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Abstract: Multimodal sentiment analysis and emotion recognition represent a major research direc-
tion in natural language processing (NLP). With the rapid development of online media, people
often express their emotions on a topic in the form of video, and the signals it transmits are multi-
modal, including language, visual, and audio. Therefore, the traditional unimodal sentiment analysis
method is no longer applicable, which requires the establishment of a fusion model of multimodal
information to obtain sentiment understanding. In previous studies, scholars used the feature vector
cascade method when fusing multimodal data at each time step in the middle layer. This method
puts each modal information in the same position and does not distinguish between strong modal
information and weak modal information among multiple modalities. At the same time, this method
does not pay attention to the embedding characteristics of multimodal signals across the time dimen-
sion. In response to the above problems, this paper proposes a new method and model for processing
multimodal signals, which takes into account the delay and hysteresis characteristics of multimodal
signals across the time dimension. The purpose is to obtain a multimodal fusion feature emotion
analysis representation. We evaluate our method on the multimodal sentiment analysis benchmark
dataset CMU Multimodal Opinion Sentiment and Emotion Intensity Corpus (CMU-MOSEI). We
compare our proposed method with the state-of-the-art model and show excellent results.

Keywords: multimodal; natural language processing; sentiment analysis; time delay; hysteresis

1. Introduction

With the development of virtual community [1] and multimedia platforms such as
YouTube and Facebook, people tend to discuss topics in videos rather than individual
texts or pictures [2]. They usually share their opinions, stories, and comments on these
media sites in the form of videos. For sentiment analysis, the information displayed in
the video is multimodal and is more intuitive than unimodal text information or picture
information. We can clearly understand the user’s emotions and intentions from the video,
and this emotional information can help us understand user feedback and user preferences.
Furthermore, when we perform public opinion discovery or product recommendation
and emotional subtasks, the emotional information extracted from the video can better
reflect its authenticity. Therefore, multimodal sentiment analysis has become an important
research field in Natural Language Processing. It has also become the basic research content
of other subtasks in the NLP field, for example, video description generation [3,4], visual
question answering [5,6], multimodal machine translation [7], and visual dialog [8,9].

The method in which video provides content can be summarized into three informa-
tion modes: visual, audio, and language. Traditional sentiment analysis research focuses
more on unimodal information, such as visual information [10,11], audio information [12],
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and language information [13], and has achieved satisfactory results. However, for some of
the above subtasks, it is not appropriate to use unimodal information for sentiment analysis.
Compared with the multimodal information given in the video, unimodal sentiment analy-
sis obtains the user’s sentiment information from a single information channel, ignoring the
rest of the behavioral clues given in the video, so unilateral research has difficulty achieving
the ideal result. Therefore, multimodal sentiment analysis is needed, and its main purpose
is to extend sentiment analysis based on unimodal information to sentiment analysis based
on multimodal (language, visual, audio) information. In videos, people express their
emotions through the interaction of multiple modes of behavior, and these behaviors are
intertwined with each other. When we perform sentiment analysis, it becomes crucial to
accurately capture the relationship between multiple modalities. The core challenge of mul-
timodal sentiment analysis is to process multimodal information simultaneously to model
the information within the model and the interactive information between the models and
to obtain a characteristic representation that can symbolize general information.

At present, the research methods that simultaneously consider the internal model
information and the interactive information between the models [14–16] have achieved
good results. Some methods [15,16] involve a multi-task learning framework that can
obtain similar information between multiple tasks in the model by sharing internal param-
eters. Some methods [14] use hierarchical fusion strategies to gradually extract feature
representations from multimodal signals and finally obtain fusion feature representations
for sentiment analysis. However, the common feature of these research methods is that they
all use feature-level cascade fusion when processing multimodal information at a single
time step. That is, when the next operation is performed, multiple modal information
is directly spliced on the feature dimension. When this strategy is used for multimodal
information fusion in the middle layer, its potential meaning is to place each mode in an
equally important position and give the same weight. This method does not highlight the
important modal information, which results in ineffective use of the information in each
modality, and it is difficult to obtain a representative multimodal feature representation.

Therefore, this paper proposes a multimodal sequence feature extraction network
(MSFE), a model for human multimodal language. The model uses a method of enhancing
the contextual information within the unimodal and the contextual information across
time between multiple modalities to obtain embedding representations of different modal
intensities. This method also fully considers the time delay and hysteresis between the in-
terwoven multimodal signals. The core of the model is to process the multimodal sequence
data with sequence reorganization and modal enhancement when dealing with this kind of
non-synchronized multimodal data, and directly extracts the fusion feature representation
of the information-enhanced multimodal sequence. To verify our proposed strategy, we
conducted multimodal sentiment analysis and sentiment recognition experiments. Our
model shows excellent performance on both tasks.

This article is organized as follows. In Section 2, we introduce some related work on
multimodal emotion recognition. In Section 3, we elaborate on the overall architecture of
our model. In Section 4, we describe in detail the dataset used in the experiment and report
the results and necessary analysis.In Section 5, the experimental results are shown and the
performance is discussed. At the same time, the model is qualitatively analyzed on some
samples. We conclude this paper with Section 6.

2. Related Work

In this part, we elaborated on the related work of multimodal sentiment analysis and
the basic models used.

2.1. Multimodal Sentiment Analysis

Multimodal sentiment analysis models verbal and nonverbal information to analyze
the emotions expressed by people. The current multimodal sentiment analysis is based
on the following three modalities: language, visual, and audio. The earliest research work
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on multimodal sentiment analysis was carried out on two modal pieces of information.
In [17], the author combined audio and language modal signals for emotional research.
In [18,19], the author combined audio and visual information for multimodal sentiment
analysis research. The author of [20] proposed a new method of multimodal sentiment
analysis that uses deep neural networks to combine vision and language. The methods
mentioned above all show that the fusion research of two modal signals produces higher
accuracy than any unimodal signal model.

With the emergence of three-modal signal datasets, scholars began to study three-
modal fusion models. In the early research, researchers proposed many multimodal
data fusion methods. They can be roughly divided into late fusion and early fusion.
Late fusion [21,22] independently trains a monomodal classifier and perform decision
voting through weighted average. Early fusion is the feature-level fusion mentioned
above, which directly connects multimodal data in the time dimension. This method is
used in many models. In [23], the author directly performs input-level feature fusion on
multimodal data in the input stage and combines deep neural networks for sentiment
analysis. In literature [24,25], the author first encodes each modal separately and then uses
feature-level fusion in the middle layer to obtain multimodal embedding, which is static
feature-level fusion. In [26,27], the author also encodes unimodal data, the difference is
that unimodal encoding and feature-level fusion are carried out at the same time, which is
dynamic feature-level fusion.

However, as mentioned before, the feature-level fusion defaults that each modal has
are equally important, that is, each modal information is given the same weight at the same
time step. With further research [28,29], people find that different modal information has
different meanings to the final result, and the degree of importance is different. In [28],
the author mentioned that verbal data will be affected by non-verbal data and cause
word meaning shift. The author takes the verbal modality as the dominant and the non-
verbal modality as the auxiliary for multimodal fusion. Based on this research idea, this
paper proposes a multimodal sequence feature extraction network, which uses a new
sequence fusion method and enhances different modal information to study the problem
of multimodal emotion recognition.

2.2. Recurrent Neural Network

Recurrent Neural Network (RNN) is a type of chain-connected neural network. Com-
pared with general neural networks, all RNNs have a chain form of repeated neural
networks, which can process data that changes in sequence. However, due to the simple
chain structure (for example, the Tanh layer) of ordinary RNNs, gradient disappearance
and gradient explosion problems will occur during the training process, which makes it
impossible to process too long sequence data and can only perform short-term memory.
Therefore, Long Short-Term Memory (LSTM) [30] was proposed, which is a special RNN.
The LSTM network combines short-term memory with long-term memory through so-
phisticated gate control, solves the problem of gradient disappearance to a certain extent,
and can learn long-term dependent information. LSTM controls the state of the memory
unit through input gates, forget gates, and output gates to achieve the effect of long-term
memory. Gate Recurrent Units (GRU) [31] is a variant based on LSTM. It controls the
state of the memory unit by reset gate and update gate. The reset gate determines how
to combine the new input information with the previous memory, and the update gate
defines the amount of the previous memory saved to the current time step. Through
these two gating mechanisms, the information in the long-term sequence can be preserved.
Compared with LSTM, GRU has fewer parameters, its convergence speed is faster, and the
performance gap between the two is very small, which can greatly speed up the iterative
process of the experiment. Therefore, this paper chooses to use the GRU network to solve
the long-term dependencies within and between modalities.
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3. Proposed Approach

In this section, we will explain in detail our Multimodal Sequence Feature Extraction
Network (MSFE), which is mainly composed of the following three parts: (1) Context-
Unimodal Information Extraction Module, which consists of multiple independent Gate
Recurrent Units (GRU) composition, is used to encode the long-term dependencies within
the modal, and obtain the characteristic representation with unimodal context information
at every time step. (2) Information Enhancement and Data Reorganization Module, which
enhances and reorganizes the acquired contextual information representation to obtain
multimodal feature fusion representation. (3) Sentiment Analysis Layer, the fusion informa-
tion feature representation obtained above is used for sentiment prediction and emotions
classification through the fully connected layer. Figure 1 shows the overall architecture
of MSFE.

Figure 1. The overall architecture of the Multimodal Sequence Feature Extraction Network (MSFE). It consists of three
modules: (1) Context-Unimodal Information Extraction Module is composed of three sub-networks containing GRU
network, which are used to process contextual information in language, visual, and audio modalities. (2) Information
Enhancement and Data Reorganization Module can be divided into information enhancement (IE) block, data reorganization
(DR) block, and GRU network. (3) Sentiment Analysis Layer includes sentiment prediction and sentiment classification.

The MSFE input is N multimodal sequence data. In this article, the three modal data
types of language, vision, and acoustics are involved, namely, N = {Language(l), Visual(v),
audio(a)}. Let the sequence length of the multimodal data be T, and the feature vector of
each modal at time step t can be expressed as xt

n ∈ Rdxn (n ∈ {l, v, a}). Among them, dxn is
the feature dimension of modal n. The above three sequence modal information can be
expressed as

Xn =
[

xt
n : t 6 T, xt

n ∈ Rdxn
]

(1)

3.1. Context-Unimodal Information Extraction Module

For the multimodal data obtained from the video, each modality Xn is sequence data
containing a time stamp. In this module, we use three independent GRU networks to obtain
internal-modal information over time for each modal sequence. Similar to the traditional
Long Short-Term Memory Network (LSTM), the GRU network with reset gates and update
gates is also specifically used to process sequence data with long-term dependencies
according to the following GRU formula:

zt = σ
(

Wzxt + Uzht−1 + bz

)
(2)

rt = σ
(

Wrxt + Uzht−1 + br

)
(3)
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h̃t = tanh
(

Wxt + U
(

rt ◦ ht−1
)
+ b
)

(4)

ht =
(
1− zt) ◦ ht−1 + zt ◦ h̃t (5)

In the above equation, Wi ∈ Rh×d, Ui ∈ Rh×h, and b ∈ Rh are the GRU training pa-
rameters, zt, rt are the update gate and reset gate, respectively. h̃t is a candidate activation,
which accepts

[
xt, ht−1] and ht ∈ Rh is the GRU hidden state, where h represents the dimen-

sion of the GRU hidden state. ◦ is the Hadamard product, and σ is the sigmoid function.
We assign an independent GRU to each modal input sequence Xl , Xa, Xv, which

helps to obtain the internal-modal feature representation Hn =
[

ht
n : t ≤ T, ht

n ∈ Rh
]

with
h denoting the dimensionality of the nth GRU hidden state.

Hl = L− GRU(Xl) (6)

Ha = A− GRU(Xa) (7)

Hv = V − GRU(Xv) (8)

Finally, the acquired sequence information of the three modalities passes through the
fully connected layer (D) of dimension d at each time step t. The purpose is to facilitate
the consistency of the feature dimension direction when we reorganize the sequence data.
The final output of the module is Ul , Ua, Uv ∈ RT×d.

Ul = Dl(Hl) (9)

Ua = Da(Ha) (10)

Uv = Dv(Hv) (11)

3.2. Information Enhancement and Data Reorganization Module

In our proposed model, our goal is to use the contextual information within the
modalities and the common contextual information between the modalities for multimodal
sentiment analysis. As is known, the information that a piece of video conveys is mul-
timodal. These multimodal signals are interwoven, and there is a certain delay and lag
between the multimodal signals. Moreover, the importance of multimodal data is not
the same, and it should not be potentially fused with the same weight. Especially as the
sequence goes on, the weight of multimodal data at each time step is not static. Therefore,
this paper introduces information enhancement and reorganization modules.

3.2.1. Information Enhancement (IE) Block

First, we perform information enhancement on the internal-modal feature represen-
tation Un(n ∈ {l, a, v}) obtained above. We obtain an internal-modal matching matrix
En ∈ RT×T through the following formula:

En = Un ·UT
n (12)

Then, we calculate the correlation coefficient matrix Mn ∈ RT×T to the internal-
modal matching matrix En using the softmax function. The element Mn(i, j) in the matrix
represents the degree of contextual information correlation between time i and time j in the
model. Finally, the soft attention mechanism performs information enhancement at time t
in each modality and obtains the information-enhanced sequence data Sl , Sa, Sv ∈ RT×d.

Mn(i, j) =
eEn(i,j)

∑T
t=1 eEn(i,j)

f or i, j = 1, . . . , T (13)

Sl = Ml ·Ul (14)

Sa = Ma ·Ua (15)
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Sv = Mv ·Uv (16)

3.2.2. Data Reorganization (DR) Block

Previously, when further processing the data of each time step, the feature-level cas-
cade operation was used. When this method performs dimensional connection, multimodal
data have the same weight by default, especially on a single time step. However, when
people express emotions, the intensity of the modal signal is not the same, and it will
change over time. Perhaps at time t− 1, words with strong emotional meaning dominate,
while at time t, the rich facial behavior suppresses other modal signals. Feature-level
connections cannot solve this problem. Therefore, this paper uses the method of reor-
ganizing multimodal sequences and combines the information enhancement module to
assign different weights to the modal information of each time step. Considering that the
language information at time t may have a certain connection with the acoustic (visual) at
time t− 1 and the acoustic (visual) at time t + 1 or have multimodal contextual informa-
tion, at each time step t, we arrange the sequence data after information enhancement in
order of the language-visual-acoustic (Figure 2) to obtain new multimodal sequence data
F =

[
St

l ; St
v; St

a : t ≤ T, St
l ; St

v; St
a ∈ Rd

]
. Then, the new sequence data after the arrangement

pass through the IE block again to calculate the cross-modal matching matrix E f ∈ R3T×3T

and the correlation coefficient matrix M f ∈ R3T×3T . Further, strengthen the association
between multimodal data, and obtain enhanced multimodal recombination sequences
S f ∈ R3T×d.

E f = F · FT (17)

M f (i, j) =
eE f (i,j)

∑3T
t=1 eE f (i,j)

f or i, j = 1, . . . , 3T (18)

S f = M f · F (19)

Figure 2. The left picture shows the traditional feature cascading method, and the right picture shows the new multimodal
time series method.

This method prioritizes the enhancement of information within the unimodal before
reorganizing the data and strengthening the degree of common association among multi-
modal data. The reason is that the degree of relevance of data within the unimodal should
be greater than the degree of relevance of data between multimodal. After passing through
the DR and IE blocks, the obtained new enhanced sequence data S f is passed through a
fusion GRU network to obtain a multimodal fusion embedding representation. Unlike the
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Section 3.1 module, we obtain the contextual feature representation hT
f ∈ Rd f at the final

moment T to represent the final representation output.

hT
f = Fusion− GRU

(
S f

)
(20)

3.3. Sentiment Analysis Layer

After the information enhancement module and the information reorganization mod-
ule, we finally obtain the common fusion feature representation among the multimodalities,
which fully considers the time delay and lag between the multimodalities in the time dimen-
sion. At the task classification layer, we finally cascade the fusion feature representation hT

f

and the feature representation hT
l , hT

a , hT
v within each modality at the final moment T.

ZT = hT
l ⊕ hT

a ⊕ hT
v ⊕ hT

f (21)

After obtaining the complete fusion feature representation of language, visual, and acous-
tic modes, we performed sentiment prediction and emotion classification tasks. We use
the ReLU activation function and the sigmoid layer for sentiment prediction, which is
expressed as follows:

ŷ = σ
(

Wq ·
(

relu
(

Wp · ZT + bp

))
+ bq

)
(22)

where ŷ is the result of sentiment prediction; Wp and bp re the weight and bias of the ReLU
layer, respectively; and Wq and bq are the weight and bias of the sigmoid layer, respectively.

Similarly, we use the ReLU activation function and softmax layer for multilabel
emotion classification for each category, which is expressed as follows:

ŷn = so f tmax
(

Wq ·
(

relu
(

Wp · ZT + bp

))
+ bq

)
(23)

where ŷn ∈ R2represents the probability prediction value of the nth category in the
sentiment classification, Wp and bp are the weight and bias of the ReLU layer, respectively,
and Wq and bq are the weight and bias of the sigmoid layer, respectively. We show the
proposed method in Algorithm 1 .

Algorithm 1 Multimodal Sequence Feature Extraction Network (MSFE)

Require: Multimodal sequence information, including language (Xl), visual(Xv),
audio(Xa)

Ensure: Sentiment prediction; Emotion classification
1: procedure MSFE(l, v, a)
2: for each n ∈ [l, v, a], N ∈ [L, V, A] do
3: Hn ← N − GRU(Xn) .hT

n ∈ Hn
4: Un ← Dn(Hn)
5: Sn ← IE− Block(Un)
6: end for
7: F ← DR− Block(Sl , Sv, Sa)

8: S f ← IE− Block
(

U f

)
9: hT

f ← Fusion− GRU
(

S f

)
10: ZT ← hT

l ⊕ hT
v ⊕ hT

a ⊕ hT
f

11: prediction← Sentiment
(
ZT)

12: classi f ication← Emotion
(
ZT)

13: return Sentiment; Emotion
14: end procedure
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Algorithm 1 Cont.

15: procedure IE− Block(X)
16: /*internal-modal matching matrix*/
17: E← X · XT

18: /*correlation coefficient matrix*/
19: for i, n ∈ 1, · · · , U do U ∈ (T, 3T)
20: M(i, j)← eE(i,j)

U
∑

t=1
eE(i,j)

21: Y ← M · X
22: end for
23: return Y
24: end procedure
25: procedure DR− Block(X)
26: F ← [ ]
27: for t ∈ 1, · · · , T do
28: Ft ←

[
St

l ; St
v; St

a
]

29: F ← F⊕ Ft

30: end for
31: return F
32: end procedure

4. Experiments

In this part, to verify our proposed method, we describe the datasets used in the
experiment and report the results and the necessary analysis.

4.1. Datasets

We evaluate the proposed model on the benchmark dataset of sentiment and sentiment
analysis, namely, the CMU Multimodal View Sentiment and Mood Intensity (CMU-MOSEI)
dataset [32]. The CMU-MOSEI dataset contains 3228 videos from more than 1000 online
YouTube speakers with a total of 22,413 utterances. We divide the data into training, valida-
tion, and test sets to contain 15,290, 2291, and 4832 utterances, respectively. Each utterance
is continuous for the sentiment label [−3, +3] from highly negative (−3) to highly positive
(+3), and value < 0 and value ≥ 0 represent negative and positive emotions, respectively.
The output layer of our model uses a sigmoid activation function for target prediction.
In contrast, the emotion label contains 6 categories: anger, disgust, fear, happiness, sadness,
and surprise. We consider the sample with an emotional intensity value of 0 as a negative
example that does not contain emotion, and an emotional intensity value greater than
0 is a positive example of emotion in the sentence. We treat each category as a binary
classification label and use 6 softmax functions for multilabel sentiment classification tasks.
Table 1 shows the detailed statistics of the CMU-MOSEI dataset.

The dataset includes three modal data of language, visual and audio. Among them,
The language feature is 300-dimensional GloVe word vectors [33]. The visual feature first
cuts the video at a frequency of 30 frames and then extracts the face embedding by the
commonly used facial recognition module [34–36]. Audio features are extracted using
COVAREP software [37], and they are all related to mood and speech intonation. The word-
level alignment method is used to align all content with the GloVe vector modality, that
is, the time interval between the visual information and acoustic information of multiple
frames corresponding to the corresponding words. Therefore, the sequence length of all
modal data is 20.
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Table 1. Dataset statistics for CMU-MOSEI. Each utterance contains multimodal information.

Statistics Train Validation Test

videos 3228
speakers 1000
Utterance 15,290 2291 4832
Positive 10,887 1673 3360

Negative 4403 618 1472
Anger 3433 427 971

Disgust 2720 352 922
Fear 1319 186 332

Happy 8147 1313 2522
Sad 3906 576 1334

Surprise 1562 201 479

4.2. Baselines

In order to verify the performance of MSFE, we compared it with the following
benchmark model for multimodal language analysis.

EF-LSTM. Early Fusion LSTM [25] concatenates the inputs from different modalities
at each time-step and uses that as the input to a single LSTM.

TFN. The Tensor Fusion Network [16] creates a multidimensional tensor to capture
unimodal, bimodal, and trimodal interactions, and explicitly model intra-modal and inter-
modal dynamics.

G-MFN. The Graph Memory Fusion Network [32] models n-modal interaction through
a set of parallel LSTM and dynamic fusion graph components. The dynamic fusion graph
components can dynamically alter its structure and choose the proper fusion graph based
on the importance of each n- modal dynamics during inference.

MTMM-ES. The Multi-task Multimodal Emotion Recognition and Sentiment Analy-
sis [38] uses multimodal and contextual information to simultaneously predict the emotion
and emotion of the utterance in a multi-task learning framework through a method of
sharing parameters.

TBJE. The Transformer-based joint-encoding Model [29] uses the transformer network
to transfer each unimodal information to the rest of the modalities, and mainly relies on
the attention mechanism and the feedforward neural network (FFN) to draw the global
dependency between input and output.

4.3. Experimental Settings

We conducted experiments on two tasks: sentiment binary classification prediction,
and emotional multi-label classification. MSFE contains three independent unimodal
coding sub-networks, a multimodal fusion coding network and a sentiment analysis layer.
According to the different tasks of the experiment, the optimal parameters obtained are
also different. For sentiment binary classification prediction, each sub-network contains a
single-layer GRU and a fully connected layer. The number of three GRU neurons is 128, 64,
64, and the number of neurons in the fully connected layer is 128. The multimodal fusion
coding network includes an information enhancement module, a data recombination
module, and a multimodal single-layer fusion GRU with 64 neurons. For emotional
multi-label classification, the number of neurons in the GRU and fully connected layer
in each sub-network is 128, 32, 64, and 128, respectively. The number of neurons in the
multimodal fusion GRU is 128. In the sentiment analysis layer, different tasks pass through
the transformation layer of the same dimension of the fusion GRU and the independent
output layer to obtain the final prediction results.

In the training phase, we use the Adam optimizer to train the model. The two subtasks
have different learning rates of 1× 10−4 and 1× 10−3, and each sub-network is assigned a
different weight attenuation coefficient to prevent overfitting. On the issue of the number of
iterations, we use the early stopping method for the training indicator Loss, and select the
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epoch network with the smallest verification Loss for the evaluation process.In the process
of model training, the loss functions of sentiment prediction and sentiment classification
were cross-entropy loss functions with weight attenuation:

Loss(ŷ, y) = −
N

∑
n=1

C

∑
c=1

L

∑
l=1

yc
l · log ŷc

l + βs‖ws‖ (24)

where y is the true label, ŷ is the probability predicted by the model, N is the total number
of training samples, L represents the number of labels (1 for sentiment prediction and 6 for
sentiment classification), and C is the number of categories. βs (s is the number of GRU
networks) is the decay coefficient of the weight value. Table 2 shows the main configuration
of the model.

Table 2. Model configurations.

Parameters Sentiment Params Emotion Params

T − GRU 128 neurons 128 neurons
V − GRU 64 neurons 32 neurons
A− GRU 64 neurons 64 neurons

DenseLayer 128 neurons 128 neurons
Fusion− GRU 64 neurons 128 neurons

Optimizer Adam (lr = 1× 10−4) Adam (lr = 1× 10−3)
Output Sigmoid Softmax

Loss Binary
crossentropy

Categorical
crossentropy

Batch 16 32
Activations ReLu

Epochs Early Stopping (8)

5. Results and Discussion

In this section, we have conducted a detailed analysis and discussion on the experi-
mental results of CMU-MOSEI.

5.1. Results

We compared the experimental results with the benchmark model and the latest TBJE
model. We compared with the benchmark model on the sentiment two-classification pre-
diction task, and compared with the TBJE model with the same accuracy on the sentiment
multi-label six-classification task. Table 3 shows the comparison of different models.

Table 3. Results on the test set. Please note that the F1 score and the binary classification accuracy of sentiment prediction are weighted
to be consistent with the previous state-of-the-art technology. In the six categories of emotion labels, the F1 score is consistent with the
previous technology, and the accuracy rate is the same as the latest technology TBJE, which is the standard accuracy rate. The Macro-f1
score is the average of the F1-score of six categories. * Values are taken from in [32] . + Values are taken from in [38].

Test Set Sentiment Emotion

2-Class Happy Sad Angry Fear Disgust Surprise Avg

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Macro-F1

EF-LSTM * - - 57.8 - 59.2 - - - 56.7 - - - - - -
TFN * - - 66.5 66.6 58.9 - 60.5 - - - - - 52.2 - -

G-MFN * 76.9 77.0 66.3 66.3 60.4 66.9 62.6 72.8 62.0 89.9 69.1 76.6 53.7 85.5 -
MTMM-ES (S) + 79.8 77.6 61.6 59.3 65.4 72.4 64.5 75.6 51.5 87.7 72.2 81.0 53.0 86.5 -
MTMM-ES (M) + 80.5 78.8 53.6 67.0 61.4 72.4 66.8 75.9 62.2 87.9 72.7 81.9 60.6 86.0 -

TBJE (LA) 82.4 66.0 65.5 73.9 67.9 81.9 76.0 89.2 87.2 86.5 84.5 90.6 86.1 77.5
TBJE (LAV) 81.5 65.0 64.0 72.0 67.9 81.6 74.7 89.1 84.0 85.9 83.6 90.5 86.1 76.7
MSFE (LAV) 79.7 81.8 67.7 67.8 72.1 67.0 81.1 74.4 93.1 89.8 80.7 78.9 90.7 85.4 77.2
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For different tasks, our model has achieved good results in some performance indica-
tors. On the sentiment two-category prediction task, the weighted F1 score reached 81.8%,
which is 3% higher than the multi-task learning model (MTMM-ES) overall, which proves
that our model has a good learning ability. On the emotional multi-label six-classification
task, we first compared the experimental results with the three-modality of the TBJE model.
It can be seen that the accuracy and F1 score on the happiness label have improved sig-
nificantly. Compared with the optimal model, the accuracy increased by 2.7%, and the F1
score increased by 3.8%. Moreover, the model is relatively sensitive to the fear label among
the six labels, with an accuracy rate of 93.1%, an increase of 4%, and the weighted F1 score
also increased by 5.8% to 89.8%.

However, the performance index of the TBJE model on the task of bimodal sentiment
analysis is generally better than the experimental results of its three-modality version. This
is because TBJE mainly uses the transformer network to directionally encode information
from one modal to another modal, focusing on the mutual information and long-term
dependence between the two modalities. Make the model more prefer to deal with bimodal
information. Our model focuses on the importance of the difference in the time dimension
between the three-modal information, and at the same time reorganizes and encodes
the three-modal data. The macro-f1 score in the table also proves this point very well.
Moreover, we found that MSFE performs better than sentiment prediction on sentiment
classification tasks. In order to further verify the sensitivity of the model to six categories
of emotions, and to verify whether the model has better performance capabilities for
three modalities. We also performed a bimodal (L-V, L-A, V-A) emotional multi-label
six classification task. Table 4 shows the bimodal experimental results of MSFE on the
six-labels emotion classification task.

Table 4. Display of results of bimodal emotion classification. L: Language, V: Visual, A: Acoustic.

Test Set Emotion

Happy Sad Angry Fear Disgust Surprise Avg

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Macro-F1

L-V-A 67.7 67.8 72.1 67.0 81.1 74.4 93.1 89.8 80.7 78.9 90.7 85.4 77.2
L-V 64.5 64.2 73.0 64.5 83.1 73.2 93.4 89.9 79.8 75.9 89.4 87.9 76.0
L-A 66.1 66.1 73.6 64.4 80.4 74.1 93.1 89.8 80.6 78.5 90.1 85.5 76.4
V-A 65.0 65.2 68.8 61.7 79.7 71.8 93.2 89.8 81.5 75.0 90.5 85.9 74.9

It can be seen in the results that our proposed model also achieves good results in the
bimodal emotion 6 classification. In the dual mode, L-V achieves good results compared
to L-A and V-A. It has an accuracy of 93.4% on the fear label and an accuracy of 83.1% on
the anger label, which is higher than that of the three modalities (L-V-A). The accuracy of
the experiment increased by 2%. We noticed that the fear and anger tags focused more on
visual feature information than the added acoustic modal signal. However, judging from
the overall results, our model has better performance capabilities for three-modal signals.
It is because our model can effectively enhance and weaken the three-modal signal through
the data enhancement module and the data reorganization module at the same time, so as
to make better use of the three-modal information.In summary, this fully demonstrates the
effectiveness of our proposed method in bimodal sentiment classification.

5.2. Qualitative Analysis

In order to show the more intuitive performance of MSFE in six emotion classification
tasks, in Table 5 we selected multimodal samples from the MOSEI data set to display the
results. We apply the model to the test samples to output the prediction results and fit the
true values, respectively. In the CMU-MOSEI dataset, the sentiment label [−3, +3] ranges
from highly negative (−3) to highly positive (+3), and the value < 0 and the value ≥ 0
represent negative and positive sentiment, respectively. Among them, the samples between
the negative sentiment label [−3, −1] and the positive sentiment label [1, 3] are called
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samples with strong sentiment attributes. This type of sample also has multiple emotional
attributes in the emotional multi-label, and each attribute is biased towards the same
sentiment (positive or negative). For example, Case 1 in Table 5 has three negative labels:
Sad, Angry, and Disgust, showing strong negative sentiment. Case 2 showed strong
positive sentiment. From the results, our model can obtain more accurate results for this
type of sample. However, for some samples without emotional labels, some unmatched
emotional labels will always be assigned to the sample. Case 3 shows the most undesirable
result. For samples with weaker sentiment attributes, in addition to correctly predicting
the corresponding emotional label, they will also be assigned other labels of the same
sentiment (negative or positive). In addition, in the samples with the Disgust label, MSFE
correctly predicted the label. The experimental results further confirmed the sensitivity of
the MSFE model to emotional labels and its excellent learning ability in emotional six-label
classification tasks.

Table 5. Example from the CMU-MOSEI dataset. The true emotional label lies between the six
emotional labels. MSFE outputs the predicted label type. Yellow , Lime and Orange represent

text information, visual information and audio information, respectively. Red indicates misclassified
labels.

Language + Visual + Audio Truth MSFE

1

But, I mean, if you’re going to watch a
movie like that, go see Saw again or
something, because this movie is really
not good at all.

+ frown + rapid
Sad
Angry
Disgust

Sad
Angry
Disgust
Fear

2
It’s one of the best action blockbuster
I’ve seen this whole summer and I
highly recommend you guys seeing it.

+ smile + excited Happy
Surprise

Happy
Surprise

3

Bruce Willis is your old, your (umm)
your (stutter) old typical cop but
basically this time he’s fighting internet
(umm) terrorists.

+ calm + smooth No class

Fear
Disgust

Angry

Sad

4
(uhh) the story’s just kind of a rehash of
the previous movie and it overall
just feels very forced

+ frown + slight Disgust

Disgust
Angry

Happy

Sad

6. Conclusions

In this paper, we propose a new method of processing multimodal data, which
aims to fully consider the lag and time delay of multimodal data in the time dimension
as well as the interembedding relationship within multimodal data. We evaluated our
proposed method on the recently released benchmark dataset on multimodal sentiment
and sentiment analysis (MOSEI). Experimental results show that compared with baseline
data and the accuracy of the latest model, our method effectively enhances the correlation
of relevant information between multimodal signals. In the future, we will introduce
a multi-task joint learning framework into our model to predict sentiment analysis and
emotional classification at the same time from end to end. At the same time, in order
to better reflect the advantages of multi-modality, we will further consider unimodal
sentiment analysis research.
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