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Abstract: Change detection (CD) is one of the essential tasks in remote sensing image processing
and analysis. Remote sensing CD is a process of determining and evaluating changes in various
surface objects over time. The impressive achievements of deep learning in image processing and
computer vision provide an innovative concept for the task of CD. However, existing methods based
on deep learning still have problems detecting small changed regions correctly and distinguishing
the boundaries of the changed regions. To solve the above shortcomings and improve the efficiency
of CD networks, inspired by the fact that an attention mechanism can refine features effectively, we
propose an attention-based network for remote sensing CD, which has two important components:
an asymmetric convolution block (ACB) and a combined attention mechanism. First, the proposed
method extracts the features of bi-temporal images, which contain two parallel encoders with shared
weights and structures. Then, the feature maps are fed into the combined attention module to
reconstruct the change maps and obtain refined feature maps. The proposed CANet is evaluated on
the two publicly available datasets for challenging remote sensing image CD. Extensive empirical
results with four popular metrics show that the designed framework yields a robust CD detector
with good generalization performance. In the CDD and LEVIR-CD datasets, the F1 values of the
CANet are 3.3% and 1.3% higher than those of advanced CD methods, respectively. A quantitative
analysis and qualitative comparison indicate that our method outperforms competitive baselines in
terms of both effectiveness and robustness.

Keywords: change detection (CD); fully convolutional networks (FCN); remote sensing; attention
mechanism; deep learning

1. Introduction

Change detection (CD) in remote sensing images is essentially the detection of change
information of the ground’s surface at different time phases [1]. The models of CD based on
full supervision and semi-supervision [2–4] are used in many fields, such as urban planning,
land use, coverage, vegetation change, disaster monitoring, map updating, and ecological
environment protection. Along with the continuous development and upgrading of remote
sensing satellite technology, researchers can obtain high-resolution remote sensing data.
Compared with synthetic aperture radar (SAR) images, high-resolution remote sensing
images have greater and richer semantic information. Therefore, high-resolution remote
sensing images have emerged as an essential statistics supply in the challenging task of
CD. Researchers designed networks to extract change maps with abundant information
from high-resolution remote sensing images.

A core step of remote sensing image CD is the construction and analysis of difference
maps. In traditional networks, the methods of CD are divided into pixel level and object
level [5]. The pixel-based methods use pixels as the basis of analysis. The difference
maps of multi-temporal remote sensing images are usually obtained by directly comparing
corresponding pixel values. However, pixel-level CD methods [6,7] only use the feature
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information of a single pixel, ignoring the spatial and spectral information of neighboring
pixels, which easily leads to “salt and pepper” noise and incomplete expression in the
change region. The object-level CD methods synthesize the spatial and spectral charac-
teristics around the pixel, combine the homogeneous pixels to form the object, and then
compare the features of spectral, shape, texture, and spatial context neighborhood based
on the object [8–10]. However, these methods not only have high complexity in feature
extraction but also have poor robustness in capturing images.

Deep learning can automatically, and at multiple levels, extract abstract features of
complex objects that have been shown to be an effective means of feature learning. In 2012,
deep learning methods won first place in the ImageNet Challenge. Since then, CD research
based on deep learning has been developing. Models with fully convolutional network
(FCN) [11] structures are widely used in remote sensing CD tasks [12,13] to extract better
features in pictures. U-Net [14] has achieved certain results in CD. Subsequently, Siamese
networks have been used and have become a popular and even standard CD method
in this field [15–17]. With the continuous innovation of the three networks mentioned
above in this field of CD, the CD model is constantly optimized and improved. For
example, based on deep belief networking, Gong et al. [18] proposed a creative method
of SAR image CD in 2015. In this method, the neural network is trained to generate CD
difference maps directly from two images. The process of generating difference maps is
omitted to avoid the influence of rough difference maps on CD results. Wang et al. [19]
proposed an end-to-end network to deal with high-dimensional problems, which can
extract rich information from hyperspectral images. In 2018, the proposed CDNet [12]
combined SLAM based on multi-sensor fusion and fast density 3D reconstruction to
roughly register image pairs, and then used deep learning methods for pixel-wise CD
in street scenes. FC-EF [15] proposes three fully convolutional structures for the CD of
registered image pairs. This method uses jump joins to supplement local refinements
of spatial details, resulting in accurate boundary change maps that can detect RGB and
multispectral images. FC-Siam-diff [15] and FC-Siam-conc [15] are derived from the FC-EF
model. FCN-PP [20], an FCN with pyramid pooling, has been proposed for landslide
detection. It consists of a U-shaped structure for learning the deep-level features of input
images and a pyramid pooling layer for expanding the receptive field. In addition, pyramid
pooling can overcome the shortcomings of global pooling. STANet [16] added BAM and
PAM attention modules based on the Siamese network to make the CD network have
suitable results. CD-UNet++ [21] proposed an end-to-end CNN structure for the CD of
high-resolution satellite images and proposed a new UNet++ model, which can achieve
deep supervision and capture subtle changes in complex changed scenes. In their method,
deep supervision enhances the characterization and identification performance of shallow
features. DASNet [17] used an attention mechanism to extract features and obtain better
feature representation. In 2021, NestNet [22] proposed an effective remote sensing CD
method based on UNet++ [23]. The model can automatically extract features from input
images and perform feature fusion on two images from different periods.

There are common problems with the abovementioned CD models. First, continuous
down-sampling will cause position information to deviate, which may lead to the missed
detection of small targets. Second, the extracted features from the model are usually
sensitive to noise, shadow, and other factors due to the lack of features that can clearly
distinguish the changed regions from the unchanged regions. Inspired by [16,24], we
designed a new CD network architecture. An asymmetric convolution block (ACB) can
enhance the robustness of a network model, enable a network to repeatedly extract the
features of the central area, as well as increase the weight of the area, and does not introduce
a lot of parameters and computation. Simultaneously, ACB improves the sensitivity and
accuracy of a CANet by enhancing the activation of features in key areas. In addition, many
researchers [25–27] note that the combination of spatial attention and channel attention
in a certain way not only makes the network pay attention to the areas of interest but
also effectively enhances the performance of feature identification. Hence, we propose a
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combined attention mechanism, including channel attention, position attention, and spatial
attention. This mechanism is used to obtain more refined image features to strengthen
the performance of the model in identifying changes and improve its ability to recognize
pseudo changes. The CANet is characterized by its suitable performance. Experiments
on two datasets provided by [16,28] prove the effectiveness of this method. The main
contributions of this article are as follows:

We propose a combined attention mechanism, which leverages spatial, channel, and
position information to discriminate fine features, so as to obtain rich information of
detected objects. The application of this mechanism improves the detection performance of
small targets:

1. We introduce an asymmetric convolution block (ACB) in our model. It contributes to
the robustness of the model against rotation distortion, with a better generalization
ability, without introducing additional hyperparameters and inference times;

2. We propose a remote sensing image CD network, which is based on the combined
attention and ACB. The CANet achieves state-of-the-art performance on widely used
benchmarks, and it effectively alleviates the loss in localization information in the
deep layers of convolutional networks.

The rest of this article is structured as follows. Section 2 mainly describes the network
structure we propose in greater detail. Section 3 introduces datasets, experimental settings,
and evaluation indicators. Section 4 precisely analyzes the experimental results. Section 5
is the conclusion and contains directions for future work.

2. Methodology

We introduce the CANet CD network in this section. First, we introduce the specific
process of our method. Then, we describe the combined attention module composed
of channel attention, spatial attention, and position attention. Finally, we introduce the
structure of the ACB.

2.1. Overview

Compared with SAR images, remote sensing images with high-resolution have ex-
tensive complex scenes and rich information. Given H ×W bi-temporal remote sensing
images T1 and T2, the goal of CD is to generate change maps with the same size as the
input images. Using ResNet18 [29] as the backbone network, the bi-temporal satellite
images are fed into the Siamese network, and the weights are shared. Next, two rough
feature maps of F1 and F2 are obtained. Then, we propose that, through the combined
attention mechanism module, two fine feature maps of C1 and C2 are obtained. Ultimately,
the final difference maps are calculated by C1 and C2. In this study, our research object is
the binary CD: 1 represents change and 0 represents unchanged.

Our pipeline is shown in Figure 1. In this network, the feature extractor uses ResNet18.
The goal of our network is to obtain change maps of the same size as the input. The
backbone has five stages, and the receptive field of each stage from top to bottom is
reduced by two times to generate different information carried by high-level and low-
level values, which helps to generate more accurate feature representations. The specific
processing of feature extractor is shown in Table 1 below. We send the output features of
four different stages in ResNet18 to the convolution layer, and the channel dimension of
feature maps is converted to 96. It aims to give the network an intermediate buffer layer to
avoid excessive compression and deformation of the feature maps and retain the feature
maps’ information more completely. After the feature maps in the third and fourth stages,
we use the ACB. In this model, the ACB module is used to enhance the weight coefficient
of the core position of the extracted feature maps. The network can obtain rich feature
representation, and the model can obtain better accuracy. Simultaneously, ACB does not
bring about super-parameter calculation.
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Table 1. Operation of backbone.

Layers Operation Input Output

Conv + Pool
{k = (7,7), s = (2,2), p = (3,3), BN, ReLU}

3 × 256 × 256 64 × 64 × 64maxpool {k = (3,3), s = (2,2), p = (1,1)}
Resnet
Block1 {k = (3,3), s = (1,1), p = (1,1), BN} × 4 64 × 64 × 64 64 × 64 × 64

Resnet
Block2

{k = (3,3), s = (2,2), p = (1,1), BN, ReLU}
64 × 64 × 64 128 × 32 × 32{k = (3,3), s = (1,1), p = (1,1), BN} × 3

Resnet
Block3

{k = (3,3), s = (2,2), p = (1,1), ReLU}
128 × 32 × 32 256 × 16 × 16{k = (3,3), s = (1,1), p = (1,1), BN} × 3

Resnet
Block4

{k = (3,3), s = (2,2), p = (1,1), BN, ReLU}
256 × 16 × 16 512 × 8 × 8{k = (3,3), s = (1,1), p = (1,1), BN} × 3

k represents kernel size; s represents stride; p represents pool.

Then, in the channel dimension, the four feature maps are concatenated. In this
way, we integrate information at different scales to receive extra distinctive feature maps,
including greater deep-level features and more abundant low-level features. The deep-level
features have strong semantic information but weak location information, which is not
appropriate for small target detection. The features after concatenation are fed into two
different convolution layers of 3 × 3 and 1 × 1 (both strides are 1) to obtain the final
feature maps. The two layers generate extra compact and discriminative representations
of information by way of digging neighborhood spatial features and decreasing feature
channel dimensionality. Then, the generated feature maps are updated by our combined
attention module. First, by bilinear interpolation, we adjust the size of the feature maps to
be the same as the size of the input images. Then, the distance maps are calculated by the
feature distance between the adjusted feature images according to the pixels, D ∈ RH×W ,
where H and W are the height and width of the input images, respectively.
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In the CD task, the number of changed pixels is quite different from the unchanged
pixels. In most cases, the changed pixels occupy a small proportion of the unchanged pixels,
which may lead to some deviations in networks during training. To reduce the effect of
class imbalance, we use batch-balanced contrastive loss (BCL) in [16] to learn network pa-
rameters. Through the proposed network, we obtain distance maps D∗ ∈ RB×H×W , where
B represents batch size of the sample, M∗ represents the binary label map, 0 represents
unchanged, and 1 represents changed. The specific calculation formula is:

L(D∗, M∗) = α
1

nu
∑
b,i,j

(1−M∗b,i,j)D∗b,i,j + (1− α)
1
nc

∑
b,i,j

M∗b,i,jMax(0, m− D∗b,i,j) (1)

In this formula, m is set to 2, and subscripts b, i, and j represent batch, height, and
width, respectively. Considering the proportion of changed pixels and unchanged pixels,
we set α to 0.7 in this paper, which will achieve better results. nu and nc are the number of
unchanged pixel pairs and changed pixel pairs, respectively.

2.2. Combined Attention Module

In the CD, because the specific types of recognition features are also crucial to the
identification of changed regions and unchanged regions, studies [30] have shown that
extracting features only from simple backbones can cause a large probability of classification
errors; thus, extracting a local feature is necessary to use an attention module in CD and
enhance feature representation. As shown in Figure 2, inspired by [26,31], we designed
a combined attention module. This module strengthens feature extraction in terms of
three aspects: spatial, position, and channel. Simultaneously, combined attention enhances
the feature representation of feature maps on the original basis. This module is mainly
comprised of channel attention, position attention, and spatial attention. In this paper,
inspired by [26,31], we designed the combined attention to extract abundant features and
capture multi-level features of the channel, both position and spatial. We found that the
combined attention mechanism could promote detection performance when all modules
were used together. The CANet is very sensitive to the changing edge details of buildings
and roads. Simultaneously, the CBAM can capture key fine-grained information.
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2.2.1. Channel Attention Block

The channel attention block works on the channel scale. The channel attention block
selectively emphasizes interrelated channel maps by integrating their relevant features in
channel maps. When the feature maps use pooling, the channel attention block processes
the input features by employing the parallel pooling of average pooling and maximum
pooling, so that less information is lost than in a single pooling. By weighting different chan-
nel features, the channel weight in channel attention is different for a C × H × W feature
map. By using the correlation between channels, it can enhance the interdependent feature
maps; thus, we use channel attention to construct the relationship between channels in the
attention module. The channel attention block first obtains AvgPool(x) and MaxPool(x) by
the operations of global maximum pooling and global average pooling. The application of
global average pooling and global maximum pooling can retain background information
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and texture features well. Then, feature map F1 is obtained by two full connection layers.
Finally, x is multiplied by F1 to obtain the final output of FC. As shown in Figure 3, the
specific calculation formula of the module is:

FC = σ[ f2δ( f1(AvgPool(x))) + f2δ( f1(MaxPool(x)))] (2)
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In this formula, f1 and f2 represent the full connection operation, f1 ∈ Rc× c
r and

f2 ∈ R
c
r×c, where r represents the reduction rate and σ and δ represent Sigmoid function

and ReLU function, respectively.

2.2.2. Spatial Attention Block

In the CANet, spatial attention maps can be generated by using the spatial relationship
between features. Unlike channel attention, the spatial attention block pays attention to
the spatial dimensions of objects in the feature maps. Based on the original method, we
added the operations of maximum pooling and average pooling, where the block is used
to manipulate the feature maps along the channel dimension with maximum pooling
and average pooling, to highlight information regions. Finally, the spatial attention maps
are obtained by a convolution operation. Feature map x first goes through the global
maximum pooling and global average pooling layers, respectively. The purpose of global
average pooling and global maximum pooling is to determine the range and difference part,
respectively. Then, we performed concatenation operations on AvgPool(x) and MaxPool(x),
and then obtained FS through 1× 1 and 7× 7 convolution operations, respectively. As
shown in Figure 4, the specific calculation formula of the module is:

FS = σ[ f7×7δ( f1×1{AvgPool(x); MaxPool(x)})] (3)
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In this formula, concatenate AvgPool(x) and MaxPool(x) first. f1×1 represents a 1 × 1
convolution operation and f7×7 represents a 7 × 7 convolution operation. The δ and σ in
our method represent the ReLU and the Sigmoid activation function, respectively.

2.2.3. Position Attention Block

As shown in Figure 5, compared with spatial and channel attention blocks, the position
attention block shows a suitable representation of the position of each pixel in the input
feature maps so as to extract and merge semantically related pixels. This module can
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capture the spatial dependence between any two positions on the element maps. For the
feature of a specific position, the features are updated by the feature aggregation of all
locations of the weighted sum, and the weight of the weighted sum is determined by
the feature similarity between two locations. That is to say that any two positions with
similar features in the feature maps can promote each other, regardless of the distance in
the position dimension. The position attention block first obtains F1, F2, F3 ∈ RC×H×W

after reshaping and other operations for input feature map F ∈ RC×H×W . The feature maps
of F1 and F2 multiply to obtain the matrix, followed by mean and maximum operations.
After adding these two branches, F4 is obtained by the Softmax activation function, and
F5 is obtained by the matrix multiplication operation between F4 and F3. Finally, F5 and
F are added to gain a fine feature map Z. We can capture and utilize spatial dependence
between positions better and learn more useful information through the use of channel
attention and position attention in series in our research. The specific formula is as follows:

F4 = σ

[
1
2

max(F1
⊗

F2) +
1
2

mean(F1
⊗

F2)
]

. (4)

Z = (F4
⊗

F3) +F (5)
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Among them, σ is a name of the Softmax function and the matrix multiplication of two
tensors is represented by

⊗
. We use mean function and maximum function to calculate

the average value and maximum value of each column of the feature maps and adjust the
output size to RC×C. More details can be found in [26,27].

2.3. Asymmetric Convolution Block

Asymmetric convolution is usually used for model compression and acceleration.
Previous works have been conducted to directly decompose standard d × d convolutions
into 1 × d and d × 1 convolutions to reduce the number of parameters; however, studies
have found that direct decomposition will lead to inaccurate feature extraction.

Due to the image characteristics of remote sensing CD, inspired by [24], we use ACB
to improve network performance to obtain more robust multi-scale features. Our method
contains two ACBs from top to bottom, using ACB to enhance the central skeleton part of
the squared convolution kernel, thereby enhancing the robustness of remote sensing CD. As
the weight proportion of asymmetric convolution in the center cross position is larger, the
model can obtain better accuracy. Convolution is the basic part of most networks, and the
specific process of ACB is shown in Figure 6. Specifically, d × d convolution in the network
is replaced by three convolution layers, including d × d convolution, d × 1, and 1 × d
convolution. Eventually, the convolution kernel outputs of the three convolution layers
are summed to enrich the feature space. As d × 1 convolution and 1 × d convolution
are asymmetric, they are also called asymmetric convolution. In addition, ACB does not
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introduce any hyper-parameters in training and does not require additional parameters or
calculations in the inference process.
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3. Datasets and Metrics

In our study, we used two high-resolution bi-temporal remote sensing image datasets
for training and testing to verify the versatility and performance of our CANet. These two
datasets are divided into training, validation, and testing. We adopt two remote sensing
image datasets provided by [16,28] to verify our proposed network. Experiments were
carried out in [28] to observe the performance of the network in changed objects with
seasons, and experiments were carried out by [16] to observe its effect in detecting small
and dense building changes.

3.1. Datasets

The first dataset is LEVIR-CD [16], which mainly pays attention to small and dense
architectural changes. The LEVIR-CD dataset contains 637 pairs of high-resolution remote
sensing images with a resolution of 0.5 m in size of 1024 × 1024 pixels. The date of
acquisition varies from 2002 to 2018. These bi-temporal images come from 20 different
regions in Texas. Considering the factors such as memory occupation and training speed
of the model, we crop the original 1024 × 1024 pixels large-scale remote sensing image
pair without overlapping into 256 × 256 image pairs. Ultimately, the LEVIR-CD dataset
consists of 7120 training image pairs, 1024 validation image pairs, and 2048 test image
pairs. The LEVIR-CD is shown in Figure 7a.

The second dataset is CDD [28], which collects the remote sensing images composed
of 11 pairs of original images from Google Earth, including 4 pairs of 1900 × 1000 pixels
and 7 pairs of 4725 × 2200 pixels for seasonal change remote sensing images. In this
dataset, changes in regions due to seasonal variations, illumination, and brightness are
not considered significant, such as plants in different seasons. In the CDD dataset, the
resolution of bi-temporal images is 3 cm/px to 100 cm/px, with significant seasonal
variations. In [32], the original CDD dataset is cut to 256 × 256 pixels image pairs by
clipping and rotating. Finally, the CDD dataset consists of 10,000 training image pairs,
3000 validation image pairs, and 3000 test image pairs. The CDD is shown in Figure 7b.
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3.2. Metrics

Given whether the CANet will achieve better performance, we use precision (P), recall
(R), F1, and overall accuracy (OA) as the four evaluation indicators. P represents how many
samples in the prediction results are correct. The higher the accuracy is, the smaller the
false detection rate is. R represents how many positive samples in the prediction results can
be correctly detected. The smaller the recall is, the greater the missed detection rate is. To
integrate precision and recall indicators, F1 is proposed. The core idea of F1 is to improve
the precision and recall as much as possible while reducing the difference between them.
OA represents the ratio between the correct sample and the total sample, i.e., the probability
of correct prediction. The specific explanation in the formula is shown in Table 2.

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

F1 =
2

P−1+R−1 (8)

OA =
TP + TN

TP + FP + TN + FN
(9)

Table 2. The detailed explanation of TN, TP, FN, and FP.

True Value
Predicted Value

Positive Negative

positive TP FN
negative FP TN

4. Experiment
4.1. Experimental Setting

The proposed method was implemented on PyTorch and trained using a single
NVIDIA Tesla V100 graphics processing unit. Our models were fine-tuned on the ImageNet-
pre-trained ResNet18 model. Using Adam to optimize the network, β1 was 0.5, β2 was
0.999, and we set the batch size to 16. This method trained a total of 200 epochs. In the first
100 epochs, the initial learning rate was set as 0.001 and the weight linearly decayed to 0 in
the remaining 100 epochs. For a fair comparison, the experimental environments (servers,
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graphics cards, etc.) in which all other SOTA methods were reproduced were identical to
those of the methods used in this paper. In addition, for model efficiency comparisons, the
batch size of all methods was set to 16 in the training process.

4.2. Results on Different Datasets

In the experiment, this study compared CANet with seven classic CD methods,
including CDNet [12], FC-EF [15], FC-Siam-Conc [15], FCN-PP [20], CD-UNet++ [21],
STANet [16], and FC-Siam-Diff [15]. The results are shown in Table 3.

Table 3. Comparison of CDD dataset results (the best performance is emphasized in bold).

Method Rec (%) Pre (%) F1 (%) OA (%)

CDNet 81.7 82.7 82.2 96.4
FC-EF 76.1 81.5 77.1 94.1

FC-Siam-Diff 83.6 85.8 83.7 95.8
FC-Siam-Conc 82.5 84.4 82.5 95.7

FCN-PP 87.1 82.6 80.5 95.4
CD-UNet++ 85.9 87.6 86.8 96.7

STANet 89.3 90.4 89.9 97.6
CANet 93.2 93.2 93.2 98.4

We selected several representative CD networks based on deep learning for compari-
son. Many of these compared networks are improvements on FCN and UNet networks.
Their performance data come from [17,33,34] and our experimental results. In this paper,
we selected seven models for comparison.

From Table 3, the CANet is the best in four evaluation indicators. The recall, precision,
F1, and OA of the CANet are 93.2 %, 93.2%, 93.2%, and 98.4%. This method has achieved
good results in remote sensing CD. Compared with seven classic CD methods, the F1 of
this method reaches 93.2%, which is 3.3% higher than the method of STANet in Table 3.
At the same time, the value of F1 significantly improves compared to other methods in
the table. However, the improvement in precision in the four evaluation indicators is the
highest, which is 2.8% higher. The experimental data in the table show that the CANet
network has robustness.

As shown in Figure 8a–k, there are obvious missed detection phenomena in the
CDNet and FC-EF models. Many change areas are not detected in the visualization maps,
which is different from the label map. The FCN-PP model also missed detection. In CD-
UNet++, there is a false detection, which detects some unchanged regions as changed
regions. Compared with other models, our proposed CANet detection performance is
better. In addition, the change maps obtained by CANet are almost identical to the label
maps. Compared to other networks, in all the selected situations, the proposed CANet
performs better.

From Table 4, the CANet network based on the combined attention mechanism has
good results on four evaluation indexes. Compared with classic detection methods in the
table, the CANet has achieved high accuracy in four indicators. The recall, precision, F1,
and OA of the CANet are 90.6 %, 84.4%, 87.4%, and 98.7%. Compared with advanced
network STANet, the precision and F1 of our method are increased by 1.8% and 1.3%,
respectively, which also shows the effectiveness of our method.
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Table 4. Comparison of LEVIR-CD dataset results. (The best performance is emphasized in bold).

Method Rec (%) Pre (%) F1 (%) OA (%)

CDNet 89.1 74.6 81.2 97.1
FC-EF 85.6 76.5 80.8 97.9

FC-Siam-Diff 84.9 73.5 78.2 97.6
FC-Siam-Conc 88.4 75.1 71.2 97.9

FCN-PP 79.3 84.4 81.8 98.2
CD-UNet++ 82.1 79.8 81.0 98.0

STANet 89.9 82.6 86.1 98.5
CANet 90.6 84.4 87.4 98.7

As shown in Figure 9a–k, there are missed detections in CDNet, FC-Siam-conc, and
FCN-PP models. Many change areas in the above visualization are not detected, and
they are different from the label maps. In CD-Unet++, there are many missed detection
problems related to small targets. Through our proposed CANet, problems regarding
missed detections and some noises have mainly been solved. Compared to the other
networks, in all the selected situations, the proposed CANet performs better.

Information 2021, 12, x FOR PEER REVIEW 12 of 17 
 

 

 
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) 

Figure 9. Visualization of eight different methods of LEVIR-CD dataset: (a) represents T1 images; (b) represents T2 images; 
(c) label; (d) are results obtained by CDNet; (e) are results obtained by FC-EF; (f) are results obtained by FC-Siam-diff; (g) 
are results obtained by FC-Siam-conc; (h) are results obtained by FCN-PP; (i) are results obtained by CD-UNet++; (j) are 
results obtained by STANet; (k) are results obtained by CANet. 

From Figure 10, the performance of the four indicators of different methods can be 
compared intuitively. The four indicators of our proposed CANet are much higher than 
seven classic methods on widely used benchmarks, which shows the superiority of our 
proposed CANet. 

Figure 9. Visualization of eight different methods of LEVIR-CD dataset: (a) represents T1 images; (b) represents T2 images;
(c) label; (d) are results obtained by CDNet; (e) are results obtained by FC-EF; (f) are results obtained by FC-Siam-diff; (g)
are results obtained by FC-Siam-conc; (h) are results obtained by FCN-PP; (i) are results obtained by CD-UNet++; (j) are
results obtained by STANet; (k) are results obtained by CANet.



Information 2021, 12, 364 12 of 16

From Figure 10, the performance of the four indicators of different methods can be
compared intuitively. The four indicators of our proposed CANet are much higher than
seven classic methods on widely used benchmarks, which shows the superiority of our
proposed CANet.
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4.3. Accuracy/Efficiency Trade-Offs

To evaluate the efficiency of the model, we choose the CDD dataset to evaluate the
space complexity and time complexity of the proposed model.

In this article, we choose the average time cost for each epoch in the training phase
and the time cost used throughout the testing phase to represent time complexity; space
complexity is represented by the number of parameters of the model. Table 5 lists the
time consumption and model parameters of the proposed and compared methods in
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this paper. The efficiency of the model is expressed in Table 5 by calculating the metric
“time/parameter”, where lower values represent better trade-offs between time complexity
and space complexity. In addition, the F1 score and OA were chosen to reflect the accuracy
of the model because they are more tolerant of data imbalance and provide a better
indication of the comprehensive performance of the model. As shown in Table 5, CDNet
has the fewest model parameters, but the model’s efficiency is poor and its accuracy is also
average. FC-Siam-diff and FC-Siam-conc achieve similar accuracy, but they are inefficient
and time consuming. FCN-PP achieves better trade-offs, but its performance is inferior
to that of FC-Siam-conc, for example. STANet likewise achieves good trade-offs. The
proposed CANet achieves the best trade-offs, i.e., the number of parameters is 11.5 times
higher than that of FC-EF, while its time consumption is only 0.3 times that of FC-EF. In
addition, the proposed CANet takes only about 322 s to generate the change maps for
the entire test set, which equates to an average time of only about 0.11 s to obtain each
256× 256 change map, which is acceptable for most change detection tasks. In summary,
the efficiency of CANet is competitive compared to several SOTA methods.

Table 5. Performance and speed trade-offs. (The best performance is emphasized in bold).

Method
Train Test

F1 (%) OA (%) T/E Parameter T/P (×102s/M)
Test Time

(3000 Images)

CDNet 82.2 96.4 ~1879 s ~1.28 M 14.68 ~1020 s

FC-EF 77.1 94.1 ~978 s ~1.47 M 6.65 ~253 s

FC-Siam-Diff 83.7 95.8 ~1134 s ~1.51 M 7.51 ~287 s

FC-Siam-Conc 82.5 95.7 ~1207 s ~1.62 M 7.45 ~288 s

FCN-PP 80.5 95.4 ~1226 s ~10.02 M 1.22 ~149 s

CD-UNet++ 86.8 96.7 ~4637 s ~9.13 M 5.07 ~152 s

STANet 89.9 97.6 ~564 s ~16.93 M 0.33 ~576 s

CANet 93.2 98.4 ~302 s ~17.03 M 0.18 ~322 s
T/E represents time/epoch; T/E represents time/parameters.

4.4. Ablation Study

To verify that each module we proposed was beneficial to the improvement of network
performance, we performed the following ablation experiments on the LEVIR-CD dataset,
respectively, as shown in Table 6.

Table 6. LEVIR-CD dataset ablation experiment (the best performance is emphasized in bold).

Method Rec (%) Pre (%) F1 (%) OA (%)

baseline 89.5 77.1 82.9 98.1
+ACB 88.9 79.5 83.9 98.3

+attention 89.1 83.9 86.4 98.6
CANet 90.6 84.4 87.4 98.7

It can be seen that, when training the LEVIR-CD dataset, the combined attention
module and ACB are not added to the baseline, and there is a significant gap between the
four indicators of the model and the values after the addition of ACB. After the addition
of ACB, although the recall value slightly decreases compared with baseline, precision
and F1 increase by nearly 2.4% and 1%, respectively, while the value of OA also increases.
After adding the combined attention module, compared with the baseline, we can see that
precision, OA, and F1 are increased by 6.8%, 0.5%, and 3.5%, respectively. It can be seen
from Table 6 that the addition of ACB greatly improves the accuracy of the CANet, while the
addition of the combined attention shows the greatest improvement in F1. When ACB and
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the combined attention module are used simultaneously, the model takes advantage of the
spatial, channel, and position information of features to enhance the network robustness,
achieving the best results after the balance of four indicators.

Considering the huge difference in the number of unchanged pixels and changed
pixels in the LEVIR-CD and CDD datasets. We set the α parameter when using the loss
function to update the network by setting the different proportions of unchanged pixels
and changed pixels in the loss function calculation. The experimental results are shown
in Figure 11a,b. When α = 0.5 or α = 0.6, the values of precision, recall, F1, and OA
are significantly lower than α = 0.7 on datasets of CDD and LEVIR-CD. When α = 0.8,
although the precision value is the highest on the two datasets, the values of recall, F1, and
OA are all lower than α = 0.7. Comprehensive analysis, when α = 0.7, shows that our
proposed model will achieve the best results.
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5. Conclusions

In this paper, a remote sensing CD network based on the combined attention mecha-
nism and ACB is proposed. The network integrates different levels of semantic information
and uses the combined attention module to better extract the channel, position, and spatial
information between features, which also helps to capture more detailed information. In
particular, the setting of the combined attention module can reduce memory consumption
and improve the robustness of the network. The combined attention module proposed in
this paper can be flexibly applied, and can also be used in other CD models to provide new
directions. Finally, since the appropriate feature fusion method is adopted and ACB is used
to extract the important information in the feature map, the model has achieved excellent
results. The effectiveness of the combined attention module and ACB is further proved by
ablation experiments. On the CDD dataset, the CANet increases OA, precision, recall, and
F1 by 0.8%, 2.8%, 3.9%, and 3.3%, respectively, compared with the STANet model. On the
LEVIR-CD dataset, the CANet improves OA, precision, recall, and F1 by 0.2%, 1.8%, 0.7%,
and 1.3%, respectively, compared with the STANet model.

In the future, we will be guided by actual demand applications based on remote
sensing CD. We will also focus on the study of weakly supervised or unsupervised methods
to make the scope of the model’s application wider and focus on the application of semantic
changes in real life.
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