be performed, for example, to classify chemical
formulae of the same family into one class [20]. For the different processing tasks, the
datasets used in the experiments in this paper are shown in Table 1.

Table 1. Data sets.

Type of Task Data Sets Number of Nodes Number of Sides

Node classification
Core 2708 5429

CiteSeer 3312 4732

Figure classification Protein 43,471 162,088
Reddit-5K 122,737 265,506

Information 2022, 13, 471 8 of 11

The Cora dataset consists of 2708 papers related to machine learning, each of which
cites, or is cited by, at least one other paper in the dataset, grouped into seven categories.
The CiteSeer dataset contains 3312 scientific publications, grouped into six categories.
The citation network consists of 4732 links. Each publication in the dataset is described
by a word vector with a value of 0 or 1, which indicates the presence or absence of the
corresponding word in the dictionary. Each node in the Protein dataset is an element of a
secondary structure, and an edge exists if two nodes are adjacent nodes in the amino acid
sequence or 3D space. Each node in the Reddit-5K dataset represents a user, and each graph
represents a post, where an edge exists if a user replies to another user’s comment. The
Reddit-5K used in this paper has 5000 graphs that are divided into two graph categories.

5.2. Over-Smoothing Problems

The graph node representation obtained by the previous algorithm shows that there
is a transition smoothing problem because the central node introduces too much noise
during aggregation, and the long-distance node features will also be propagated to the
central node, resulting in the characteristic representation obtained by the final aggregation
of the central node, which is very similar and not easy to distinguish; in this process, it
is difficult to avoid the introduction of long-distance node information that is not related
to the central node feature representation during aggregation, and the existence of these
problems seriously affects the completion of the downstream task of the graph.

The Figure 6 shows some of the over-smoothing problems that exist in graph con-
volutional neural network models. In this paper, we test the MAD and F1 indices under
the number of iterations of different graph neural network layers in graph-SAGE, GAT,
and APAT-GCN. Among them, the MAD metric measures the average distance between
node representations, while the F1 metric measures how accurate the model is for node
classification issues.

Information 2022, 13, x FOR PEER REVIEW 9 of 12

Figure 6. The relationship between the MAD and F1 indicators of the three models and number of

layers.

It can be seen from the results that in the graph-SAGE and GAT models, when the

number of neural network layers increases, the node feature representation becomes more

and more similar, and the model effect begins to decline. This result verifies that the effect

of the existing graph neural network model degrades, due to over-smoothing problems,

when the number of layers increases. In APAT-GCN, the oversized problem is mitigated,

suggesting that the model’s sampling and aggregation methods are, indeed, effective.

5.3. Parameter Settings for the Baseline Model

In this section, we will set up the hyperparameters of three other models used for the

comparison experiment: graph-SAGE, AP-GCN, and GAT to achieve the best results in

the node classification task. The results are shown in Figure 7.

Figure 7. The accuracy of node classification in the core dataset after adjusting the hyperparameters

of graph-SAGE, AP-GCN, and GAT.

The graph-SAGE model uses k to confirm the propagation range and is to deter-

mine the number of samples of the ith-order neighbors. We use the configuration of the

original text, k = 2, 1 2s s= , so that the center node can get the information of the sec-

ond-order neighbor at most. The AP-GCN model uses the propagation penalty parameter

 to dynamically adjust the range of propagation and sets the maximum number of

propagation steps to 10. GAT mainly adjusts the degree of aggregation of node infor-

mation by setting the attention head, but the attention head is too large. It is not only

slower in training, but also causes overfitting.

5.4. Comparison of Experimental Effects

In this subsection, we use graph-SAGE, AP-GCN, GAT, and the adaptive algorithm

model proposed in this paper to do benchmarking tasks on four datasets, Core, CiteSeer,

Protein, and Reddit-5K, respectively. Among them, Core and CiteSeer are node

Figure 6. The relationship between the MAD and F1 indicators of the three models and number
of layers.

It can be seen from the results that in the graph-SAGE and GAT models, when the
number of neural network layers increases, the node feature representation becomes more
and more similar, and the model effect begins to decline. This result verifies that the effect
of the existing graph neural network model degrades, due to over-smoothing problems,
when the number of layers increases. In APAT-GCN, the oversized problem is mitigated,
suggesting that the model’s sampling and aggregation methods are, indeed, effective.

Information 2022, 13, 471 9 of 11

5.3. Parameter Settings for the Baseline Model

In this section, we will set up the hyperparameters of three other models used for the
comparison experiment: graph-SAGE, AP-GCN, and GAT to achieve the best results in the
node classification task. The results are shown in Figure 7.

Information 2022, 13, x FOR PEER REVIEW 9 of 12

Figure 6. The relationship between the MAD and F1 indicators of the three models and number of

layers.

It can be seen from the results that in the graph-SAGE and GAT models, when the

number of neural network layers increases, the node feature representation becomes more

and more similar, and the model effect begins to decline. This result verifies that the effect

of the existing graph neural network model degrades, due to over-smoothing problems,

when the number of layers increases. In APAT-GCN, the oversized problem is mitigated,

suggesting that the model’s sampling and aggregation methods are, indeed, effective.

5.3. Parameter Settings for the Baseline Model

In this section, we will set up the hyperparameters of three other models used for the

comparison experiment: graph-SAGE, AP-GCN, and GAT to achieve the best results in

the node classification task. The results are shown in Figure 7.

Figure 7. The accuracy of node classification in the core dataset after adjusting the hyperparameters

of graph-SAGE, AP-GCN, and GAT.

The graph-SAGE model uses k to confirm the propagation range and is to deter-

mine the number of samples of the ith-order neighbors. We use the configuration of the

original text, k = 2, 1 2s s= , so that the center node can get the information of the sec-

ond-order neighbor at most. The AP-GCN model uses the propagation penalty parameter

 to dynamically adjust the range of propagation and sets the maximum number of

propagation steps to 10. GAT mainly adjusts the degree of aggregation of node infor-

mation by setting the attention head, but the attention head is too large. It is not only

slower in training, but also causes overfitting.

5.4. Comparison of Experimental Effects

In this subsection, we use graph-SAGE, AP-GCN, GAT, and the adaptive algorithm

model proposed in this paper to do benchmarking tasks on four datasets, Core, CiteSeer,

Protein, and Reddit-5K, respectively. Among them, Core and CiteSeer are node

Figure 7. The accuracy of node classification in the core dataset after adjusting the hyperparameters
of graph-SAGE, AP-GCN, and GAT.

The graph-SAGE model uses k to confirm the propagation range and si to determine
the number of samples of the ith-order neighbors. We use the configuration of the original
text, k = 2, s1 = s2, so that the center node can get the information of the second-order
neighbor at most. The AP-GCN model uses the propagation penalty parameter α to
dynamically adjust the range of propagation and sets the maximum number of propagation
steps to 10. GAT mainly adjusts the degree of aggregation of node information by setting
the attention head, but the attention head is too large. It is not only slower in training, but
also causes overfitting.

5.4. Comparison of Experimental Effects

In this subsection, we use graph-SAGE, AP-GCN, GAT, and the adaptive algorithm
model proposed in this paper to do benchmarking tasks on four datasets, Core, CiteSeer,
Protein, and Reddit-5K, respectively. Among them, Core and CiteSeer are node classifica-
tion tasks that classify articles into different types. Protein is a graph classification task that
classifies protein molecules into different types, based on their roles, and Reddit-5K is a
task that classifies different communities, based on the topics of posts [21], the results of
which are shown in Table 2.

Table 2. Prediction results for the four data sets (micro-averaged F1).

Models Core CiteSeer Protein Reddit-5K

Graph-SAGE 0.778 0.791 0.921 0.908
AP-GCN 0.806 0.811 0.917 0.897

GAT 0.802 0.801 0.933 0.907
APAT-GCN 1 0.811 0.816 0.941 0.912

1 Means the model we propose.

The experimental results, expressed in terms of micro-averaged F1 values, show that
the adaptive algorithm shows relatively good results on all four datasets. The reason for
this is that the algorithm combines an adaptive stopping unit and attention mechanism
that is able to globally notice the information that has the greatest impact on the central
node and produces less noise.

To demonstrate that the graph centrality sampling results are better for training than
other sampling methods, we did a comparison experiment at Core. The results are shown
in Table 3.

Table 3. Comparison of sampling results (micro-averaged F1).

Sampling Method Micro-Averaged F1 (Core)

Random 0.304
Deep walk 0.742

Chart center degree sampling 0.799

Information 2022, 13, 471 10 of 11

The results show that the graph centrality sampling approach can indeed improve the
accuracy of the model on classification problems.

5.5. Adjustment of Hyperparameters

To enable the model to obtain a better result, in terms of global and local information
acquisition, we set the hyperparameter a in Equation (10), which can be adjusted so that the
perceptual field of information transfer can be expanded or reduced. This hyperparameter
was adjusted on the node classification problem using the Core dataset. The result of
adjusting the hyperparameters is shown in Figure 8.

Information 2022, 13, x FOR PEER REVIEW 10 of 12

classification tasks that classify articles into different types. Protein is a graph classifica-

tion task that classifies protein molecules into different types, based on their roles, and

Reddit-5K is a task that classifies different communities, based on the topics of posts [21],

the results of which are shown in Table 2.

Table 2. Prediction results for the four data sets (micro-averaged F1).

Models Core CiteSeer Protein Reddit-5K

Graph-SAGE 0.778 0.791 0.921 0.908

AP-GCN 0.806 0.811 0.917 0.897

GAT 0.802 0.801 0.933 0.907

APAT-GCN 1 0.811 0.816 0.941 0.912
1 Means the model we propose.

The experimental results, expressed in terms of micro-averaged F1 values, show that

the adaptive algorithm shows relatively good results on all four datasets. The reason for

this is that the algorithm combines an adaptive stopping unit and attention mechanism

that is able to globally notice the information that has the greatest impact on the central

node and produces less noise.

To demonstrate that the graph centrality sampling results are better for training than

other sampling methods, we did a comparison experiment at Core. The results are shown

in Table 3.

Table 3. Comparison of sampling results (micro-averaged F1).

Sampling method micro-averaged F1 (Core)

Random 0.304

Deep walk 0.742

Chart center degree sampling 0.799

The results show that the graph centrality sampling approach can indeed improve

the accuracy of the model on classification problems.

5.5. Adjustment of Hyperparameters

To enable the model to obtain a better result, in terms of global and local information
acquisition, we set the hyperparameter a in equation 10, which can be adjusted so that

the perceptual field of information transfer can be expanded or reduced. This hyperpa-

rameter was adjusted on the node classification problem using the Core dataset. The result

of adjusting the hyperparameters is shown in Figure 8.

Figure 8. Adjustment of hyperparameter a .

It can be seen that at 0.005a = , the model captures the best global information,

without causing over-smoothing problems.

6. Conclusions

Figure 8. Adjustment of hyperparameter a.

It can be seen that at a = 0.005, the model captures the best global information, without
causing over-smoothing problems.

6. Conclusions

In this paper, we propose a new graph convolutional neural network model, APAT-
GCN, which uses graph centrality sampling in the sampling phase, an adaptive propagation
stopper in the message propagation phase, and an attention mechanism at the feature
aggregation nodes, according to three important steps of graph convolutional neural
networks, respectively, thus making APAT-GCN better able to handle large data volumes
of graphs, in order to mine the nodes in the graph. This allows APAT-GCN to better handle
large data volumes, mine deeper information about the nodes in the graph, and aggregate
global information.

The model can be easily applied to tasks that process other unstructured data, such
as commodity recommendation systems, social networks, and public opinion evolution
monitoring. At present, the research on dynamic graph structure is not yet mature enough.
If GCN can be successfully applied to the dynamic graph structure, it is believed that this
will make the application field of GCN more extensive [22]. Our future work will focus on
making the GCN model available to run on dynamic graphs.

Author Contributions: Conceptualization, Y.G.; methodology, Y.G.; software, C.Z.; validation, C.Z.
and R.Y.; resources, C.Z.; writing—original draft preparation, C.Z.; writing—review and editing, C.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Nation Nature Science Foundation of China (NSFC),
(Nos. 61572445, U1804263).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Netw.

Learn. Syst. 2021, 32, 4–24. [CrossRef] [PubMed]

http://doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482

Information 2022, 13, 471 11 of 11

2. Ciresan, D.C.; Meier, U.; Masci, J.; Gambardella, L.M.; Schmidhuber, J. Flexible, High Performance Convolutional Neural
Networks for Image Classification. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence,
Barcelona, Spain, 19 June 2011.

3. Liao, R.; Brockschmidt, M.; Tarlow, D.; Gaunt, A.L.; Urtasun, R.; en Zemel, R. Graph Partition Neural Networks for Semi-
Supervised Classification. In Proceedings of the Sixth International Conference on Learning Representations, Vancouver, BC,
Canada, 30 May 2018.

4. Zhang, M.; Chen, Y. Inductive Matrix Completion Based on Graph Neural Networks. arXiv 2020, arXiv:1904.12058.
5. Capela, F.; Nouchi, V.; van Deursen, R.; Tetko, I.V.; Godin, G. Multitask Learning On Graph Neural Networks Applied To

Molecular Property Predictions. arXiv 2019, arXiv:1910.13124.
6. Jeon, Y.; Kim, J. Active Convolution: Learning the Shape of Convolution for Image Classification. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 26 July 2017.
7. Chen, Z.; Chen, F.; Zhang, L.; Ji, T.; Fu, K.; Zhao, L.; Chen, F.; Wu, L.; Aggarwal, C.; Lu, C. Bridging the Gap between Spatial and

Spectral Domains: A Survey on Graph Neural Networks. arXiv 2021, arXiv:2002.11867.
8. Shuman, D.I.; Narang, S.K.; Frossard, P.; Ortega, A.; Vandergheynst, P. The Emerging Field of Signal Processing on Graphs:

Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains. IEEE Signal Process. Mag. 2013, 30, 83–98.
[CrossRef]

9. Fang, Z.; Xiongwei, Z.; Tieyong, C. Spatial-temporal slow fast graph convolutional network for skeleton-based action recognition.
Neural Inf. Processing 2021, 16, 205–217.

10. Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral Networks and Locally Connected Networks on Graphs. In Proceedings of
the International Conference on Learning Representations, Banff, AB, Canada, 21 May 2014.

11. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.
In Proceedings of the Advances in Neural Information Processing Systems, San Francisco, CA, USA, 5 December 2016.

12. Xu, B.; Shen, H.; Cao, Q.; Qiu, Y.; Cheng, X. Graph Wavelet Neural Network. In Proceedings of the Seventh International
Conference on Learning Representations, New Orleans, LA, USA, 6 April 2019.

13. Atwood, J.; Towsley, D. Diffusion-Convolutional Neural Networks. In Proceedings of the Advances in Neural Information
Processing Systems, Barcelona, Spain, 5 December 2016.

14. Niepert, M.; Ahmed, M.; Kutzkov, K. Learning Convolutional Neural Networks for Graphs. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning, New York, NY, USA, 19 June 2016.

15. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4 December 2017.

16. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural Message Passing for Quantum Chemistry. In Proceedings of
the 34th International Conference on Machine Learning, Sydney, Australia, 6 July 2017.

17. Sandeep, C.R.; Salim, A.; Sethunadh, R.; Sumitra, S. An efficient scheme based on graph centrality to select nodes for training for
effective learning. arXiv 2021, arXiv:2104.14123.

18. Graves, A. Adaptive Computation Time for Recurrent Neural Networks. arXiv 2016, arXiv:1603.08983.
19. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the Sixth

International Conference on Learning Representations, Vancouver, BC, Canada, 30 May 2018.
20. Zhou, J. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [CrossRef]
21. Shuai, M.; Jianwei, L. Survey on Graph Neural Network. J. Comput. Res. Dev. 2022, 59, bll 47.
22. Krzysztof, C.; Han, L.; Arijit, S. From block-Toeplitz matrices to differential equations on graphs: Towards a general theory for

scalable masked Transformers. arXiv 2021, arXiv:2107.07999.

http://doi.org/10.1109/MSP.2012.2235192
http://doi.org/10.1016/j.aiopen.2021.01.001

	Introduction
	Related Work
	Models and Definitions
	APAT-GCN Model
	Definition of Graph
	Designing and Training Deep Graph Convolutions

	Adaptive Aggregated Graph Convolutional Network
	Graph Centrality Sampling
	Adaptive Propagation Stop
	Attention Mechanism

	Experimental Analysis
	Data Set and Experimental Setup
	Over-Smoothing Problems
	Parameter Settings for the Baseline Model
	Comparison of Experimental Effects
	Adjustment of Hyperparameters

	Conclusions
	References

