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Abstract: To address the problem of a low accuracy and blurred boundaries in segmenting multi-
modal brain tumor images using the TransBTS network, a 3D BCS_T model incorporating a channel
space attention mechanism is proposed. Firstly, the TransBTS model hierarchy is increased to obtain
more local feature information, and residual basis blocks are added to reduce feature loss. Secondly,
downsampling is incorporated into the hybrid attention mechanism to enhance the critical region
information extraction. Finally, weighted cross-entropy loss and generalized dice loss are employed
to solve the inequality problem in the tumor sample categories. The experimental results show
that the whole tumor region WT, the tumor core region TC, and the enhanced tumor region ET are
improved by an average of 2.53% in the evaluation metric of the Dice similarity coefficient, compared
with the TransBTS network and shortened by an average of 3.14 in the metric of Hausdorff distance
95. Therefore, the 3D BCS_T model can effectively improve the segmentation accuracy and boundary
clarity of both the tumor core and the enhanced tumor categories of the small areas.

Keywords: 3D BCS attention mechanism; transformer; multiple models; magnetic resonance imaging;

loss function

1. Introduction

Brain tumors are irregular and uncontrollable clusters of cells that grow in the brain.
A tumor is usually latent in the brain of patients in various forms, with a high incidence [1].
The accurate segmentation of tumor categories can directly affect the clinical diagnosis re-
sults and subsequent treatment plans. Magnetic Resonance Imaging (MRI) is a biomagnetic
nuclear spin imaging technology that forms with the development of electronic circuit tech-
nology and superconductor technology. It can enable medical experts to detect images in a
shorter amount of time [2]. Among them, brain tumor MRI contains the four modalities of
T1-weighted imaging (T1), T2-weighted imaging (T2), fluid attenuated inversion recovery
(FLAIR), and T1-weighted imaging with a contrast medium (T1ce). The physician manually
delineates three parts of the tumor in combination with the degree of highlighting in the
MRI and his own experience, namely: (1) the enhanced tumor (ET); (2) the tumor core (TC)
is typically the area to be resected, which consists of the ET and the necrotic tumor (NET);
(3) the whole tumor (WT) describes the integrity of the disease which comprises the ET,
NET, and the edematous area (ED). However, the increasing number of patients is leading
to a surge in magneto-optical images, and the manual segmentation relies on personal
experience with a low reproducibility. Therefore, designing an automatic segmentation
algorithm model with a high accuracy and strong robustness will be of great significance in
diagnosing and treating brain tumors.

Currently, the mainstream MRI architecture for brain tumor segmentation includes a
convolutional neural network model framework represented by encoder-decoder architec-
ture [3-7] and the integration framework of the transformer model and convolutional neural
network represented by the attention mechanism [8-10]. Kamnitsas et al. [4] proposed
a 3D DeepMedic network to address the poor segmentation of 2D series networks. The
literature [5] presented a modified robust fuzzy c-means (MRFCM) algorithm that requires
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slicing brain tumor images and from which, it is challenging to learn global information.
The study [6] put forward a convolutional neural network (CNN) segmentation method
based on small image blocks, which enable the model to focus more on the local structural
features of the image but fail to fuse the multimodal information well and ignores the infor-
mation features among the modalities. Henry et al. [7] proposed a 3D Unet model for brain
tumor segmentation that can input full-volume images. Still, the pooling and downsam-
pling in the coding process can cause the image loss of fine-grained information. In 2020,
the self-attention mechanism in the Transformer model introduced by Dosovitskiy et al. [8]
could compensate for the shortcomings of CNNs by focusing on the global information.
TransUnet [9] is the first model that integrates the transformer self-attention mechanism
and convolutional neural network CNN. Although used for brain tumor segmentation, it is
semi-supervised learning because it relies on pre-trained models and requires pre-trained
weights from large natural image datasets. TransBTS [10] was an integrated 3D brain tumor
segmentation model trained from end to end. However, this model only uses the Softmax
loss function. The increase of one label prediction will suppress the prediction probability
of other labels, which is difficult for small target segmentation.

Considering the existing network segmentation of multi-modal brain tumor images is
not accurate, the boundary is blurred, and the use of the TransBTS single loss function is
not ideal for small target segmentation. Therefore, we propose a segmentation network
based on the TransBTS model, which is based on a CNN and incorporates the latest
transformer auto-attention coding section. A five-channel end-to-end, fully automated
unsupervised learning network is constructed by improving the residual basis block, the
channel space mixed domain attention mechanism, and the hybrid loss function. This
model can effectively improve the segmentation performance of the model, especially the
accuracy of small target tumor segmentation. The main contributions of this study are
as follows.

e  The residual basis block replaces the traditional stepwise convolution operation, effec-
tively performing deep feature extraction on the original features and maximizing the
retention of more learnable feature information.

e  The 3D BCS channel of the spatially mixed domain attention mechanism module
suppresses the tumor irrelevant region information in MRI images, enables more
targeted feature extraction, and improves the segmentation limit.

e  The encoder operation of Vision Transformer enhances the feature fusion capability
to obtain more meaningful information, thus further improving the segmentation
accuracy of the algorithm.

e  The coupling of two loss functions can enhance the segmentation accuracy of small
targets and improve the problem of extreme imbalances in lesion classes.

e  The recently released BraTS2021 dataset is used as a benchmark. The advantages
of the 3D BCS_T algorithm model are demonstrated through a series of comparison
experiments and ablation experiments, which provide more robust diagnostic results.

The rest of the paper is organized as follows. Section 2 explains the original TransBTS
model and the structure of our proposed 3D BCS_T model. Section 3 describes the three
improved modules, illustrating the dataset and the image processing steps. In Section 4, we
have improved the comparative model and conducted several experiments. The proposed
model is analyzed qualitatively and quantitatively to verify its validity. Finally, Section 5
concludes the paper and provides the following steps to be taken.

2. Network Model Construction
2.1. TransBTS Network Architecture

The TransBTS network is a four-layer U-shaped structure based on an encoder-decoder.
Firstly, the CNN is used to extract spatial features. Then, through the down-sampling
operation with a convolution kernel size of 3, a convolution step size of 2, and a feature
image filling the width of 1, the image size is reduced to a second of the previous size.
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The feature image dimension is expanded to twice the original size. The bottom uses the
self-attention mechanism in the transformer model for the global feature modeling.

Similarly, after jumping and connecting with the encoder of the corresponding layer,
the sampling layer and the deconvolution layer are gradually stacked to produce high-
resolution segmentation results. However, these operations in the TransBTS network will,
according to some feature information, and coupled with the particularity of multimodal
images, result in the unclear boundary of the segmentation results. Therefore, a 3D BCS_T
model is proposed by improving the encoder and decoder, respectively.

2.2. 3D BCS_T Network Architecture

The 3D BCS_T model is subdivided into three parts: the encoder process, the trans-
former fusion process, and the decoder process. The overall architecture is shown in
Figure 1.
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Figure 1. 3D BCS_T network model structure. The left side represents the encoder and decoder parts
of the U-network, while the right side represents the self-encoder part of the Vision Transformer.
Abbreviations: the channel attention module (CAM), the spatial attention module (SAM), positional
encoding (PE). Furthermore, Conv3d represents a convolution operation with a convolution kernel
size of 2 and a step size of 2.

As can be seen in Figure 1, the CAM focuses its attention on the meaningful feature
channels, and the SAM focuses on the noteworthy spatial features, which collaborate well
to form the 3D BCS block. The weights of pixels in the different channels and the pixels in
various positions of the same channel are considered comprehensively to obtain a more
discriminative feature representation. In addition, the PE is nested after the feature image
to form a new one-dimensional feature image as the input to the transformer’s autoencoder.
The PE is nested after the feature image to form a new one-dimensional feature image as
the input to the transformer’s autoencoder.

The first thing is the encoder process: the input four-modality MRI voxel block (4, 224,
224, 128) cropped by the origin center, where 4 indicates the number of modalities and (224,
224, 128) represents the length, width, and depth of the voxel block, respectively. A feature
image with a channel count of 16 is formed after a convolution kernel size of 3 x 3 x 3.
Each encoder layer contains a residual basis module and a 3D BCS hybrid domain attention
mechanism module. Following each layer, the image size is reduced to one-half of the
original size, and the feature image dimension is expanded to twice the original size.
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The bottom feature L (256, 14, 14, 8) obtains global information through the transformer
algorithm. The 3 x 3 x 3 convolution kernel is used to increase the feature dimension from
256 to 512, and the image size is decomposed into a feature graph G of a one-dimensional
sequence (14 x 14 x 8). Then, the linear embedding sequences (512, 14 x 14 x 8) of
these image blocks are superimposed with the learned position coding (1, 14 x 14 x 8)
as the input of the transformer encoder. The four transformer layers of the transformer
encoder consist of the multi-headed attention at the interaction level (MHA) blocks and the
feedforward networks.

The upsampling deconvolution operation is performed similarly to the downsampling,
with each upsampling decreasing the feature dimension and increasing the image size. The
final feature image with a high resolution (16, 224, 224, 128) is obtained by stacking the
channels and several deconvolution times. The image size with four labeled channels is
accepted as the model’s output through a1 X 1 x 1 convolution operation and Softmax
activation function.

3. Related Work

Table 1 lists the representative articles by researchers in recent years for tumor seg-
mentation, comparing them in terms of data volume size (D.V.S.), data enhancement (D.E.),
residual connectivity (R.C.), attention mechanism optimization (A.M.O), and loss function
optimization (L.FO).

Table 1. Review of the techniques and databases used for the brain tumor image segmentation from
2016 to 2022.

Paper Year Technology D.V.S D.E. R.C AM.O LEO
[11] 2016 VoxResNet 20 X N4 X X
[12] 2017 Grayscale indexing match 50 X X X X
[13] 2018 Vnet 285 Vv X X Vv
[14] 2019 Cooperative representation 65 X X X X

[7] 2020 3D Unet 369 v X Vv X
[10] 2021 TransBTS 369 Vv X X X
[15] 2021 CNN Transformer 1251 v X X X
[16] 2022 CNN 65 X X X X

Ours 2022 CNN Transformer 1251 Vv Vv Vv Vv

We can see that the traditional CNN-based individual network models can no longer
meet high-performance requirements. The pooling and downsampling of the network
model in paper [7] in the coding process will cause the loss of fine-grained information
about the image. The VoxResNet applies the ResNet network idea to the 3D brain MRI
segmentation [11], and experiments confirm that the residual module can effectively per-
form the deep feature extraction on the original features, which helps to identify the feature
information better. It can alleviate the information loss caused by the increase of network
layers. However, with only 20 patients, the amount of data is too small. Research has the
disadvantages of small data sizes and poor network robustness in terms of data volume
usage. It is found that only half of the studies [7,10,13,15] used data augmentation tech-
niques to augment the data sample set. The TransBTS integrates the multi-scale information
through the vision transformer algorithm, but using a single loss function is not ideal for
small target segmentation [10]. The mixed loss function of Dice loss and Jaccard loss is
proposed in the literature [13]. However, the Dice loss is suitable for the binary classifica-
tion but not for the multi-class tumor segmentation. Therefore, the fact that the proposed
network adequately considers these four aspects, is noteworthy. The BraTS2021 dataset, on
the one hand, has a training set three times larger than the BraTS2020 training set, which
facilitates the training of the model fit. A residual base block is designed in the encoder part
of the network model to reduce the loss of essential parameters in the propagation process.
Furthermore, it is proposed that the 3D BCS mixed attention module can enhance the
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space feature extraction ability by optimizing the attention mechanism. The bottom layer
integrates the multi-scale information through the vision transformer algorithm. Finally, a
combination of the multi-category GDL and the weighted cross-entropy loss function is
proposed to solve the problem of imbalanced imaging categories. The advantages of the 3D
BCS_T algorithm model are demonstrated through a series of comparative experiments and
the ablation experiments studied and analyzed to provide more robust diagnostic results.

3.1. Fundamentals of the Improved Algorithm
3.1.1. 3D BCS Hybrid Domain Attention Mechanism

Given that the ordinary convolution loses some characteristic information, a residual
basis block method is proposed, consisting of two groups, the normalized group norm and
the parametric rectified linear unit (PRelu) [17], and a 3D convolution with a convolution
kernel size of 3 and a padding of 1. The structure is displayed in Figure 2.
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Figure 2. Residual base block structure.

The attention mechanism can selectively assign different weight values to each com-
ponent, based on the importance of the target region [18]. Therefore, a 3D BCS hybrid
domain attention mechanism module is applied to the encoder process. The featured
image first enters the CAM and is calculated as shown in Equation (1). Among them, the
multilayer perceptron (MLP) is composed of the flatten leveling operation, the linear layer,
the reasonable satisfaction linear units (Relu), and the linear layer. Avgpool and MaxPool
are abbreviations for the average pooling and maximum pooling, respectively. The joint use
of the average and maximum pooling images for more representative spatial information
highlights the central information regions.

B.(X1) = ¢(MLP(AvgPool(X1))+MLP(MaxPool(X1))) (1)

Following this, it moves on to the SAM, calculated as shown in Equation (2), further
compressing the channels to focus on the feature importance of each pixel and extracting
the critical information about the image.

B (Bc(X1)) = o (77 ([AvgPool (B (X1)); MaxPool (Bc(X1))]) ) )

The original feature image and the feature image obtained by the hybrid attention
mechanism are connected by residuals, as shown in Equation (3), which integrates the
weights of the pixels in the different channels and locations of the same track. The 3D
downsampling part of the standard U-Net model is extended to maximize the extraction of
the original features and to reduce the information loss while increasing the depth of the
network.

Bes(X1) = X1 4 Bs(Bc(X1)) (©)]

The architecture of the 3D BCS hybrid domain attention mechanism module is shown
in Figure 3.
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Figure 3. 3D BCS Hybrid Domain Attention Mechanism Module.

The input image first goes through the convolution operation with a kernel size of
3, step size of 2, padding of 1, and the image size becomes half of the original. Following
the convolution operation, the convolution kernel size is 3, the step is 1, the padding is 1,
and the feature graph X1 is obtained. Then, the feature image X1 relates to the residual
after the operation of the CAM and the SAM modules to obtain a new feature image for
the adaptive optimization.

Compared with the original TransBTS model, the total number of parameters increases
from 16.79 MB to 17.99 MB, which can improve the feature extraction capability of the net-
work model without significantly increasing the computation and number of parameters.

3.1.2. Mixed Loss Functions

In brain tumor segmentation, tumor pixel points represent only a tiny fraction of
the scanned MRI image. During network training, the predicted values are more likely
to favor the background region and ignore the foreground target region, which usually
leads to small target segmentation. In previous studies, using a single loss function has
not worked well for small target segmentation. Therefore, it is worthwhile to design a
hybrid loss function, which is a fusion of the weighted cross-entropy loss (WCE) and the
generalized Dice loss (GDL) [19]. The WCE easily achieves the maximum optimization in
the backpropagation and focuses on the gradient optimization as Equation (4). Among
them, The weight w attributed to the target class can be used to adjust for false positives
and false negatives, which can enable an increase in the weight of misclassification and
penalizing categories that account for the majority.

1 5 p
WCE = 9 whjlog(B) + (1 ) log(1 ~ &) @
]:
m—¥; b
wo "Ll 5)
L

The notations are described in Table 2 below.

The GDL considers information on the weights of all classes of brain tumors, focusing
on ensuring training stability in the presence of classification imbalances and as Equation
(6), using an index as a quantitative indicator of segmentation results.

Lty wily PPy
L wikiiy P+ Py

1
n 2
i=1 Pz'j

GDL=1-2 (6)

@)

wj:
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Table 2. Definition of the symbols.

Symbol Implication
m Number of categories
w Weighting
n Number of pixel points
p; The actual value of the segmented label graph given by the data
pj A predicted probability value of a pixel belonging to category j
Db The actual value of category j at pixel i

>

Ral)

A predicted probability value of category j at pixel i

In practice, the combination of the above two, as shown in Equation (8), enhances
the accuracy of the segmentation of small targets and improves the problem of extreme
imbalance in the brain tumor category.

WGL = WCE + GDL )

3.2. Multimodal Fusion on MRI Data
3.2.1. MRI Datasets

According to the previous description, the BraTS2021 is much larger than the BraTS2020.
It is found that it is scientific to adopt the latest BraTS2021 data set, which contains 1251
cases of training data and 219 cases of validation data [20-22]. First, we randomly divided
the datasets in a ratio of 9:1 to 1126 cases for the model training and 125 points for the
model testing and evaluation. The training and test sets are then augmented with data
from the training set. This is because we consider that the same sample data may ap-
pear in the training and test sets, which will not be scientific enough to characterize the
model accurately.

Because the data we used are obtained by MRI scanning, the MRI also obtains infor-
mation in the clinical environment, but the output size of different devices is different, the
pre-training operations such as the normalization and the N4 correction need to be carried
out. In addition, the model obtained after training can be used to predict the MRI data
without the GT.

As shown in Table 3, the training set underwent four data enhancement methods before
being fed into the network model for training. The data images were effectively extended
and were sufficiently different from those in the test set. Therefore, it can generalize better
than other tumor categories of different patients with some generalization ability.

Table 3. Experimental data is randomly divided according to the proportion.

Type Percentage Number Scramble Order Data Enhancement Total Number
Training set 90 1126 Vv Vv 4504
Test set 10 125 Vv X 125

Each issue contains four modalities, FLAIR, T1, T1lce, and T2, and the image size of
each modality is 240 x 240 x 155, representing the length, width, and depth of the voxel
block, respectively. Observing the image shows that the effective pixels and tumor area
are located in the center of the image. In contrast, the surrounding area is an outside
background area. Therefore, the actual area to be processed is the area with the center as
the origin and spreading outward. The largest voxel block, 224 x 224 x 128, is used as the
model input to maximize the inclusion of the brain contour information. In addition, an
N4 bias field correction algorithm has been applied to each modality to compensate for the
artifacts in response to problems such as noise interference in the MRI during transmission,
resulting in varying intensities of different magnetic field distributions [23].
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3.2.2. Data Enhancement

Because the problem of overfitting may occur in the model training for sparse medical
images, the issue of insufficient data volume is solved by using the data enhancement
method in the training process. There are two kinds of data enhancement, one is the
traditional primary image geometric processing method, and the other is the photometric
conversion. Considering that the random dropout is used in the training process of the
network model, mixing the different modal data of different patients has little significance
for the overall training. Therefore, we no longer use the mixed image crossover and
randomly erase operations in the photometric transformation, but instead, we use the
Gaussian noise operation in the photometric intensity transformation. We mainly use
elastic deformation, mirror flip, and the random intensity displacement operations [24].

Specifically, firstly, the image dataset is enhanced by introducing the Gaussian additive
noise following the normal distribution on the image to improve the robustness of the
network against noise attacks. Secondly, an augmentation method of the elastic deformation
is used to simulate the difference of different shapes to solve the irregular and discontinuous
boundary problem of tumors in medical images. Since the model image is independent of
the position direction, the inverted image is equivalent to the new data of the same category,
so the mirror inversion with the probability of turning the axial, the coronal and the sagittal
planes of 0.5 is used to increase the data sample. In addition, the random intensity shift
operation achieves the effect of the sample expansion by applying an intensity shift in the
scale factor range of [-0.1, 0.1] and a scaling in the scale range of [0.9, 1.1]. This way, the
scale from 1 to 4 is expanded by four data enhancement methods, increasing the data set’s
randomness and giving the model a better generalization ability.

4. Experimental Results and Analysis
4.1. Experimental Environment and Evaluation Indicators

The experimental platform is a Linux operating system; the simulation tools are the
Pycharm framework, the Pytorch environment, and the CUDA 10.2 architecture platform.
All training and experiments are run on a standard workstation (dual Intel(R) Xeon(R)
Gold 5218 CPUs, Tesla V100 x4 graphics card, 256 GB RAM).

The image results are evaluated using the classical Dice similarity coefficient (DSC),
the Hausdorff 95 (HD95), and sensitivity [23]. The values of the DSC and sensitivity range
from 0 to 100%, with higher scores indicating a better segmentation accuracy. HD95 means
how close the actual value is to the predicted value and is inversely proportional to the
segmentation result, with lower values showing better segmentation results.

4.2. Analysis of the Ablation Experiments

The experiments are conducted using uniform experimental environment parameters
to verify the effectiveness of the added modules on the overall model. Considering that the
anthropomorphic Newton method (Apollo) can dynamically apply the curvature of the
loss function to the optimization [25], the Apollo optimizer is used in the training process of
this paper. In the early stage of the experiment, several hyperparameters in the experiment,
including the learning rate and batch size, were dynamically adjusted through multiple
rounds of cross-validation to obtain the optimal value through the manual experience
adjustment and considering the problem of memory capacity. Finally, the batch size was
set as four, and the learning rate as 0.0002.

The modules are renamed to facilitate the subsequent viewing of the results. The
ResBTS network represents adding a new layer of network depth to the original model
and the residual-based block convolution. The ResBTS network consists of a new layer of
the network depth added to the original model and the residual-based block convolution.
The ResBCS network forms by adding the 3D BCS hybrid attention mechanism module to
the ResBTS network. The 3D BCS_T model replaces the single loss function of the ResBCS
network using a fused loss function of the WCE and the GDL.
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Figure 4 shows the comparison of the loss function during training after adding each
module; each curve represents a different network model. Our final model keeps the loss
in the training phase at around 0.6 after adding the hybrid loss function, which has a better
generalization ability.

Train_Epoch_Loss

2.25 4 TransBTS
—— ResBTS
2.00 4 — ResBCS
— 3D BCS_T
175
1.50 4
a
2
1.25
1.00 4
0.75 A
O.SO A T T T T T T T
(o] 50 100 150 200 250 300
epoch

Figure 4. Comparison of the training loss functions with the different modules added to the Trans-
BTS network.

The quantitative data evaluated in the test set are shown in Figure 5. The ResBTS
network improved the DSC in the TC and ET regions by 2.29% and 1.06%, respectively,
compared to the original model. The ResBCS network, allowing attention to be focused on
the target region, improves the Sens metric in correctly segmenting the tumor compared
to the original model. Furthermore, the hybrid loss function is used further to improve
the DSC of the TC and ET regions. The HD95 distance is further reduced, which is more
friendly to small area segmentation.

80
70
50
40
30
20
z 1
0 . - . s -
WT TC ET WT TC ET WT TC
DSC

Result Value
[N}
(=}

. ET
Evaluation
Indicator Sens HD95
W TransBTS 85.03 84.46 81.66 91.1 84.88 84.09 14.28 11.29 3.97
W ResBTS 64.88 86.75 82.72 74.45 86.52 85.5 17.82 8.11 3.9
ResBCS 85.43 84.76 81.84 90.59 84.65 84.59 10.89 9.57 3.96
m3DBCS_T 83.93 88.14 86.69 89.76 88.5 88.53 11.54 4.81 3.77

Figure 5. Comparison of the evaluation results with the different modules added to the TransBTS network.

The model is trained in 300 rounds, each round takes about 21 min to train and the
test time is about 1 s. When the model is well trained, it can be used directly for image
segmentation without the need to repeat the training. The method used in this paper can
achieve image input to segmentation in less than 3 s, with a relatively fast response.
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Three groups of patient images are randomly selected from the test set, as shown in
Figure 6. The picture on the left shows each of the four modalities of the MRI images, and
on the other side represents from left to right, the 3D BCS_T model predicted outcome
image and the expert-labeled ground truth(GT). The first two groups of patients have only
single-category tumor regions (the first group has only gangrenous NET areas and the
second group has only puffy ED regions). In contrast, the last group has three categories
of parts: WT, TC, and ET. The different areas have additional individual variability, with
shape and size characteristics showing their regional features, making the segmentation

task more difficult.

Figure 6. Comparison of the actual segmentation of the 3D BCS_T model tumors in different patients.
(a) T1 images; (b) T2 images; (c) FLAIR images; (d) T1lce images; (e) 3D BCS_T images; (f) GT images.

As shown in the results, the 3D BCS_T model can segment the target region more
accurately when facing different segmentation region types, effectively overcoming the
variability of variable region types and accurately segmenting the contours of the enhanced
tumor and tumor core. The model has a strong robustness and adaptability, with the solid
network performance.

4.3. Analysis of the Comparative Experiments

The 3D BCS_T network is compared with other convolutional neural networks to
verify the effectiveness of the improved method. The 3D Unet and the convolutional block
attention module (CBAM) Unet are four-layer encoder-decoder U-shaped structures [7].
Still, given that the maximum pooling used in the original model for the downsampling
and the trilinear interpolation used for the upsampling lose some information, the network
is further improved and refined. On the one side, the expansion convolution replaces the
maximum pooling, which contains a convolution kernel size of 3, a step size of 2, a fill of 2,
and a dilation rate of 2. On the other side, the transposed convolution replaces the linear
interpolation. Finally, to ensure the stability of the training, the random discard dropout is
set to 0.3. The model is trained 300 rounds from scratch, using a five-fold cross-validation.
The segmentation results of the validation set are evaluated for 226 cases, and the DSC
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results are shown in Table 4. The DSC of the network with the attention mechanism added
improved by 8.8% over the original network model.

Table 4. Results of the DSC evaluation of the classical networks on the validation set. AVG is the
abbreviation for average.

DSC (%)
Network
ET TC WT AVG
3D Unet 72.41 73.67 74.99 73.69
CBAM Unet 80.81 82.89 83.77 82.49

4.3.1. Analysis of the Visualization Results

Two patient images are randomly selected to visualize the difference in the segmenta-
tion results before and after the improvement of the network model. The patient in Figure 7
had irregularly shaped tumor regions with irregular edges and small lesion regions with
a severe class imbalance. The TransBTS model is not fine enough in segmentation for the
small target processing and has incorrect prediction labels. In contrast, the improved model
has advantages for small target segmentation and obtains accurate edge information. This
indicates that the 3D BCS_T model can effectively solve the problems caused by the irreg-
ular shape of the tumor region, improve the segmentation effect and edge segmentation
accuracy of the smaller lesion regions, and has a strong adaptability.

(b)

Figure 7. Comparison of the sagittal bit image segmentation results. (a) Pre-improvement segmenta-

tion; (b) Post-improvement segmentation.

The patient image in Figure 8 has a non-uniform greyscale, a discontinuous distribu-
tion of tumor structures, and many outliers and noises. At the same time, the TransBTS
model tends to miss or misjudge the discrete tumor pixels. The 3D BCS_T model, however,
is more stable and robust by designing a residual join and a jump join operation to linearly
combine the residual processed information with the original input information to obtain
more local feature information, eliminating irrelevant and noisy features.

4.3.2. Analysis of the Datasets Results

The segmentation results of the test set on different network models are shown in
Table 5. Following the triple-fold cross validation, the mean value of the three-class tumor
segmentation DSC using the classical 3D Unet network is 73.69. The CBAM Unet network,
with the addition of the hybrid attention mechanism, has a tumor segmentation DSC of up
to 82.49, which further demonstrates the effectiveness of adding the attention module to
the overall network. In addition, the 3D Unet network and the CBAM Unet network have
larger values for the HD95 distance due to the random division of the data in the test set
of this experiment and the uneven distribution of the tumor target regions, where a very
small pixel segmentation results in a larger oscillation distance.
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(a) (b)

Figure 8. Comparison of the greyscale image segmentation results. (a) Pre-improvement segmenta-

tion; (b) Post-improvement segmentation.

Table 5. Comparison of the evaluation results of the different network models. The underlined data
indicate that the network model has the best evaluation result compared with other models under
the same evaluation index and category.

DSC (%) Sens (%) HD95
Network
WT TC ET WT TC ET WT TC ET
3D Unet 75.60 72.70 70.19 88.55 81.62 84.16 75.6 72.7 70.19
CBAM Unet 85.18 81.85 78.03 90.75 86.24 85.71 25.49 8.92 8.52
TransBTS 85.03 84.46 81.66 91.10 84.88 84.09 14.28 11.29 3.97
3D BCS_T 83.93 88.14 86.69 89.76 88.50 88.53 11.54 4.81 3.77

Compared with the original TransBTS network, the DSC of the 3D BCS_T network
on the WT, TC, and ET are 83.93, 88.14, and 86.69, respectively. The average values of the
TC and ET are increased by 3.68% and 5.03%, respectively, compared with the suboptimal
model. It shows that the 3D BCS_T algorithm model performs better in segmenting tumor
core areas and enhanced areas and can significantly improve the segmentation performance
of small-scale tumors. The model has significant advantages over other models in various
performance indicators. Overall, combining our proposed residual basis block, the 3D
BCS hybrid domain attention mechanism, and the hybrid loss function can improve the
boundary clarity of the DSC and tumor segmentation and reduce the HD95 distance.

At the same time, we can notice that the DSC of the WT area is not ideal, mainly
because the prediction number of tag 2 in the swollen area is relatively inaccurate, which
leads to the prediction result of the WT category not achieving the best effect. However,
compared with other models, this model has apparent advantages in the DSC, Sens, and
HD95 distance performance indexes.

Following the 6-fold cross-validation and averaging, the resultant values of the DSC
on the WT, TC, and ET category tumors are 83.96, 88.15, and 86.70, respectively, proving
that our network remained stable and effective in the tumor segmentation results.

Figure 9 shows the visual segmentation results of the three groups of patients randomly
selected. From left to right, they are the expert manually annotated GT, the local expansion
image, the 3D Unet segmentation result image, the CBAM Unet segmentation result image,
the TransBTS segmentation result image, and the 3D BCS_T segmentation result image.
The morphology and size of the MRI in the three groups were different. The edge of the
tumor area in the first group was irregular. The lesion area in the second group was small.
Moreover, the tumor distribution in the third group was discontinuous, with more outliers
and noise. No matter the contrast and noise of the original image, the 3D BCS_T network
has the best effect in predicting the enhanced tumors and core tumors. Among them,
the DSC of the second group of patients is 91.01, 96.67, and 91.70 in the WT, TC, and ET,
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respectively. The patient has only enhanced tumors and edema areas, and the prediction
results of this model are almost the same as those of the GT.

ET:

TC:  + WT: +H+0

Figure 9. Comparison of the segmentation effects of the different network models. (a) GT; (b) local
expansion; (c) 3D Unet; (d) CBAM Unet; (e) TransBTS; (f) 3D BCS_T; From the perspective of the
segmented category area, there were three types of tumors in the first and third groups, namely ET,
TC and WT. The second group only had ET and TC tumors.

Combining the statistics in Table 3 and the above discussion, we can conclude that the
3D Unet has significant problems in pixel fine-grained segmentation, and the CBAM Unet
misclassifies the background regions as the ET regions in some segmentation results. The
3D Unet has significant issues in pixel fine-grained segmentation, with the CBAM Unet
misclassifying the background regions as the ET regions in some segmentation results. The
TransBTS is not accurate enough in segmenting region contours, especially the blurred
inner edges. Our proposed 3D BCS_T model has the following advantages:

e  The 3D BCS hybrid domain attention mechanism module helps to improve the model’s
recognition of the important feature information, and the residual connectivity en-
hances the segmentation ability. The hybrid loss function can further improve the
segmentation accuracy of small targets and optimize the network performance.

e  Our model has a low average deviation and a low dispersion, which allows for the
further segmentation of the detailed contour of the model.

e Interms of the edge determination and accuracy of the ET and TC tumor areas, the
model is superior to other SOTA models, which can help doctors accurately determine
the precise location of the incision in surgery and protect patients” healthy tissues from
being removed.

5. Conclusions

To further improve the accuracy of tumor segmentation and the clarity of regional
contours, an improved 3D BCS_T segmentation network is proposed based on the original
TransBTS model, which retains the underlying features of the transformer, and introduces
a residual basis block. A 3D BCS hybrid domain attention mechanism to fully use the
information features from different levels of the encoder and decoder, and finally, a hybrid
loss function is proposed to train the network model adequately. Experimental results on
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the BraTS2021 dataset show that the improved network achieves the best results in all three
evaluation metrics in the ET and TC regions, proving the improved method’s worthiness.

However, this work also has certain limitations. On the one hand, increasing the depth
of the network model leads to an increase in the number of parameters and a longer training
time. Next, we will consider how to improve the time to reduce the number of parameters
and complexity while improving the accuracy. On the other hand, the effectiveness of
the proposed method is only demonstrated in the segmentation task of brain tumor MRI
images with four modes. In the subsequent work, the network will be adjusted to accept
other modality format datasets of the MRI as the model’s input to be widely used in medical
image segmentation and reduce some burden for doctors.
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Abbreviations

MRI Magnetic resonance imaging

T1 T1-weighted imaging

T2 T2-weighted imaging

FLAIR Fluid attenuated inversion Recovery
Tlce T1-weighted imaging with contrast medium
CNN Convolutional neural network
MRFCM  Modified robust fuzzy c-means
PRelu Parametric rectified linear unit

MLP Multilayer perceptron

Relu Reasonable satisfaction linear units
WCE Weighted cross-entropy loss

GDL Generalized Dice loss

DsC Dice similarity coefficient

HD95 Hausdorff 95
CBAM Convolutional block attention module
GT Ground truth
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