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Abstract: In recent years, small-scale Unmanned Aerial Vehicles (UAVs) have been used in many
video surveillance applications, such as vehicle tracking, border control, dangerous object detection,
and many others. Anomaly detection can represent a prerequisite of many of these applications
thanks to its ability to identify areas and/or objects of interest without knowing them a priori. In
this paper, a One-Class Support Vector Machine (OC-SVM) anomaly detector based on customized
Haralick textural features for aerial video surveillance at low-altitude is presented. The use of a
One-Class SVM, which is notoriously a lightweight and fast classifier, enables the implementation
of real-time systems even when these are embedded in low-computational small-scale UAVs. At
the same time, the use of textural features allows a vision-based system to detect micro and macro
structures of an analyzed surface, thus allowing the identification of small and large anomalies,
respectively. The latter aspect plays a key role in aerial video surveillance at low-altitude, i.e., 6 to
15 m, where the detection of common items, e.g., cars, is as important as the detection of little and
undefined objects, e.g., Improvised Explosive Devices (IEDs). Experiments obtained on the UAV
Mosaicking and Change Detection (UMCD) dataset show the effectiveness of the proposed system
in terms of accuracy, precision, recall, and F1-score, where the model achieves a 100% precision, i.e.,
never misses an anomaly, but at the expense of a reasonable trade-off in its recall, which still manages
to reach up to a 71.23% score. Moreover, when compared to classical Haralick textural features, the
model obtains significantly higher performances, i.e., ≈20% on all metrics, further demonstrating the
approach effectiveness.

Keywords: anomaly detection; small-scale unmanned aerial vehicles; low-altitude flights; texture
analysis; feature extraction; real-time applications; support vector machines

1. Introduction

In the last decades, vision-based systems are becoming increasingly important in
supporting a wide range of application areas, including environment modelling for mov-
ing cameras [1–5], human action and event recognition [6–9], target and object detec-
tion [10–16]; even in areas such as medical image analysis [17–23], emotion or deception
recognition [24–29], and immersive rehabilitation by serious games [30–35], these systems
are, now, of daily use. At the same time, the last 10 years have seen substantial improve-
ments of small-scale Unmanned Aerial Vehicles (UAVs), hereinafter UAVs, in terms of
flight time, automatic control, embedded processing, and remote transmission. All these
aspects have enabled an increasing development of vision systems based on UAVs [36,37]
that more and more support activities in civilian and military missions, thus making a new
era in human-drone collaboration.

Regarding civilian-centered applications, the last few years have been characterized by
the development of extraordinary UAV-based vision systems for research and commercial

Information 2022, 13, 2. https://doi.org/10.3390/info13010002 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13010002
https://doi.org/10.3390/info13010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-9834-3519
https://orcid.org/0000-0002-3084-9377
https://orcid.org/0000-0002-8111-9120
https://orcid.org/0000-0002-8425-6892
https://orcid.org/0000-0002-2540-2570
https://doi.org/10.3390/info13010002
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13010002?type=check_update&version=1


Information 2022, 13, 2 2 of 21

purposes. This was possible thanks to the greater payload capacity of the current UAVs,
together with advances in HD cameras and gimbal mounts that have made these devices
ever more performing and at an increasingly limited cost. In this context, industries,
research centers, and public authorities have started a massive usage of vision systems
based on UAVs beginning from daily problems such as agriculture monitoring [38], traffic
surveillance [39], and road pavement analysis [40]. In [41], for example, the authors propose
a video system based on drones to map terrains and plan the construction of efficient
drainage networks. Since the images provided by satellites are not detailed enough to reach
the target reported above, the authors use a combination of aerial images captured by UAVs
equipped with high-resolution cameras and multiple Differential Global Positioning System
(DGPS) stations, thus providing a consistent amount of information for generating quality
Digital Terrain Models (DTMs). The latter are exploited to propose multiple drainage
networks and identify the optimal ones. The work just introduced highlights another
essential topic of civilian-centered applications, i.e., the reconstruction of virtual models.
In fact, numerous proposals [42–44] show how three-dimensional (3D) digitization of
structures and objects can significantly improve the accomplishment of a wide range of
aerial tasks. In [45], for example, the authors provide a method to reconstruct an entire
scenario in 3D and allow the planning of new building structures. The method shows
how a drone equipped with an HD camera performing a circular flight can capture all
the required information about the area of interest to implement the related 3D digital
model. In particular, the authors propose a technique based on a dense point cloud [46] to
reconstruct a surface of an object starting from multi-view images.

Another civilian application area in which reconstruction techniques are widely used
regards the change detection task. The work presented in [47], for instance, shows how
3D reconstructed models can support the analysis of volumetric changes in generic envi-
ronments. The combination of Unmanned Aerial Systems (UASs), Structure-from-Motion
(SfM) multi-view stereophotogrammetry [48], and Terrestrial Laser Scanning (TLS) allows
the authors to retrieve precise information about the morphology of structures. As for
the previous work, the algorithmic approach exploits point cloud techniques. The results
obtained from the application on Bedrock Coastal Cliffs underline the efficiency of the
proposed technique, even if, in very small areas (between 2.7 and 31.5 mm, with 20.5 mm
of standard deviation), the changes may not be detected. In [49], instead, the UAVs are
exploited for detecting changes in a specific area. The proposed method is designed to
monitor the progress of road construction. Two orthoimages of the same area are generated
with a drone equipped with an HD camera, and successively, these are used as input
of a Convolutional Siamese Metric Network (CosimNet). The latter is a Convolutional
Neural Network (CNN)-based structure that contains multiple identical sub-networks and
allows to compare their outputs. Different features are detected and localized into the scene,
thus allowing to segment the region. In this application area, Siamese networks are used
for change detection missions [50] but also for tracking tasks [51] by UAVs. Regardless,
especially in civilian applications, UAVs equipped with vision systems are suitable for all
those cases in which a quick intervention might be necessary while safeguarding the life of
human beings [52], e.g., interventions in quarantine zones or critical environments.

Moving on to the military usage of UAVs, the latter are used in different application
areas, including mines detection [53], combat efficiency [54,55], battlefield mapping [56],
and many others. A relevant context in which the UAVs are utilized regards land moni-
toring. Technical features of these devices, e.g., high silence and reduced size, make them
especially suitable for critical missions [57,58]. In [59], for example, the authors propose
a deep learning-based algorithm for tracking objects within a monitoring environment.
Their work exploits a Siamese neural network, where features are extracted from both a
reference and a probe image and processed through a multi-level prediction module. Using
residual feature fusion blocks in the feature extractor and layer attention fusion blocks
in the predictor drastically improves the obtained results. Some recent works [60–62]
show how to provide monitoring of wide areas by exploiting geo-referenced maps built
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by mosaicking techniques. In these cases, flight altitude is a crucial parameter that has
to be carefully considered. In fact, tall elements (e.g., towers, high lamp lights, pylons,
natural obstacles) acquired from low altitudes can produce occlusions, parallax errors,
and other noise that can introduce artifacts during the mosaic construction, which will
compromise the application of other subsequent operations, e.g., detection, classification,
and localization. Moreover, another challenging parameter for mosaicking applications
is the perspective. Improvements in searching for the best geometrical transformation
(e.g., Homography vs. similarity) to build the best geo-referenced map at low-altitude
is another main target of these surveillance vision systems. Notice that images acquired
from low-altitude flights are generally the most interesting in terms of case studies due to
their high detail level. Indeed, images acquired from satellite or common air-crafts cannot
reach some parts of the monitored areas, and, in some cases, they can have a low resolution.
Furthermore, UAVs can be used several times a day and do not require dedicated structures
for take-off and landing.

Following the direction shown above, the last years have seen the design of increas-
ingly advanced automatic systems for aerial video surveillance. In the [63], for instance,
the authors propose an automatic estimation method to define optimal UAV flight pa-
rameters for real-time monitoring of wide areas. The authors of [64], instead, propose a
visual cryptography approach to detect hidden targets, thus enabling the design of a new
paradigm for the localization and communication of sensitive military objectives. In [65],
the authors propose a faster Region-based CNN (R-CNN) for object detection and tracking.
Finally, in [66], the authors present a feature-based Simultaneous Localization And Map-
ping (SLAM) algorithm for small-scale UAVs with nadir view. Although other relevant
studies are in progress on the topics just introduced, e.g., object detection in [67], a particu-
lar argument, i.e., anomaly detection by UAVs, can be considered relatively new. Indeed, as
shown in Section 2, anomaly detection is mainly applied to non-aerial images and presents
several open issues such as the definition of anomaly or false positives/negatives during
inference. Concluding, the use of UAVs flying at low altitudes to accomplish different
military missions is encouraging the development of a new scientific area regarding the
design of countermeasures for these vehicles [68]. In addition, recent studies on anomaly
detection show that these techniques can be used in critical contexts to detect dangerous
events or objects, thus playing a fundamental role in video surveillance.

In this paper, a set of customized textural features based on the original idea of R.M.
Haralick [69,70], and a One-Class Support Vector Machine (OC-SVM) [71], are used to
design a novel anomaly detection system for aerial video surveillance at low altitudes, i.e.,
between 6 and 15 m. The use of textural features to catch micro and macro structures of
pixel patterns on the ground has been encouraged by both old [72–74] and recent [75,76] lit-
erature, where texture analysis is successfully used to detect pixel patterns of different sizes
in several application areas. In addition, in this work, we have developed a customized
set of textural features inspired by our previous experiences in the use of texture-based
classifiers [17,19,77–80]; by defining (i) a discretized circumference-based spatial relation-
ship to build a gray level co-occurrency matrix (GLCM), and (ii) generalized Haralick
equations, accounting for this particular displacement. Moreover, using an OC-SVM as a
classifier allows us to obtain different key advantages. First, as well-known, this model is
lightweight and fast, thus enabling the possible embedding of real-time classifiers even in
UAVs with low computational capacity. Second, when adequately trained, an OC-SVM
classifier can be highly robust and reliable, achieving high-performance rates, especially
in terms of precision. In the anomaly detection context, the latter highlights how many
anomalies are correctly detected among those present on the ground during a mission at
a low-altitude. Furthermore, this aspect plays a key role in video surveillance of critical
environments where each anomaly can represent a dangerous event from an intrusion to
an Improvised Explosive Device (IED).

To evaluate the proposed method, extensive experiments using standard classifica-
tion metrics, such as accuracy, precision, recall, and F1-score, were performed on the
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UAV Mosaicking and Change Detection (UMCD) dataset [81]. A collection comprising
50 challenging aerial video sequences acquired at low altitudes in different environments
(i.e., urban, dirt, and countryside) with and without the presence of vehicles, persons, and
objects was used. Observe that no other aerial datasets could be used to test the proposed
approach. Indeed, to the best of our knowledge, only the UMCD dataset presents the
following key characteristics: (i) acquisitions at very low altitudes, i.e., between 6 and
15 m; (ii), different environments with diverse backgrounds; (iii), acquisitions along the
same paths with and without anomalies on the ground. For these reasons, although an
exhaustive model evaluation is reported in this paper, describing an impressive precision,
i.e., 100%, at the expense of a reasonable recall trade-off, i.e., 71.23%, the only feasible and
significant literature comparison could be carried out with respect to classical Haralick
textural features since this is the first work addressing anomaly detection on the UMCD
dataset. Regardless, concerning these baseline features, the proposed method achieves a
≈20% gain across all metrics, highlighting the presented approach effectiveness.

Concluding, the main contributions of this paper can be summarized as follows:

• Designing a customized spatial relationship, i.e., a discretized circumference, and
generalized Haralick equations to build meaningful GLCMs and textural features;

• Describing an approach that achieves real-time capabilities by exploiting the notori-
ously lightweight OC-SVM algorithm;

• Presenting quantitative and qualitative experiments of a novel method setting a new
baseline for the anomaly detection task on the UMCD dataset.

The rest of this paper is structured as follows. Section 2 offers an overview about
anomaly detection based on UAVs for civilian and military applications. Section 3 intro-
duces the customized Haralick textural features by means of a discretized circumference
and generalized Haralick equations. Section 4 reports a discussion on quantitative and
qualitative results obtained on the UMCD dataset, as well as a comparison with classical
Haralick textural features. Finally, Section 5 draws some conclusions on the presented work
with some ideas on possible future improvements.

2. Related Work

Anomaly detection is a relatively new research field. It aims at identifying all possible
items (e.g., objects, persons, animals) that are not expected to be found in a specific context.
This means, for example, that an airplane can be considered a normal item in a specific
context, e.g., a hangar of an airport, but not in another context, e.g., the seabed. However,
at the same time, a group of airplanes in the sky could be considered an anomaly since
it is a not common event, although the context, i.e., the sky, is correct for those items.
In other words, anomaly detection aims at monitoring an area of interest, generally through
video sequences, without knowing a priori which are all the possible items that can be
considered an anomaly. The only knowledge of the system is about the normal condition
for the monitored area. The latter is a typical real-life scenario where an automatic system
needs to detect possible problems during their monitoring tasks of restricted or danger-
ous areas. A complete overview of the topic is presented in [82] for interested readers.
Moreover, further details concerning methods using novel deep learning approaches in the
anomaly detection field can be found in [83], while [84] offers a review on both shallow
and deep architectures employed on this task. The following sections report recent state-
of-the-art approaches addressing the anomaly detection task in different operative fields
such as industrial and private applications as well as surveillance from standard cameras
and UAVs.

2.1. Industrial and Private Applications

Industrial applications for anomaly detection are becoming widespread solutions
enabling, among others, automatic supply chains management or infrastructural damage
prevention. For instance, the proposal in [85] presents a strategy for anomaly detection in
the former scenario. The goal is to balance supply and demand to avoid understocking
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or overstocking. To this aim, anomaly detection is used to determine unexpected patterns
for making more effective decisions. The authors suggest using an Autoencoder Long
Short-Term Memory (LSTM) network for forecasting and an OC-SVM classifier for anomaly
detection. In this scenario, employing an OC-SVM is very effective since the Autoencoder
LSTM network eliminates the multivariate time series dependency and enables to achieve
satisfactory performances. Another industrial work is presented in [86], where the authors
devise a strategy to detect anomalies in large pipeline infrastructures (e.g., sewers and
waterworks) to guarantee their correct functionality and to prevent incidents. Usually,
these checks are performed by human operators, implying possible issues in feasibility
and causing long processing times. To automate this activity, the proposed approach firstly
reconstructs the images retrieved from a hemispherical camera and exploits mosaicking
to create the section to analyze. Then, it extracts features by using the well-known SURF
algorithm [87] and matches them by Brute Force Matcher (BFM) [88]. Moreover, since
water flows can maintain a fixed level over timer, the top and bottom of a pipe can result in
different textures. For this reason, to help detect structural pipe anomalies, mosaic images
are divided into horizontal stripes to analyze portions at the same height and with similar
textures. Then, each stripe is further divided into patches, and each patch is processed
with the Local Binary Pattern (LBP) [89] algorithm to extract textural features. Finally, the
presence of structural anomalies is detected by an OC-SVM classifier.

Moving to the smart home field, the recent proposal in [90] presents a strategy for
activity recognition and anomaly detection. The first part relies on the extraction of fea-
tures from the pre-segmented activities. The authors use a Probabilistic Neural Network
(PNN) on the extracted features and then identify anomalies by using a H2O autoen-
coder [91] applied on the network results. The approach has also been tested on two
public datasets (http://ailab.wsu.edu/casas/datasets, accessed on 23 October 2021) with
promising results. Similarly, the authors of [92] identify anomalies by defining sequences
of everyday actions undertaken by house inhabitants. Such sequences are defined via
activated IoT items, e.g., smart air purifier, coffee maker, microwave, refrigerator, television,
or robot vacuum, among others, interconnected through the house Wi-Fi; and are organized
into a tree structure of event sequences. Subsequently, by navigating this structure, the
authors can detect anomalous behaviors possibly associated with intruders, both physical
or virtual, due to the nature of interconnected smart devices. In particular, in the proposed
approach, the authors leverage human habits and use as a root the tree node associated
with the first action taken by a user. Then, if all the following actions are present in the
sub-tree defined by the chosen root, the action can be considered normal; otherwise, a
warning is raised due to an anomalous sequence of events.

2.2. Surveillance

Another relevant field where anomaly detection is fundamental and more correlated
to our proposal is surveillance. For instance, the authors of [93] describe a strategy to
improve surveillance networks based on RGB cameras. Specifically, the authors implement
a pre-trained ResNet-50 and exploit the transfer learning paradigm by fine-tuning the
network and have a robust feature extractor. In detail, given a sequence of 15-frames, the
extracted features are collected from the last fully connected layer. Then, they are used
as input for the proposed Multi-Layer Bi-Directional LSTM network. The choice of the
Multi-Layer variation of the LSTM is due to the inability of a single LSTM cell to classify
large portions of training data. The Multi-Layer is created by stacking several LSTM cells
to learn long-term dependencies. The strategy has been tested on two publicly available
datasets, namely the UCF-Crime [94] and the UCFCrime2Local [95], providing improved
performance with respect to other state-of-the-art approaches. A second method leveraging
deep learning algorithms for anomaly detection in video surveillance is presented in [96].
In particular, the authors introduce an Incremental Spatio-Temporal Learner (ISTL) that
enables the detection and localization of anomalies in a video in real-time. In more detail,
ISTL is implemented as an active learning method based on fuzzy aggregation. Through

http://ailab.wsu.edu/casas/datasets
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this unsupervised deep learning approach, the authors continuously update the definition
of normal frames, thus enabling a dynamic anomaly distinction that can evolve over time.

Differently from the approaches mentioned above, the work in [97] presents a novel
strategy for online anomaly detection based on particle filtering [98]. The first contribu-
tion of this work is a new way to compute the likelihood of observed events, allowing a
better assignment of the particle weights in particle filtering. The second is a novel strat-
egy that aims at identifying anomalous activities based on a posteriori probability. The
proposed algorithm splits each frame into cells with variable sizes. The first step consists
of the prediction of possible activities occurring in the analyzed frame. Then, the initial
predictions are refined by an update step analyzing motion, location, and size features.
A clustering algorithm is then applied to separate the different activities. This updating
step also evaluates the a posteriori distribution of the activities by using particle filtering
to allow a better classification into the two classes: normal and anomalous. The strategy
has been tested on two publicly available datasets, namely, UCSD [99], and LIVE [100],
showing an overall improvement in performance compared to the other state-of-the-art
proposals. An additional work using a clustering technique for anomaly detection is also
presented in [101]. Specifically, the authors analyze crowd motions to detect anomalous
behaviors through the spatial vicinity of pixels, which enables to describe and understand
the dominant motion direction. What is more, since anomaly detection in crowd control is
generally computational intensive, the authors exploit a K-means classifier with Univariate
Gaussian Discriminant Analysis (KUGDA) to have a hardware-friendly model. Moreover,
they also provide a field-programmable gate array (FPGA) implementation, showing that
their approach is highly energy-efficient and can outperform methods based on both deep
learning and handcrafted features in surveillance applications.

2.3. UAV Surveillance

With the widespread use of drones (generally of the UAV family), especially in the
last years, surveillance with UAVs is increasing in its popularity, and it is becoming a
hot research field. The proposal in [102] presents a novel end-to-end strategy based on
unsupervised generative learning applied on deep one-class classification. The system has
two main goals. The former is to guarantee characteristic compactness of normal events
(described by optical flow and original images). The latter is to generate optical flow images
directly from UAV videos during the testing phase to speed up the detection of anomalous
events and satisfy a real-time constraint. Specifically, the proposed network is a deep CNN-
based optical flow generator that produces new optical flows from the original images. In
this case, however, the authors do not exploit the classical computation of optical flows
but, instead, replace it with a convolution/deconvolution-based neural network to speed
up the process. At the same time, the network also extracts compact features from both
original and optical flow generated images. The architecture is also trained with a custom
loss function, computed as the sum of three loss functions, i.e., reconstruction, generation,
and compactness losses, to ensure a more efficient classification of events. The architecture
has been tested on two publicly available datasets [99,103] and a novel in-house dataset
composed of 1000 samples, proving its effectiveness with the collected results.

The work in [104] presents another strategy for anomaly detection through UAVs.
The main contribution of the proposal is the comparison of four sets of features. The
first set is composed of the deep features extracted from GoogLeNet [105]. The second
is made up of local shape information extracted from the regions of each frame by the
well-known Histogram of Oriented Gradients (HOG) [106]. The third set is obtained by
applying the well-known Principal Component Analysis (PCA) [107] on the HOG features
to reduce their space. Finally, the fourth set includes spatio-temporal features extracted
with HOG3D [108]. In the case of PCA-HOG and GoogLeNet features, they are normalized
using Min-Max normalization and subsequently scaled into the interval [0, 1]. Finally, the
anomaly detection step relies on an OC-SVM trained on each feature set, resulting in four
classifiers. The work shows that the HOG and the PCA-HOG sets perform significantly
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worse compared to the other two. Moreover, the use of PCA barely impacts the accuracy,
but it fastens the computation. As for the presented results, the GoogLeNet features seem
to be robust enough for obtaining higher accuracy in anomaly detection tasks.

Moving to the anomaly detection by low-altitude UAVs, to the best of our knowledge,
there are no other proposals similar to the one shown in this work. The latter aspect is
crucial because, as is well-known, detecting anomalies at different altitudes presents very
different challenges in terms of visual features, analysis strategies, targets, and so on due
to varying object sizes. Moreover, the dataset used in this work, i.e., UMCD dataset [81],
is the first that collects low-altitude video acquisitions with different items in different
environments. In addition, it is the first dataset studied for change detection missions, i.e.,
recording over the same path with and without items on the ground; a strategy that can be
suitably adapted to verify the anomaly detection task. Finally, it is important to observe
that, unlike other anomaly detection works, the proposed one does not use deep learning
techniques, thus enabling advantages due to a more straightforward training stage and
lower computational aspects.

3. Materials and Methods

In this section, the proposed solution for the anomaly detection in aerial images is
described, providing details on the customized Haralick feature extraction step and OC-
SVM classifier. An overview of the presented approach is outlined in Figure 1. In more
detail, starting from an UAV RGB video stream, the pipeline designed to analyze each
frame can be summarized as follows:

1. Patch Generation: the input image is converted to grayscale and split into n × m
patches, where n and m correspond to the width and height of a given patch, respec-
tively. Notice that these smaller sub-regions enable the proposed algorithm to both
detect and localize anomalies in the input;

2. Features Extraction: from each generated patch P, a gray level co-occurrency matrix
GP, representing the joint probability distributions of pixel pairs in a given sub-
region, is computed using a customized geometric shape, i.e., by selecting pixels on a
discretized r-radius circumference. Subsequently, Haralick textural features for patch
P are extracted by computing several statistics on GP;

3. Anomaly Detection: using Haralick textural features of a given patch P, anomalies
are detected exploiting the OC-SVM algorithm. Specifically, this classifier is trained
by providing GP statistics of anomaly-free patches. A hyperplane encompassing this
single class is then calculated and used to detect anomalies in new patches.

Figure 1. Overview of the proposed architecture. Starting from an RGB image of a video sequence,
patches are generated on the grayscale transformed input. Subsequently, customized Haralick textural
features based on a discretized circumference are generated and used to train an OC-SVM classifier.
Finally, at inference time, the hyperplane found by the OC-SVM is used to detect anomalies in the
patches extracted from the analyzed image.
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3.1. Customized Haralick Feature Extraction

Haralick features [70] are descriptors defined to capture texture characteristics inside
an image. In particular, given a grayscale input image I with shape w× h, Haralick textural
features are extracted by computing several statistics on the corresponding gray level
co-occurency matrix (GLCM). The latter is a square matrix with an L× L size, where L
indicates the gray level values in I, and is used, intuitively, to count the co-occurrences of
neighboring pixels that satisfy a relation defined by a specific offset. Formally, a GLCM G
is computed as follows:

G∆x ,∆y(i, j) =
w

∑
x=1

h

∑
y=1

{
1, if I(x, y) = i ∧ I(x + ∆x, y + ∆y) = j;
0, otherwise,

(1)

where ∆x and ∆y represent an offset associated to the spacial relation to be satisfied, and
can be applied to any pixel in the image; i and j indicate the pixel values being counted;
x and y correspond to the coordinates of pixels inside I; while I(x, y) indicates the pixel
value, i.e., gray level, in position (x, y). From this matrix G, textural features are computed
in the form of statistics such as Angular Second Moment, Contrast, Correlation, Sum of
Squares: Variance, Inverse Difference Moment, Sum Average, Sum Variance, Sum Entropy,
Entropy, Difference Variance, Difference Entropy, Information Measure of Correlation 1,
Information Measure of Correlation 2, Maximum Correlation Coefficient. The mathematical
formulations for all of these features are fully described in the original paper [70].

A fundamental aspect of classical Haralick textural features lies in the parametriza-
tion of spatial relations during the GLCM construction. Specifically, a relationship be-
tween two neighboring pixels can be defined through a distance d and an axis orientation
θ = {0◦, 45◦, 90◦, 135◦}, corresponding, respectively, to neighbors along a horizontal, right
diagonal, vertical, and left diagonal axis, with respect to a central pixel, as depicted in
Figure 2. Observe that, since a distinct co-occurrency matrix is generated for pixels along
a single orientation axis, these features are not rotation invariant. Differently from this
classic approach, in this work we design a spatial relation based on a discretized circum-
ference with radius r. Through this pixel pattern, it is possible to build a single GLCM
that (i) simultaneously accounts for satisfied relationships along all directions; (ii) achieves
invariance with respect to rotations; (iii) examines more gray level co-occurences by an-
alyzing several neighbors for each pixel, therefore capturing textural characteristics of
extended areas such as, for instance, uniform color distributions in objects. In more detail,
starting from a grayscale patch P, a sliding window SW with size 1× 1 is used to apply
the desired pattern to all pixels. Specifically, for a given center pixel c, selected via the SW,
the GLCM is computed by feeding neighboring pixels located along the r circumference
to Equation (1). For instance, assuming a circumference pattern with radius r = 2, shown
in Figure 3c, the spatial relations (∆x, ∆y) with respect to c, would be defined via the dis-
placement set D = {(0,±2), (±1,±2), (±2,±1), (±2, 0)}. Visual examples of neighboring
pixels displacements along discretized circumferences with radius r = 2, 3, 4, 5, are shown
in Figure 3.

Similarly to classical Haralick, the last step employed to extract features from the
GLCM requires the computation of several statistics. However, in this work, starting
from [70], we implement equations with generalized parameters that are adapted to account
for the proposed textural pattern, namely, N-Order Momentum, N-Order Central Moment,
Homogeneity, Contrast, Inverse Difference, Entropy, Correlation, and Difference Entropy.
After the generation of these textural features, the eight resulting values associated to
statistical aspects of the input patch P are concatenated into a single vector v, which is
finally classified via the OC-SVM to detect possible anomalies inside P. Following, a brief
introduction comprising equations complete with constraints for each generalized measure
utilized as a textural feature. Such equations, despite similar to the originals presented by
Haralick, are the formalization of the proposed modified features.
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Figure 2. Classical spatial relationship to compute a GLCM for Haralick textural features using a
3× 3 window. A relationship is defined through a single displacement using a distance d along one of
the shown axes orientations, i.e., θ = {0◦, 45◦, 90◦, 135◦}, for the horizontal, right diagonal, vertical,
and left diagonal neighbors.

(a) (b)

(c) (d) (e) (f)

Figure 3. Proposed spatial relation of pixels used to build the GLCM. A sample frame containing
an anomaly and a pixel level zoom are reported in (a,b). Examples of circumferences relations for
r = 2, 3, 4, 5 are shown in (c–f), respectively. For each pixel in the patch P, discretized circles are
built using it as a center. (a) Input image showing an anomaly, highlighted by the red bounding
box. (b) Anomaly at the pixel level. (c) Circumference with r = 2. (d) Circumference with r = 3.
(e) Circumference with r = 4. (f) Circumference with r = 5.

3.1.1. N-Order Momentum and N-Order Central Moment

Based on first order statistics, these operators evaluate the amount of information
of pixels analyzed by the sliding window SW, i.e., neighboring pixels located along a
given circumference. Intuitively, the N-Order Momentum Mn1 computes the average
gray level for the SW, while the N-Order Central Moment Cn2 is concerned with the
amplitude dispersion of pixels contained inside the SW with respect to their average, i.e.,
Mn1 . Formally, these two measures are computed as follows:

Mn1 =
L−1

∑
i=0

in1 · p(i), (2)
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Cn2 =
L−1

∑
i=0

(i−Mn1)
n2 · p(i), (3)

which are constrained to:

∀i ∈ [0, . . . , L− 1] ⊂ N, 0 ≤ p(i) ≤ 1,
L−1

∑
i=0

p(i) = 1, n1, n2 ∈ N, (4)

where p(i) represents the gray level probability i ∈ [0, . . . , L− 1]; L corresponds to the
gray level values in the input patch; while n1 and n2 indicate the N-th order of Mn1 and
Cn2 , respectively.

3.1.2. Homogeneity and Contrast

Associated to second order statistics, these two operators can account for the cir-
cumference size r to analyze textural variations in a given neighborhood. In particular,
Homogeneity HG(r)n3 examines the uniformity degree of a given area to detect textural
structures; while Contrast CT(r)n4,n5 can detect gray level variations in a zone by showing
a high response in case of areas with extremely diverse intensities. Formally, they are
defined as:

HG(r)n3 =
L−1

∑
i=0

L−1

∑
j=0

[pr(i, j)]n3 , (5)

CT(r)n4,n5 =
L−1

∑
i=0

L−1

∑
j=0
|i− j|n4 · [pr(i, j)]n5 , (6)

which are constrained to:

∀(i, j) ∈ [0, . . . , L− 1]× [0, . . . , L− 1] ⊂ N2; 0 ≤ pr(i, j) ≤ 1, (7)

L−1

∑
i=0

pr(i, j) = 1; n3, n4, n5 ∈ N, (8)

where pr(i, j) represents the probability that two pixels with distance r, i.e., on the circumfer-
ence, have i, j ∈ [0, . . . , L− 1] gray level values; L indicates the gray level values in the input
patch; while n3, n4, n5 correspond to the order of HG(r)n3 and CT(r)n4,n5 , respectively.

3.1.3. Inverse Difference and Entropy

Belonging to second order statistics, these operators can identify possible pattern sizes
inside a patch. Specifically, the Inverse Difference ID(r)n6,n7 observes local pixel distribu-
tions and can detect specific configurations or repetitions; while the Entropy ET(r)n8,n9

captures the disorder degree inside patch P since its value will increase proportionally to
the detected gray level randomness. Formally, these measure are calculated via:

ID(r)n6,n7 =
L−1

∑
i=0

L−1

∑
j=0

[pr(i, j)]n6

1 + (i, j)n7
, (9)

ET(r)n8,n9 =
L−1

∑
i=0

L−1

∑
j=0

[pr(i, j)]n8 · [logk1(pr(i, j))]n9 , (10)

where, again, pr(i, j) represents the probability that two pixels with distance r, i.e., on the
circumference, have i, j ∈ [0, . . . , L− 1] gray level values; L indicates the gray level values
in the input patch; while n6, n7, n8, n9, k1 ∈ N correspond to the generalized ID(r)n6,n7 and
ET(r)n8,n9 parameters.
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3.1.4. Correlation and Difference Entropy

The last two operators have been defined to increase the generated textural features
detail and reliability by recognizing possible relationships between near circumferences,
i.e., associated to close proximity SWs. In particular, the Correlation CR(r)n10,n11 identifies
spatial constraints for circumferences presenting similar patterns; while the Difference
Entropy DE(r)n12,n13 is actually concerned with representing spatial constraints of dissimilar
patterns. Formally, these measures are computed as follows:

CR(r)n10,n11 =
L−1

∑
i=0

L−1

∑
j=0

(i− µx) · (i− µy) · [pr(i, j)]n10

[σx · σy]n11
, (11)

DE(r)n12,n13 = −
L−1

∑
i=0

[px−y(i)]n12 · [logk2(px−y(i))]n13 , (12)

which are constrained to Equations (7) and (8) and where n10, n11, n12, n13, k2 ∈ N represent
the parameters of the generalized CR(r)n10,n11 and DE(r)n12,n13 . Finally, the mean, stan-
dard deviation, and gray level pixel probability presented in Equations (11) and (12) are
computed via the following equations:

µx =
L−1

∑
i=0

L−1

∑
j=0

[i · pr(i, j)]; σx =

√√√√L−1

∑
i=0

L−1

∑
j=0

[(i− µx)2 · pr(i, j)], (13)

µy =
L−1

∑
i=0

L−1

∑
j=0

[j · pr(i, j)]; σy =

√√√√L−1

∑
i=0

L−1

∑
j=0

[(j− µy)2 · pr(i, j)], (14)

px−y(k) =
L−1

∑
i=0

L−1

∑
j=0

[pr(i, j)]q; where |i− j| = k. (15)

3.2. OC-SVM Classifier

To classify the customized Haralick textural features contained in vector v, we employ
an OC-SVM since it is an effective method for anomaly detection [109,110], where rare
occurrences, i.e., anomalies, need to be identified. Intuitively, to achieve this objective, the
OC-SVM finds a hyperplane describing a target class represented in the input dataset. This
hyperplane has a maximum margin separation with respect to the origin, which is used as
an outlier with respect to the target class, and allows to detect anomalies when a new input
instance is given to the OC-SVM. Formally, starting from a collection describing the target
class {xi}s

i=1, where s corresponds to the number of samples in the dataset, the hyperplane
is computed as follows:

min
ω,ρ,ξ

{
1
2
‖ω‖2 − ρ +

1
νs ∑

i
ξi

}
∀i = 1, . . . , s, (16)

which is constrained to:
〈ω, φ(xi)〉 ≥ ρ− ξi, (17)

where ω is a vector perpendicular to the hyperplane, which is computed in a high-
dimensional Hilbert feature spaceH; ρ indicates the hyperplane distance from the origin;
ξi ≥ 0 corresponds to a set of slack variables used to handle possible outliers in the input
data; ν ∈ (0, 1] is a trade-off parameter that manages the number of samples mapped as
positive in the training set, according to the decision function f (x) = sgn(〈ω, φ(xi)〉 − ρ);
while φ(·) identifies a non-linear transformation to map dataset samples into theH space,
exploited to manage non-linear problems. Moreover, through Lagrange multipliers αi,
Equation (17) constraints can be applied to Equation (16). Then, by deriving with respect to
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ω, the primal and dual weights relation can be defined via a linear combination of samples
mapped into H with αi 6= 0, i.e., ω = ∑i αiφ(xi). In addition, it is possible to avoid com-
puting the non-linear mapping φ(·) directly by defining a kernel K(xi, xj) =

〈
φ(xi), φ(xj)

〉
,

through which the dual problem is defined as follows:

min
α

{
1
2 ∑

i,j
αi, αjK(xi, xj)

}
, (18)

which is constrained to:
0 ≤ αi ≤

1
νs
∧ ∑

i
αi = 1. (19)

Finally after solving the dual problem shown in Equation (18) and obtaining model
weights αi, they can be used to classify new input instances and detect anomalies through
the following decision function:

f (x∗) = sgn

(
∑

i
αiK(xi, x∗)− ρ

)
, (20)

where x∗ corresponds to any given test vector containing the customized Haralick textural
features described in Section 3.1.

4. Experimental Results and Discussion

In this section, the experimental results for the OC-SVM anomaly detection are pre-
sented. In particular, the dataset utilized to evaluate the system is first introduced. Imple-
mentation details are then provided, and a discussion on the obtained results highlighting
strong points as well as system limitations is finally reported.

4.1. Dataset

The collection used to evaluate the proposed anomaly detection system is the UMCD
dataset (http://www.umcd-dataset.net/, accessed on 23 October 2021) [81], which was
chosen for several reasons. First, to the best of our knowledge, this is the only dataset
that contains low-altitude UAV videos, with a flight altitude lower than 15 m. At this
height, it is possible to exploit the full camera resolution when trying to detect anomalies,
contrary, for example, to data derived from higher altitudes or even from satellites, where it
is much more challenging to identify fine-grained details inside an image due to the device
distance from the ground. Second, this dataset, originally collected to address mosaicking
and change detection tasks, contains several video sequences of given areas with and
without anomalies to simulate real-life scenarios where unexpected objects might appear
in the scene.

Concerning the samples themselves, the UCMD dataset contains 50 aerial video
sequences collected in different environments, i.e., urban, dirt, and countryside. The videos
were recorded using two small-scale UAVs, namely a DJI Phantom 3 Advanced with its
built-in camera, and a custom home-made hexacopter employing cameras with different
spatial resolutions, ranging from 720× 540 (4:3, Standard Definition) to 1920× 1080 (16:9,
High Definition) pixels per frame. Moreover, all videos were acquired at a low-altitude,
ranging from 6 to 15 m, with speeds ranging from 2 up to 12 m/s, at different daily times,
i.e., morning and afternoon, and include metadata in the form of telemetry data such as
flight height, speed, and GPS coordinates. From these 50 videos, only 20 were devised for
change detection and therefore selected for this work. In particular, this selection contains
pairs of videos in the three environments mentioned above, where each pair shows a given
path with or without anomalies, as can be observed in Figure 4. In particular, different
kinds of anomalies are identified through various objects properties, including size, shape,
and color, i.e., tire, gas bottle, person, car, small box, big box, metal suitcase, suitcase,
and bag. What is more, multiple anomalies can appear in a given video or frame of a

http://www.umcd-dataset.net/
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recording. Finally, notice that although the remaining 30 videos could be employed to train
the OC-SVM, we purposely excluded them to avoid presenting unbalanced data since first,
those recordings do not present anomalies, and second, they are exclusively focused on
dirt and countryside backgrounds.

Figure 4. Image samples for different environments in the UMCD Dataset. In the first row, images
associated to the normal state. In the second row, the same images presenting anomalies, highlighted
in the red bounding box.

4.2. Implementation Details

All experiments were performed on the 20 video pairs devised for change detection.
In particular, the 10 sequences without anomalies were employed to train the OC-SVM to
recognize normal patches of urban, dirt, and countryside environments. The remaining
10 recordings containing anomalies were instead used to evaluate the model. Notice that
since the OC-SVM classifies each patch generated from a given frame of a video stream,
the sequences used to evaluate the model contain both normal and anomalous patches,
enabling to test the system correctly.

Regarding the model configuration, the OC-SVM was trained using the customized
Haralick textural features presented in Section 3.1, which are computed for each patch
extracted from the input image. Notice that the patch size can be changed, producing a
GLCM covering different input areas; therefore, the optimal patch size was found empir-
ically, as shown in the evaluation section. Moreover, for the OC-SVM we employed the
following parameters: kernel = radial basis function, stop_tolerance = 0.001, nu = 0.5.

Concerning the evaluation, common classification metrics were employed to determine
the anomaly detection effectiveness of the system, i.e., Accuracy, Precision, Recall, and F1-
score. These metrics are computed analyzing all frames in a video as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
; (21)

Precision =
TP

TP + FP
; (22)

Recall =
TP

TP + FN
; (23)

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

; (24)

where TP and TN, i.e., true positive and true negative, indicate normal and anomalous
patches correctly classified as such; FP, i.e., false positive, identifies anomalous patches
classified as normal; while FN, i.e., false negative, corresponds to normal patches that
are classified as anomalous. Observe that, from these definitions, it is clear that Precision
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enables to evaluate the ability of the system to detect all anomalies, while Recall allows to
assess the model resistance to raise false alarms in normal situations.

Lastly, the system was implemented using the Python language as well as OpenCV
and Scikit-learn libraries to create the custom Haralick textural features and OC-SVM model.
Moreover, the experiments, which achieved real-time capabilities, were performed using
an AMD Ryzen 7 CPU, 16 GB DDR4 RAM, and an NVidia RTX 2080 GPU. Notice, however,
that the proposed method is extremely lightweight and, once trained, can be embedded
directly in UAVs with low computational capacity without losing its real-time execution.

4.3. Performance Evaluation

Extensive experiments were performed to evaluate the proposed system. In particular,
we explored how the selection of patch P size, and circumference radius r, affect the model
performances in relation to the customized Haralick textural feature generation. Moreover,
since no other work performs anomaly detection on this dataset, we compare the model
behavior to classical Haralick spatial relations, where the latter can be considered as a
baseline for the UCMD dataset anomaly detection via textural analysis.

Concerning the patch P size effects, performances are reported in Table 1. As shown,
using medium-sized patches, i.e., 80 × 100, results in the highest scores for this specific
dataset, an outcome attributable to the co-occurrence matrix generation. As a matter of
fact, a GLCM accounts for co-occurring gray levels inside the input patch; therefore, the
resulting matrix is highly affected by the covered area dimensions. In detail, when smaller
areas are selected, i.e., patches 40 × 50 and 50 × 75, gray level values might be too close,
thus resulting in the computation of similar statistics for different patches through the
customized Haralick features presented in Section 3.1. Contrarily, when choosing wide
areas, i.e., patches 120 × 150 and 160 × 200, there might be a pixel distribution inside
the GLCM that is too heterogeneous due to the amount of textural information. While
this could also be beneficial for noisy environments such as those present in the dataset,
uninformative statistics might be generated and, consequently, the system suffers a massive
performance degradation as reported in Table 1.

Table 1. Performance evaluation on the UMCD dataset for Patch P size. All rows generate a co-
occurency matrix using a circumference radius r = 3.

Patch Size Accuracy Precision Recall F1-Score

40 × 50 42.75% 100.00% 42.07% 59.22%
50 × 75 56.08% 100.00% 53.73% 69.94%
80 × 100 72.15% 100.00% 71.23% 83.19%

120 × 150 24.65% 65.37% 19.48% 30.01%
160 × 200 4.12% 33.05% 1.74% 3.30%

On a different note, small to medium patches can achieve a 100% precision on the
UMCD dataset, meaning that for such sizes, the extracted textural features enable the
system to never miss an anomaly inside an image. This outcome is of particular interest for
security applications; however, it comes with a significant trade-off on the recall metric,
which describes how many false negatives, i.e., normal patches classified as anomalous,
there are at inference time. In fact, as can be seen in Table 1, even for the best performing
patch size, i.e., 80 × 100, recall only reaches a 71.23% score, indicating that there are
many misclassifications. While raising false alarms might be a sub-optimal solution, for
surveillance scenarios it is of paramount importance to never miss anomalies to avoid
dangerous situations, e.g., a person violating a restricted area perimeter. To this end, wider
patches result in being completely unusable since they can also miss anomalies, while
smaller ones lead to too many normal patches being classified as anomalous. To have a
better intuition of this behavior, classifications for the same input image using different
patch sizes are reported in Figure 5. As shown, small and medium patches, i.e., Figure 5b,c,
do not miss anomalies in the input. Nevertheless, they present many false positives,
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especially on vehicle tracks and grass where there is a substantial contrast with the terrain
texture, for the former, and illumination variation causing darker areas, for the latter.
Contrarily, employing a wider patch, i.e., Figure 5d, causes classification errors for both
normal and anomalous patches since uninformative statistics are extracted from the GLCM,
resulting in a high number of false positives and negatives. Due to this issue, smaller
patches are preferable for surveillance scenarios where anomalies must always be detected.
Thus, in this work, the medium-sized patch 80× 100 was selected as the optimal dimension
for the UMCD dataset since it maximizes the system precision while showing a smaller
recall trade-off with respect to the other sizes.

(a) (b)

(c) (d)

Figure 5. Output generated using different patch sizes. The red and green patches indicate, respec-
tively, anomalous and normal patches correctly classified. Blue patches correspond to normal patches
classified as anomalies. Yellow patches represent anomalous patches classified as normal. (a) Input
image with an anomaly, i.e., a man and his shadow. (b) Anomaly detection output using a 40 × 50
patch size. (c) Anomaly detection output using an 80 × 100 patch size. (d) Anomaly detection output
using a 160 × 200 patch size.

Regarding the circumference radius r size impact, performances are outlined in Table 2.
As can be observed, the various dimensions show similar behaviors since they can detect
roughly the same amount of information from a given patch, indicating that the proposed
spatial relationship is effective on the UMCD dataset. Regardless, by increasing the radius,
it is possible to notice that performances start to degrade across all metrics, with a particular
emphasis on the recall measure. This outcome has a similar rationale to the patch size
effects, where wider areas resulted in the extraction of uninformative statistics. Specifically,
by increasing the radius size, fine-grained textural details and patterns associated with
smaller objects might be missed altogether, even though a higher number of pixels is
analyzed in the circumference-defined neighborhood. Therefore, normal patches presenting
specific patterns, e.g., tracks shown in Figure 5a, would be considered anomalous at
inference time. Such an effect can be easily explained by observing Figure 3, where the
anomaly, i.e., a suitcase, is entirely skipped by the biggest radius size r = 5 employed in
this work. Indeed, this issue highlights how the spatial relationship defined to build a
GLCM is relevant to the final system performances since it directly affects the Haralick
textural features extraction. Moreover, since the UMCD dataset is specifically designed
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to contain aerial images, objects on the scene appear smaller than their real dimension,
further supporting the improved performances for smaller radiuses such as r = 2, and
r = 3, reported in Table 2.

Table 2. Performance evaluation on the UMCD dataset for Radius r size. All rows are computed
using a Patch size P = 80× 100.

Radius r Accuracy Precision Recall F1-Score

2 72.08% 100.00% 70.14% 82.44%
3 72.15% 100.00% 71.23% 83.19%
4 70.58% 99.85% 68.77% 81.44%
5 69.23% 99.23% 66.10% 79.34%

Finally, regarding the classical Haralick spatial relationships comparison, the obtained
results are reported in Table 3. Notice that the chosen spatial offsets for classical Haralick
textural features were taken along the circumference of radius r = 3 to better appreciate
the effectiveness of using an entire circumference-defined neighborhood instead of a single
pixel. Moreover, independently from the selected classical relationship, performances re-
main in line with the shown cases. Furthermore, the same statistics presented in Section 3.1
were employed for all reported relationships to ensure a fair comparison between the
various extracted features. Concerning the results summarized in Table 3, the proposed
relationship, based on a circumference, significantly outperforms classical ones, based on
single offsets, on all metrics. This outcome indicates that classical relationships consistently
struggle on the UMCD dataset, most likely due to the single spatial displacements being
too simple to capture complex textural patterns inside the chosen noisy environments,
i.e., urban, dirt, and countryside. Indeed, since in classical Haralick features the GLCM
is computed by analyzing gray level co-occurrences of pixels with a single displacement,
information from the input patch is inevitably lost, and anomalies might not be recognized
due, for example, to missing rotation invariance of such features. Contrarily, the proposed
circumference pattern can account for such rotations by analyzing an entire neighborhood
along all directions with respect to a central pixel, as explained in Section 3.1, thus capturing
as much information as possible from a given patch. As a matter of fact, the obtained perfor-
mances demonstrate that the proposed spatial relationship, i.e., discretized circumference,
is effective on the UMCD dataset, especially for security applications, since it has a perfect
precision with a moderately low recall trade-off. To conclude, some final remarks on the
execution time are reported. As already shown, the size of the patches strongly influences
the accuracy of the model. This is not true for the execution time. In fact, the OC-SVM
is able to predict the class of all the patches belonging to an image in just 0.01 seconds,
independently from the patch size, allowing the use of the model for real-time applications.

Table 3. Performance evaluation on the UMCD dataset comparing classical Haralick textural features
with single displacement to the proposed discretized circumference.

GLCM Spatial Relationship Accuracy Precision Recall F1-Score

Single Offset (∆x, ∆y) = (0, 3) 35.24% 87.42% 32.17% 47.03%
Single Offset (∆x, ∆y) = (−2,−2) 36.05% 88.09% 32.27% 47.23%
Single Offset (∆x, ∆y) = (3, 0) 33.98% 86.80% 31.67% 46.40%
Single Offset (∆x, ∆y) = (2,−2) 34.72% 87.13% 32.05% 48.85%

Circumference Radius r = 3 72.15% 100.00% 71.23% 83.19%
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5. Conclusions

This work presented a novel lightweight method with real-time capabilities for
anomaly detection based on textural features and One-Class SVM in low-altitude aerial
images. In particular, input frames are turned to grayscale and split into patches to ex-
tract GLCMs and, subsequently, textural statistics representing these patches that can be
exploited to detect anomalies in the input via an OC-SVM. In detail, starting from classical
Haralick textural features based on single offset displacements, we designed a new spatial
relationship in the form of a discretized circumference. The latter simultaneously accounts
for displacements along all directions by analyzing pixels in the circumference-defined
neighborhood, improving the patch representation, and guaranteeing a rotation invariance
property intrinsically via the chosen pattern. Moreover, generalized equations to compute
Haralick textural features were also presented to handle the proposed spatial relationship
correctly and ultimately extract meaningful patch characteristics. Experiments were per-
formed on the public UMCD dataset to evaluate the system by assessing different patch
sizes and circumferences with varying radiuses. Furthermore, to the best of our knowledge,
there are currently no other methods addressing the anomaly detection via textures on
this dataset; therefore, a comparison with baseline Haralick textural features employing
single displacements was also provided to highlight the proposed method effectiveness. As
reported in the experimental section, patch size and circumference radius are key compo-
nents to achieve satisfactory performances for security applications, where anomalies must
always be captured. Specifically, the system can reach a 100% precision at the expense of a
reasonable recall trade-off, which obtained up to a 71.23% score. In addition, the chosen
spatial relation and statistics significantly outperformed classical Haralick textural features
based on single offset displacements, demonstrating the presented approach effectiveness.

Although encouraging performances were obtained on the UMCD dataset, enabling
the proposed method to be considered a baseline on this collection for the anomaly detec-
tion task, there are still margins of improvement. Specifically, as per the obtained recall, the
model currently produces several false negatives, i.e., it identifies normal patches as anoma-
lous. Thus, as future work, we plan to introduce other textural statistics to extend a patch
description and different spatial relationships to be used in conjunction with the presented
circumference. Moreover, we are also considering exploring deep learning solutions to fur-
ther improve the system performances while still trying to retain a lightweight model that
can be implemented, in the future, directly by UAVs with low computational capabilities.
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