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Abstract: (1) Background: A disease prediction model derived from real-world data is an important
tool for managing type 2 diabetes mellitus (T2D). However, an appropriate prediction model for the
Asian T2D population has not yet been developed. Hence, this study described construction details
of the T2D Holistic Care model via estimating the probability of diabetes-related complications and
the time-to-occurrence from a population-based database. (2) Methods: The model was based on
the database of a Taiwan pay-for-performance reimbursement scheme for T2D between November
2002 and July 2017. A nonhomogeneous Markov model was applied to simulate multistate (7 main
complications and death) transition probability after considering the sequential and repeated dif-
ficulties. (3) Results: The Markov model was constructed based on clinical care information from
163,452 patients with T2D, with a mean follow-up time of 5.5 years. After simulating a cohort of
100,000 hypothetical patients over a 10-year time horizon based on selected patient characteristics
at baseline, a good predicted complication and mortality rates with a small range of absolute error
(0.3–3.2%) were validated in the original cohort. Better and optimal predictabilities were further con-
firmed compared to the UKPDS Outcomes model and applied the model to other Asian populations,
respectively. (4) Contribution: The study provides well-elucidated evidence to apply real-world data
to the estimation of the occurrence and time point of major diabetes-related complications over a
patient’s lifetime. Further applications in health decision science are encouraged.

Keywords: type 2 diabetes; complication; discrete event simulation; electronic health record

1. Introduction

The incidence of type 2 diabetes (T2D) has reached epidemic proportions globally,
with an average of one person dying of diabetes every 8 s in the world [1]. In South-
East Asia regions, T2D has been estimated to have increased by 74% from 2019 to 2045,
resulting in a great economic impact [1,2]. Inappropriate T2D care and management have
directly caused permanent morbidities, including cardiovascular disease (CVD), kidney

Information 2021, 12, 326. https://doi.org/10.3390/info12080326 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-1021-8161
https://orcid.org/0000-0001-6840-5440
https://orcid.org/0000-0003-4431-7977
https://orcid.org/0000-0002-7570-0584
https://doi.org/10.3390/info12080326
https://doi.org/10.3390/info12080326
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12080326
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12080326?type=check_update&version=2


Information 2021, 12, 326 2 of 26

disease, blindness, lower-limb amputations, and mortality. It has been estimated that T2D
substantially contributed to approximately 32% of all CVD [3], 56% of new end-stage renal
disease [4], and 1.6 million deaths in 2016 [5]. Hence, seeking optimal solutions to control
T2D-associated complications is critical to relieve the burden of T2D.

Diabetes ranks fifth in the top ten causes of death among Taiwanese people, with
diabetic patients frequently experiencing hypertension and hyperlipidaemia, which dra-
matically increase the risk of neuropathy, as well as microvascular and macrovascular
complications [6]. Diabetes Health Education advises the treatment goals of glycated-heme
control to be below 7%, blood pressure below 130/80 mmHg, and low-density cholesterol
less than 100 mg/dL, to reduce the associated CVD burden. In Taiwan, there are approx-
imately 2 million diabetic patients clinically at risk of diabetic complications. Thus, the
Taiwan Diabetes Health Education Association has targeted nearly 6000 diabetes patients
with glycosylated haemoglobin A1c (HbA1c) and blood pressure and cholesterol, the
so-called ABC, to investigate indicators of complications of diabetes. Since 2002, patients
who have met the treated target of ABC have shown a continuous growth trend [7]. The
survey found that the total compliance rate in Taiwan patients with diabetes was 12.9%
in 2016. Compared with the total compliance rate in 2011, it increased by nearly 60%.
The above-mentioned information combing detailed prescription and diagnosis data. The
National Health Insurance Research Database (NHIRD) is appropriately used to build a
risk assessment model for T2D patients.

Previous studies have explored several algorithms in assisting diabetes prevention
and management. Zou et al. analysed data from 68,994 healthy people and patients with di-
abetes, and the present healthcare recommendation system using machine learning helped
to predict the risk of diabetes. [8]. Simon et al. presented a survey for predictive models
built to leverage big data analytics to estimate the possibility of developing complications
in patients with diabetes [9]. Yap et al. [10] introduced mobile apps collecting images of
diabetic patients’ feet for data training and the development of diabetic foot ulcers. Ellah-
ham [11] argued that since intelligent technical reforms have produced better glycaemic
control with reductions in fasting and postprandial glucose levels, glucose excursions,
and glycosylated haemoglobin, AI will introduce a paradigm shift in diabetes care from
conventional management strategies to building targeted data-driven precision care.

Since the publication of the first United Kingdom Prospective Diabetes Study (UKPDS)
Outcomes Model [12], the use of simulation modelling in diabetes has increased. For exam-
ple, a total of 39,043 person-years of data where the median follow-up time for patients
in the ACCORD trial was 3.7 years supports the model fitting process for developing the
BRAVO risk engine [13], with which the Atorvastatin Study for Prevention of Coronary
Heart Disease Endpoints in Non-Insulin-Dependent Diabetes Mellitus (ASPEN) trial, the
Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Con-
trolled Evaluation (ADVANCE) trial, and the Collaborative Atorvastatin Diabetes Study
(CARDS) trial were compared. In summary, we present the external validation by simu-
lation with comparable outcomes versus some reports excerpted from the Mount Hood
Challenges [14,15]. Compared to previous models constructed based on western clinical
trials or epidemiological studies, such as the Framingham and the UKPDS studies [12],
developing the first model using long-term clinical care data collected from the Asian
population would provide a more reliable estimate to help clinicians make better decisions
regarding the treatment of diabetic patients.

We present a new version of the Taiwan Type 2 Diabetes Mellitus Holistic Care Model
(T2DHoc), which could provide a well-elucidated estimation of the occurrence and time
point of major diabetes-related complications over a patient’s lifetime. The developed
data-driven model could simulate the occurrence of competing diabetes-associated com-
plications and all-cause death for T2D over a patient’s lifetime. Since the participants had
representative data, the model was also compared to other available prediction models
and subject data from clinical trials. The internal validation of the T2DHoc over the 5-year
follow-up was assessed by sensitivity analysis, and predictions from the original and
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new models using a contemporary patient-level input dataset. The data-driven approach
for the predictive model is presented by the revealing management of prevalent short
and long-term complications in diabetes, where long-term is defined as at least 15 years
follow-up.

Diabetes is one of the top priorities in medical science and health care management,
and an abundance of data and information is available on these patients. Whether data
stem from statistical models or complex pattern recognition models, they may be fused
into predictive models that combine patient information and prognostic outcome results.
Almost any statistical regression model can be used as a predictive model, but due to their
transparent functionality, multiple logistic or similar linear regressions are often used for
prediction model development [16]. However, a prediction model should take into account
all important complication risks as a whole. To capture the whole disease as a system has
been discussed in Tappenden et al. [17] and Esensoy and Carter [18].

Such knowledge could be used in clinical decision support, disease surveillance, and
public health management to improve patient care. Predictive models often include multi-
ple predictors (covariates) to estimate the probability, risk of a certain outcome or to classify
that a certain outcome is present/absent (diagnostic prediction model) or will happen
within a specific timeframe (prognostic prediction model) in an individual. Although
extensive effort has been made with building these prediction models, there is a remarkable
scarcity of impact studies due to data limitations. In Taiwan, the national diabetic care
registry was established in 2001, so it is possible to collect enough information for long-term
prediction with important covariates to appraise high risk events. Regarding the risk of
diabetic complications, the primary events of this study were arteriosclerotic heart disease
(ASHD), ischaemic heart disease (IHD), chronic heart failure (CHF), ischemic stroke (ISC),
first-time renal failure (FESRD), retinopathy (EYE), amputation (Fin Foot), and death. The
T2DHoc model was built upon the occurrence of complication risks after a diagnosis of
diabetes. Figure 1 presents the logic structure with two layers, where the first layer after
T2D demonstrates the first occurrence of complications and the second layer indicates
the second complication. Therefore, the study aims to describe construction details of
the T2DHoc model through estimating the probability of diabetes-related complications
and the time-to-occurrence from a population-based database. In addition, we also vali-
date this model against the results from Japan, Korean clinical studies, and the UKPDS
Outcomes Model.

Figure 1. Logic structure of a prediction model. Abbreviation: T2D, type 2 diabetes; ASHD, arte-
riosclerotic heart disease; CHF, chronic heart failure; EYE, retinopathy; FESRD, first-time renal failure;
FIN_FOOT, amputation; ISC, ischemic stroke.
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2. Materials and Methods
2.1. Data Sources

The data for the model development were taken from the Taiwan T2DHoc using the
Diabetic Pay-for-performance (P4P) Registry, a subset of the Taiwan NHIRD. The Taiwan
National Health Insurance (NHI) programme initiated in 1995 is compulsory universal
health insurance to provide holistic healthcare to over 99% of Taiwan’s inhabitants. All
contracted healthcare providers are mandated to upload medical claims; the database
contains comprehensive information on insured subjects, including dates of clinical vis-
its, diagnostic codes, details of prescriptions, medical procedures, and expenditure [2,3].
Taiwan’s NHI Administration regularly performs reviews of the system to prevent waste,
safeguard quality, and maintain public healthcare safety and quality [4]. The NHIRD
has been opened to researchers for generating real-world population-based evidence to
test clinical and epidemiological research hypotheses under governmental regulations. It
includes approximately 2.4 million laboratory records, 60 million outpatient records, and
554,000 inpatient records.

In 2001, the NHI Administration launched a pay-for-performance programme to
encourage healthcare providers to deliver high-quality care to patients with T2D. Patients
with T2D and healthcare providers can voluntarily enrol in the program. During the early
period of the program, it cultivated and certified T2D care providers and encouraged them
to increase patient monitoring and follow-up [5]. To verify care quality, the laboratory
data of patient care were uploaded under the T2D P4P scheme. This study was approved
by the Institutional Review Boards of National Chengchi University and National Health
Research Institutes, Taiwan (NCCU-REC-201603-I005 and EC1050505-E). All research
procedures followed the directives of the Declaration of Helsinki. All identifying personal
information was removed from the data files prior to analysis, so the review board waived
the requirement for informed written consent.

In addition, the T2D cohort data were also verified through Kaohsiung Medical Uni-
versity Hospital Research Database (KMUHRD). Kaohsiung Medical University Hospital
(KMUH) is a medical centre located in southern Taiwan, with around 1600 beds and
6000 clinical visits per day in 2015. The KMUHRD, which is managed by the KMUH
Division of Medical Statistics and Bioinformatics, offers comprehensive data of approx-
imately two million patients who attended KMUH from 2009 to 2015, with coverage
on ambulatory care, hospital admissions, dental services, drug-dispensing records, and
biochemical test results. For confidentiality and according to the Personal Information
Protection Act, all personal identifiers were removed, and the authorised researchers only
performed data linkage, processing, and statistical analyses with specified computers
in an independent 24-hr monitored room using encrypted identifiers. In this study, all
diagnoses were coded according to the International Classification of Diseases, 9th Revi-
sion and Clinical Modification (ICD-9-CM). Subjects with type 2 DM (ICD-9-CM codes
250.1–250.9) who were prescribed with hypoglycaemic agents and had an HbA1c level
≥6.5% (≥48 mmol/mol) were included. The clinical definitions of diabetic complications
of T2D patients are summarised in Appendix A.

2.2. Data-Driven Approaches

NHRID stores a huge amount of patient-specific data, including demographic informa-
tion diagnoses, laboratory tests, prescriptions, radiological images, and clinical notes, which
can be extracted via neural networks and deep learning models. Data-driven thinking
and methods which depart from traditional statistical tools or algorithms utilise advanced
computational and mathematical systems to cope with the biomedical data to discover
underlying patterns, disease phenotypes, unanticipated effects, etc. Dynamic intervention
is often involved in healthcare systems. As the population needs change over time or inter-
actions among clinical entities, it is difficult for decision-makers to plan healthcare services.
Thus, with the capability of dealing with the variety and uncertainty in healthcare systems,
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computer-based methods provide a more practical way to model diabetes management
systems without costly and time-consuming experimentation [19–21].

Generally, there are two types of models for building a prediction model—parametric
and nonparametric. Parametric models make assumptions regarding the underlying data
distribution, whereas nonparametric models (and semiparametric models) make fewer or
no assumptions about the underlying distribution. The model developed in this study is a
combination of both, with respective time distributions and transition rates among compli-
cations. A total of 62 (13 + 49) different combinations of complications (endpoints) were
predicted using the T2DHoc risk engine through a discrete-time event micro-simulation
process under the corresponding time horizon of each possible diabetic complication.

Diabetes progression was characterised by changes in a patient’s disease status in
terms of the number of complications that they developed. The number implies the
occurrence of one event that may also preclude the development of another, thus, the major
diabetes progression status of this study includes T2D-associated complications, all-cause
of death, and staying in the same disease state while considering the competing risk events.
Prognostic models with competing risks have been discussed in various studies [22–25].
To tackle the interaction among health states, we analysed the development of these
competing risk events within a single mathematical analytic framework instead of treating
each complication in isolation, which enables us to determine whether one event is more
likely to occur than another. A tree-like structure of patients’ disease progression was set
up as shown in Figure 2, consisting of 62 risk equations representing important pathways
after diabetes has been diagnosed.

Figure 2. A tree structure of diabetes mellitus complications. Abbreviation: DM, diabetes mellitus; ASHD, arteriosclerotic
heart disease; CHF, chronic heart failure; EYE, retinopathy; FESRD, first-time renal failure; FIN_FOOT, amputation; ISC,
ischemic stroke.

The baseline characteristics of each trial have been reported and applied directly as
the characteristic of simulation samples. Conventionally, Weibull distributions are useful
to describe the survival time distribution, which was adopted from the corresponding
literature [26]. The simulation assumes that all time transition variables are Weibull
distributed between health states, but normal distributions are assumed for the standard
error of some risk factors as simulation variates. HbA1c may change during the simulation,
where the value function in Figure 3 is constructed based on clinical data. Table 1 gives
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the distribution of values of key risk factors, including low-density lipoprotein (LDL),
systolic blood pressure (SBP), urine, etc., which were assumed to reach the corresponding
treatment target in the first year and used as input parameters for hypothetical patients.
Some risk factors are assumed constant for each patient individually in the simulation.

Figure 3. HbA1c values change with respect to time at different ages where the HbA1c value is a function of age ‘a’ and
duration ‘t’, where θ, ϕ, and ψ are coefficients of this regression function.

Table 1. The baseline of the new diagnosis of diabetic subjects in the program of diabetic pay for performance in 2002–2016.
Data represented as mean and SD, and count and proportion for continuous and categorical variables, respectively.

Cohort 2002–2007 2008–2010 2011–2014 2015–2016 p Value

n 48,026 18,369 54,250 42,807 <0.001

Age, mean (sd) 55.3 (13.1) 54.9 (13.3) 55 (13.6) 54.9 (13.6) <0.001
00–19, n (%) 375 (0.8) 206 (1.1) 707 (1.3) 471 (1.1) 0.02
20–39, n (%) 4587 (9.6) 1892 (10.3) 5978 (11.0) 5109 (11.9) 0.03
40–64, n (%) 31,003 (64.6) 12,209 (66.5) 35,359 (65.2) 27,164 (63.5) 0.019
65–74, n (%) 8441 (17.6) 2730 (14.9) 8162 (15.0) 7036 (16.4) 0.03
75+, n (%) 3573 (7.4) 1315 (7.2) 4008 (7.4) 2988 (7.0) 0.007

Male, n (%) 26,469 (55.1) 10,027 (54.6) 30,111 (55.5) 24,127 (56.4) 0.012
Female, n (%) 21,510 (44.8) 8325 (45.3) 24,103 (44.4) 18,641 (43.5) 0.012

HbA1c % 8.0 (20) 7.8 (1.9) 7.8 (2.0) 7.7 (1.9) <0.001
SBP mmHg 132.1 (19.1) 130.8 (17.7) 130.6 (17.1) 131.1 (17.1) <0.001
DBP mmHg 80.7 (13.1) 79.6 (13.3) 79.5 (15) 79.3 (13.9) <0.001
Height, cm 161.2 (8.8) 161.8 (9.1) 162.3 (9.3) 162.5 (9.5) <0.001
Weight, Kg 68.3 (13.5) 69.4 (14.3) 70.2 (15.4) 70.5 (15.6) <0.001

BMI 26.2 (4.3) 26.4 (4.4) 26.5 (4.7) 26.5 (4.6) <0.001
Pulse (time) 79.9 (14.8) 80.5 (12.2) 81.1 (12.4) 81.8 (12.8) <0.001

Laboratory data
LDL, mg/dL 121.7 (98.8) 115 (36.6) 114.3 (37.5) 113.8 (38.5) <0.001
BUN, mg/dL 20.7 (24.8) 14.9 (4.6) 16.1 (6.6) 14.4 (5.1) <0.001
HDL, mg/dL 45.7 (12.8) 46.8 (12.5) 45.7 (12.1) 44.9 (11.7) 0.02

Urine acid, mg/dL 5.8 (1.8) 5.8 (1.7) 5.7 (1.6) 5.6 (1.8) <0.001
Creatinine, mg/dL 1.0 (0.5) 0.9 (0.4) 0.9 (0.4) 0.9 (0.4) <0.001

Albumin, g/dL 3.8 (1.6) 4.4 (0.6) 4.5 (4.9) 5.1 (5.3) <0.001
Total cholesterol, mg/dL 198.8 (48.2) 188.1 (43.2) 186.3 (45.5) 186.6 (47.1) <0.001

Triglyceride, mg/dL 178 (140.3) 166.3 (126.7) 171.4 (138) 174.8 (143.3) 0.009

Urine
microalbumin, mg/dL 53.1 (216.2) 48.2 (208.8) 55.1 (234.3) 59.4 (245.5) <0.001

>30, n (%) 3205 (6.7) 1623 (8.8) 6845 (12.6) 6990 (16.3) 0.12
>300 n (%), 462 (1.0) 240 (1.3) 1021 (1.9) 1093 (2.6) 0.047
>3000, n (%) 15 (0.0) 5 (0.0) 42 (0.1) 46 (0.1) 0.012

Urine protein, >0.05 g/24 h, 6313 (13.1) 2362 (12.9) 7129 (13.1) 1196 (2.8) 0.15
Urine protein >1 g/24 h, n (%) 802 (1.7) 505 (2.7) 1908 (3.5) 155 (0.4) 0.09

Urine protein >10 g/24 h, 354 (0.7) 131 (0.7) 711 (1.3) 75 (0.2) 0.05
Urine protein in g/24 h, mean (sd) 34.7 (89.8) 22.2 (107.3) 37.9 (256.8) 20.2 (63.8) 0.014

Abbreviation: HbA1c, glycosylated haemoglobin A1c; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index;
LDL, low-density lipoprotein; BUN, blood urea nitrogen; HDL, high-density lipoprotein.
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The prediction model is based on computer simulation techniques, a method of mod-
elling the progression of T2D and predicting long-term disease outcomes. The development
of the simulation model involved (1) re-estimating, over a longer duration of follow-up,
the 13 risk equations for complications ASHD, ISC, CHF, Fin Foot, EYE, FESRD and those
combinations, and (2) estimating the following risks after the first complication, which
involves constructing sixty-two new equations (13 + 49) and some follow-up events.

2.3. Building Risk Equations

In this analysis, a proportional hazards Weibull regression model was used to model
diabetes-related complications with a baseline hazard:

h0(t) = λ κ tκ−1 (1)

where κ is a shape parameter, and the scale parameter is λ = exp(β0) which is expressed by
the exponential intercept coefficient β0. According to the proportional hazards assumption,
the hazard of an event at time t is:

h(t|X(t)) = h0(t) exp(X(t) ∗ β) (2)

where X(t) is a vector of covariates and β is a vector of associated coefficients. The unknown
parameters requiring estimation are λ, κ, β0 and β. Some of these covariates (such as
starting age and sex) remain constant as time elapses, while others potentially vary over
time (such as HbA1c and SBP).

For each risk factor k, a regression learning algorithm by Bayesian approach finds
βk(i, j) associated with Xk to represent a risk score during the time interval (t0, t1) bore by
the patient of age a from health state i to state j (one complication). Here, for each pair (i,j)
were required survival distributions assuming that no other event was possible. Then, a
time was sampled for each event and the earliest time determines which event happens.
This is implemented by taking other events as censored events and the other times are
discarded. Namely, a risk score at time t between the time period t0 < t ≤ t1 yields this
patient a quantified value Ra that indicates the impact of this specified complication under
health conditions Xk, k = 1,2, . . . , p:

Ra(t, i, j) = β0 + ∑
k

βk(i, j) Xk(a, t), (3)

where Xk(a, t), βk(i, j) are explanatory variables (k = 1, ..., p) provided there are p cofactors
to consider in this model. The Cox proportional hazard regression expression can be
written as:

Ca(t, i, j) = exp(Ra(t, i, j)) (4)

According to the corresponding conditional assumptions, we suggest a risk equation
that would be expressed by, t0 < t ≤ t1:

ra(t, i, j)= 1− exp{[H(t0)− H(t1)]Ca(t, i, j)} (5)

provided that the accumulated hazard rate at time t is, H(t). Model Equation (5) denotes the
probability (risk) of a complication event during (t0, t1) for a patient with newly diagnosed
diabetes, in the absence of death from causes other than this specific complication. Infor-
mation retrieved from the collected data provides the essential details to the mechanism
governing these transitions and serves as the major modelling tool in this study.

Predicted values of Ra were used in conjunction with the event equations to complete
the simulations. This means that H(t) may be estimated for a specific diabetes complication,
such as CHF status equation or ISC from the diagnosis of diabetes [27]. The detailed
description and methodology used for the prediction model are given in Appendix B.

Confidence intervals presented in this paper are based on a two-stage process of
evaluation. Firstly, the original data used to fit the risk equations were bootstrapped, and
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the risk equations refitted, and the coefficients recorded. Repeating this process many
times generated a vector of coefficients that represented the parameter uncertainty in those
coefficients, also accounting for the covariance between risk equations. As the model was
applied to predict lifetime outcomes of P4P patients, in the second stage, we treated the
predictions as imputations of missing values, in that we were predicting values that were
not observed. Standard methods for combining the results of multiple imputations [28]
were then employed, including a bias correction to adjust for the relatively small number
of multiple imputations performed.

2.4. The Simulation

Based on the T2DHoc model, the computer simulation was executed by a cohort profile
of hypothetical patients with the initial description of demographic characteristics and
baseline risk factors as given in Table 1. In the simulation of diabetes disease, hypothetical
patients were created based on random baseline risk factors. Patients have attributes in
which each individual has a specific value for each characteristic set at the start of the
simulation and may be updated as events occur, such as age increases, disease severity
decreases, the number of risk events being incremented, etc. For example, HbA1c changes
according to the function in Figure 3, or disease duration follows the time distribution given
in Equation (2). The flowchart of the simulation procedure is shown in Figure 4. When a
hypothetical patient is created, a future state is randomly chosen by a functional distribution
with the best-fit parameters by the data set. A method to select the next occurring event
was chosen through sample times for each possible event and the minimum chosen, namely
following the logic according to which event was first to happen. Accordingly, the duration
of this disease was also determined for this patient. An explicit simulation clock keeps track
of the passage of time. If the future state is death, then this patient goes to the condition of
the patient death box shown in Figure 4. Otherwise, the patient continues the course of the
disease with age and a future state in the simulation is selected.

In all subsequent cycles, risk factors generate random effects through Ra and H(t)
such that a pair of health states (i,j) takes place at different times continuously for each
patient. Moving forward with time, the simulation mimics disease progression by creating
diabetic complications one by one until death occurs, or the simulation is terminated
depending on whichever comes first. By this procedure, the simulation can model the
disease progressive pathway of an individual. The micro-simulation was conducted using
a joint programme written in Python and Excel. Accordingly, each hypothetical patient
generates their trajectories over time by simulation. The simulation was conducted with
12,000 patients over the time horizon to produce cumulative incidences consisting of data
corresponding to observations of NHIRD. While running the simulation, the model was
verified by comparing the simulation outcomes with the observations. All simulation runs
were used to reach convergence in outcomes, with an ordinary least-square model used to
fit the T2DHoc predicted incidence rates to observed incidence rates, and slope, intercept,
and R2 were used to evaluate prediction accuracy. After the simulation experiments
with the expected risk factors in representative populations generated hypothetically
from the patient characteristics, a set of diabetes durations and a reasonable level of
complications were collected and used to predict the diabetic risks of diabetic patients with
the same conditions.
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Figure 4. Flowchart of nonhomogeneous Markovian simulation for diabetes mellitus complications.

2.5. Internal and External Validation

According to the best practice recommendations by the International Society for
Pharmacoeconomic Outcomes Research and the Society for Medical Decision-making
Task Force [29,30], model transparency and validation, in particular, are most important.
T2DHoc maintains transparency, since its development begins on the first day. Public health
data on which the model is based are always available on request by anyone who has
permission issued by NHIRD. In addition, the model is open to internal researchers who are
investigators of NHID projects. The model validation involved face validity, verification,
cross-validity, external validity, and predictive validity. For a general face validation of
this model, we consulted with diabetologists/endocrinologists to ensure that the model
was constructed to reflect and be used according to their expectations. Model verification
was performed to ensure that there were no unintentional computational errors and each
equation as well as the programme codes were checked by the model implementation.

In general, internal validation is designed to assess whether the model output is inter-
nally consistent with the studies of the data sources used to model the disease progression.
The model construction with an interaction framework was examined by endocrinologists,
nephrologists, cardiologists, and other related field experts. Moreover, the model equations
with parameters were selected through sufficient statistical tests conducted by the SAS
software. The model framework and assumptions were examined, and the definition, as
well as the use of parameters embedded in each risk equation, were reviewed. After face
validation and functional specification as described above, model verification was executed
and evaluated by comparison using Equation (5), where the parameter calibration was
applied for numerical stability. The calculation of cumulative incidence in the competing
risk analysis was carried out by computation in Python.
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3. Research Findings
3.1. Model and Patient Characteristics

The characteristics of diabetic patients are shown in Table 1. In summary, 163,452 T2D
patients were included; 44.40% were female. The mean diagnosed age and diabetes history
were 54.00 ± 11.86 (range: 18.51, 98.07) and 5.56 ± 6.28 (range: 0, 61.51) years, respectively.
The mean baseline HbA1c level was 7.8 ± 2.10%; body mass index (26.481 ± 3.97 kg/m2),
triglycerides (172.64 ± 135.51 mg/dL) and LDL (116.13 ± 35.28 mg/dL) were
slightly higher than the normal range; systolic (130.65 ± 18.16 mmHg) and diastolic
(79.77 ± 13.82 mmHg) blood pressures were within the normal ranges. Patients with a
history of diabetic complications and risk factors were identified and collected. In the
simulation, the factors and biomarkers were labelled as shown in Table 2. The patient
disease pathways over ten years were collected as completely as possible to study the
natural course of prolonged T2D complications and inconsistent fragmented data, and
solely trace patients first enrolling P4P programme between 2002 and 2005 were excluded.
In total, 12,242 patient pathways with at least one complete pathway were identified. The
data collection procedure is outlined in Figure 5.

Table 2. General characteristics of T2D patients in NHIRD of Taiwan.

Regression Model
Coefficients Mean Standard Deviation Definitions/Values

AGE 55.05 13.4 Age in years at diagnosis of diabetes
Male (1,0) X 1 for male; 0 for female
e_ht (1,0) X 1 for history of Hypertension; 0 otherwise

e_cva (1,0) X 1 for a history of Stroke; 0 otherwise
e_chf (1,0) X 1 for a history of Congestive Heart Failure; 0 otherwise

e_ashd (1,0) X 1 for a history of Arteriosclerotic Heart Disease; 0 otherwise
HBA1C 7.84 1.99 HbA1c (%), 5-year moving average of monthly values

Base_SBP 126.1 31.1 Systolic blood pressure at diabetes diagnosis (mm Hg)
BMI 26.4 4.4 Body mass index at diabetes diagnosis (m/kg2)

BLDL 116 36.9 Low-density lipoprotein at diabetes diagnosis (mg/dL)
BHDL 44.8 13.87 High-density lipoprotein at diabetes diagnosis (mg/dL)

BCHOL_T 191 53 Total cholesterol at diabetes diagnosis (mg/dL)
BTG 174 139 Triglycerides at diabetes diagnosis (mg/dL)

BCREAT 0.9 0.46 Serum creatinine at diabetes diagnosis (mg/dL)
UMICRO 50.1 377 Urine microalbumin diabetes diagnosis (mg/dL).

Figure 5. Process of identifying eligible patients’ pathways in analysis. Abbreviation: T2D, type 2
diabetes mellitus.
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3.2. Processed and Final Outcomes

The changes in HbA1c levels or at different time points can have different implications
for the clinician or diabetic complications [19]. As one of the prediction functions in our
investigation, a level function HbA1c of time was built depending on patient age (Figure 3).
Among the possible diabetic risks, the total number of initial complications identified
included 2015 cases with ASHD (16.5%), 827 cases with CHF (6.8%), 549 cases with ISC
(4.5%), 2219 cases with FESRD (18.1%), 246 treatments for a detached retina or vitreous
haemorrhage and 7241 all-causes, with recurrent events including 284 cases with ASHD
(14.1%), 59 cases with CHF (7.1%), 22 cases with ISC (4.0%), 2924 cases with IHD, and
1158 cases with ESRD (Tables 3 and 4). However, if we consider the complication risks
within 5 years, then the number of events occurring at the first layer and the second layer
are shown in Tables 5 and 6.

Table 3. Incidence proportion of study complications in the patients with type 2 diabetes mellitus
within 15 years.

ASHD FESRD CHF ISC EYE FIN_FOOT

16.5% 18.1% 6.8% 4.5% 2.0% 1.0%
Abbreviation: ASHD, arteriosclerotic heart disease; CHF, chronic heart failure; EYE, retinopathy; FESRD, first-time
renal failure; FIN_FOOT, amputation; ISC, ischemic stroke.

Table 4. The recurrence proportion of study complications in type 2 diabetes mellitus within 15 years.

RE_ASHD RE_CHF RE_ISC

14.1% 7.1% 4.0%
Abbreviation: ASHD, arteriosclerotic heart disease; CHF, chronic heart failure; ISC, ischemic stroke.

Table 5. Incidences of first layer complications or death in type 2 diabetes mellitus over 5 years.

First Layer after DM

Complication ASHD CHF ISC FESRD EYE
Observations 1363 308 415 2073 218

Complication FIN_FOOT ASHD + CHF ASHD + ISC CHF + ISC ASHD + CHF + ISC
Observations 96 410 69 20 14

Complication FESRD CHF + FIN DEATH Observations: 12,242
Observations 9 3 7241

Abbreviation: ASHD, arteriosclerotic heart disease; CHF, chronic heart failure; DM, diabetes mellitus; EYE, retinopathy; FESRD, first-time
renal failure; FIN_FOOT, amputation; ISC, ischemic stroke.

Table 6. Re-occurrences of study complications or death in type 2 diabetes mellitus over 5 years.

Second Layer after DM

Complication ASHD CHF ISC FESRD EYE
Observations 315 100 41 131 46

Complication FIN_FOOT FESRD DEATH
Observations: 2821Observations 14 1036 1128

Abbreviation: ASHD, arteriosclerotic heart disease; CHF, chronic heart failure; DM, diabetes mellitus; EYE,
retinopathy; FESRD, first-time renal failure; FIN_FOOT, amputation; ISC, ischemic stroke.

3.3. Internal Validation

(1) Taking ASHD as an example, the analysis showed that the proportion of diabetes
complicated by ASHD at 55–60 years of age varies as age increases from 0.05 to 0.1.
A comparison of the actual incidence of ASHD and the simulation ratio was almost
the same at 55–56 years old; 57–58 is slightly lower but still within the prediction
interval, and the actual incidence of complications at 59–60 years old is higher than
the simulated ratio.
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(2) Comparison and display of the simulation analysis

(a) The first actual concurrent ASHD and simulation results were 2015 and 2268 pa-
tients, with an annual rate of 0.0114 and 0.0128, respectively, there were 284 re-
lapses and 309 patients, with an annual rate of 0.0016 and 0.0017, respectively.

(b) The first actual concurrent stroke and simulation results were 549 and 594 pa-
tients, with an annual rate of 0.0031 and 0.0033, respectively, there were 22 re-
lapses and 29 patients, with an annual rate of 0.0001 and 0.0002, respectively.

(c) The first actual concurrent CHF and simulation results were 828 and 780 pa-
tients, with an annual rate of 0.0047 and 0.0044, respectively.

(d) The first actual concurrent renal failure and simulation results were 2250 and
2268 patients, with an annual rate of 0.0127 and 0.0128, respectively.

(3) A comparison of the simulated incidence rates of the first complication and overall
deaths with observations in 10 years is presented in Figure 6. From the observational
data, the prediction gap of FESRD was the smallest, e.g., underestimated 0.3%, and
the prediction gap of retinopathy the largest, e.g., overestimated by 3.2%. Most of the
predicted complication rates were higher than the actual rates, with gaps of 1.30% for
death, 2.60% for ASHD, 3.20% for retinopathy, and 2.90% for ASHD + CHF, 2.00%
difference in infarct stroke, 1.80% difference in CHF, 1.70% difference in diabetic am-
putation, 0.00% difference in CHF + infarct stroke, 0.10% difference in CHF + diabetic
amputation. The difference between atherosclerosis heart disease + infarct stroke was
0.20%. A similar accuracy is shown when further applying it to predict recurrent
complications (Figure 7).

(4) The distribution of prediction error by complications and death rate is shown in
Figures 8 and 9. The error ranges between the overall simulation results, and the
actual observations were within 5% of the predicted value of complication and death
rate and the observation quality. Suppose the average absolute percentage error
was used for evaluation, and only 5 out of 10,000 events included. In that case,
ASHD, death, and ESRD are within the generally accepted 30% range. Moderate
complications are the incidence of stroke and CHF, with the incidence of foot lesions
being highly overestimated.

Figure 6. Comparisons of incidence rates estimation for observation vs. simulation over the course
of 10 years.
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Figure 7. Comparison of recurrence rate estimation for observation vs. simulation over the course of
10 years.

Figure 8. The average absolute error of the first event (complication or death) after diabetes diagnosis between the simulation
and observations in 10 years.
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Figure 9. Average absolute percentage error of the first event (complication or death) after diabetes diagnosis between the
simulation and observations in 10 years.

For example, the model estimates the cardiovascular risk from the T2DHoc risk engine,
reflecting the disease progression of T2D patients in the P4P programme. The internal
validation of the current T2DHoc risk engine can be shown by checking 5-year occurrences
of each complication after the diagnosis of diabetes in Table 7. For further validation
for a long-term prediction, we examine the incidence rate and recurrence of risks within
10 years. In a long-term prediction, ASHD+CHF with the event rate predicted by the risk
engine was close to the observed rate, indicating that the model accurately predicts; the
prediction confidence intervals may vary with different complications depending on health
conditions, but the model has captured the disease progression trend.

Table 7. Simulation results versus observations for study complication in type 2 diabetes mellitus over 5 years.

Complication ASHD CHF ISC FESRD EYE DM + Unclassified

Estimation by Simulation 1940 391 364 1199 646 60
Observation 1363 308 415 2073 218 118

Complication FIN_FOOT ASHD+CHF DEATH
Estimation by Simulation 109 491 7033 12,233 hypothetic patients in a 5-year simulation

Observation 96 410 7241 12,242 patients in observation in 5 years

Abbreviation: ASHD, arteriosclerotic heart disease; CHF, chronic heart failure; DM, diabetes mellitus; EYE, retinopathy; FESRD, first-time
renal failure; FIN_FOOT, amputation; ISC, ischemic stroke.

3.4. External Validation

External validation was conducted by comparing different models, such as UKPDS [14],
Osaka model [31], the Korean model, and the Hong Kong model, by comparing the risk
events predicted by the model, with observed clinical outcomes from research studies that
were not directly used to inform disease progression.
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(1) The well-known Japanese diabetes literature [31] regarding T2D clinical trials from
1995 to 1996 involves a total of 2205 people aged 40–70 years old with HbA1c>6.5%
who were randomly assigned to a lifestyle intervention group and conventional
treatment group. All patients have initial data for both groups. Two sets of initial
data were used in the Taiwan diabetes model to simulate 5000 hypothetical patients
and compare the complication rates. From the literature, after 7.8 years of follow-
up, the incidences of complications in the intervention group were coronary heart
disease: 7%; stroke: 10%; nephropathy: 6.7%; eye lesions: 29% and in the control
group was arterial heart disease: 7%; stroke: 6.5%; nephropathy: 6.7%; eye disease:
35.7%. Simulation results of the intervention group were coronary ASHD: 10.3%; ISC:
2.6%; ESRD: 1.1%; eye disease 3.6% and the simulation results of the control group
were coronary ASHD: 10.9%; ISC: 2.0%; ESRD: 0.8%; eye disease: 3.8%. Since this
generation of nephropathy was defined as proteinuria (UACR>300 mg/g), and ocular
lesions were defined as the diagnosis of clinical tests (phases 1–4), it is different from
the diagnosis code and the definition of dialysis in the Taiwan diabetes model, so the
observed values were much higher than the predicted values.

(2) South Korea collected 732 diabetic generations from Boramae Hospital in 2006 for
6 years [32]. It was observed that 43 (6.6%) patients developed coronary heart disease,
and the use of the UKPDS risk formula would lead to the overestimation of the disease
risk of patients. The patients’ initial data were used in the Taiwan diabetes model to
simulate 5000 hypothetic patients and estimate coronary ASHD for 6 years, and the
result was 6.8%, consistent with the observed ratios.

(3) Diabetes generation clinical trials in Hong Kong were developed in 1995, with a total
of 7534 patients with T2Dcollected (the average course of diabetes was 7.1 years, and
the prevalence rate of hypertension was 70%) [33]. They were tracked for 5 years
and have targeted different common types of diabetes. According to the literature,
the numbers of major complications in this generation within 5 years were death:
763; coronary heart disease: 377; stroke: 362; diabetic nephropathy: 693; CVD: 1120;
ESRD: 282 and the percentage of major complications was death: 10.13%; coronary
heart disease: 5%; stroke: 4.8%; diabetic nephropathy: 9.2%; CVD: 14.87%; end-
stage renal disease: 3.74%. These data were used in the Taiwan diabetes model for
simulation revealing death: 1862; coronary ASHD: 1142; ISC: 446; ESRD: 445, whereas
the percentage of major complications was death: 17.2%; coronary ASHD: 11.4%;
ISC: 4.46%; ESRD: 4.5%. The death rate by simulation was slightly higher than the
observed values. The predicted rate of stroke, coronary ASHD, and ESRD was slightly
higher than the observed rates.

The external validation studies selected in this study represent a broad range, includ-
ing observations of each complication risk with duration, as well as collected data from
disease progression. The specific external validation studies included in this analysis were:
National Health dataset, clinical datasets. The external validation has shown the compari-
son of the T2DHoc and UKPDS by 3867 UK patients which is illustrated in Figure 10. The
UKPDS results mentioned above also support the use of the current risk engine.

Data from the literature were compiled for comparing the discrete event simulation
for advanced Asian countries, showing that subjects in South Korea and Japan were older
than subjects in Taiwan. The mean values of HbA1c, SBP, and HDL cholesterol were
lowest in South Korea and highest in Japan. The mean value of triglycerides was lowest
in Japan and highest in Taiwan. Limited information on LDL cholesterol in Japan and
South Korea and limited information on serum creatinine and urine albumin in Japan,
South Korea, and Hong Kong were noted. The simulation data of the three countries are
hypothetically assumed to be the same as the Taiwanese values. We further compared the
main complications listed in this plan to the original definition of diabetes in Asian coun-
tries. The definition of complications for Japanese diabetics mainly uses clinical diagnostic
criteria to define major complications, while Hong Kong defines complications, compared
to Taiwan, are based on diagnosis codes. South Korea’s definition of complications is
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based on retrospective medical history. Based on the differences in the four definitions, the
Taiwan model was found to be more comparable in terms of the definition of ASHD for the
diabetes generation in other advanced Asian countries. Hong Kong is better than Japan in
the sense of advanced research on diabetic complication development, and Japan is better
than South Korea. The comparability of the definition of stroke and nephropathy is that
Hong Kong is better than Japan. It is worth noting that the ratio of death to ASHD model
predicted value is much higher than the observed value, which may be related to medical
ecology, and the actual cause remains to be clarified.

Figure 10. Comparison of incidence rates estimation of diabetic complications for UKPDS vs. T2DHoc models with
3867 hypothetical patients in 10 years. Abbreviation: ASHD, arteriosclerotic heart disease; CHF, chronic heart failure; T2D,
type 2 diabetes mellitus; EYE, retinopathy; FESRD, first-time renal failure; FIN_FOOT, amputation; ISC, ischemic stroke.

4. Discussion

The study successfully extracted information from a long-lasting trial, with more than
163 thousands participants following up 16 years. A good predicted complication and
mortality rates were approved against the setting observed numbers of complications or
death in the original cohort. In addition, better and optimal predictabilities were further
confirmed when compared to the UKPDS Outcomes model and applied the model to other
Asian populations, respectively.

The T2DHoc is based on more comprehensive follow-up data as it captures more
outcomes has significant advantages over existing models, and more comprehensively
captures the progression of diabetes. It permits detailed and reliable lifetime simulations
of key health outcomes in people with T2D, especially for Asian societies. The predicted
event rates for complications by the T2DHoc model are slightly lower than most existing
models, despite estimated rates in those models often being overshot. The results suggest
that applying recently developed models to clinical practice should pay some attention to
their intrinsic variations such as data source, operational definitions, time-span, complexity,
and feasibility. Undoubtedly, our model derived from practical data shows a large promise
to shrinkage the abovementioned gaps. However, more research on methods in selecting
models by clinically usefulness index is needed.

Previous studies have pointed out that T2D models mainly developed using Western
patients do not appropriately reflect the risks of CVD and renal disease in the Asian
population [34,35]. It is reasonable to suspect that ethnicity, genes (ALDH2 deficiency),
environmental factors (birth cohort effects: World Wars, PM 2.5 pollutants, food habitats),
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as well as healthcare systems are highly involved in the accuracy of a prediction model [36].
Although the definitions of selected complications are different, the T2DHoc model shows
better performances than the UKPDS Outcomes model or Framingham risk score when
applying them to the Asian T2D population. Further studies to compare performances of
current models developed in the Western population and ours in more Asian ethnicities
such as Australian T2D patients are required.

The T2DHoc model has several advantages. First, it simultaneously takes many major
complications, absorbed status (death), and their dynamic time relationship within a single
analytic framework. Thus, information on complications is collected more comprehensively.
Then, the dynamic relationships between age and HbA1c levels were established and
incorporated into the model structure, allowing more flexibility for practical applications.
Finally, the follow-up time in the current study is obviously longer than for other models
developed from data collecting by clinical trials. The accuracy for complications that need
more time to be observed, such as renal failure, should be largely improved.

Some limitations of the study should be recognized. The study mainly takes laboratory
data at baseline rather than consequent medication change for the model development,
which makes us not able to understand the influences of medication use on the probabilities
of health state change. For example, patients who used cardiovascular prevention drugs
(such as antiplatelet drugs, renin-angiotensin-aldosterone blockade, and beta-blocker) may
change the probability of experiencing the first ASHD (heath state j) from baseline (health
state i). Although adding information on medication usage may enhance the current
model’s performance, medication use changes over time and is modified depending on the
patient’s conditions, making our model more difficult to understand and practically apply.
In addition, due to a long observed time, we could not rule out and quantify the influences
of the T2D care improvements (new drugs) over time on our results.

5. Conclusions

Model building is an iterative process, and models need to be updated as new informa-
tion becomes available. The T2DHoc was based on P4P data collected from 2002 up to now.
Additional information collected during the P4P 10-year period provided an opportunity
to update the simulation model and to incorporate data on new risk factors and outcomes
that were unavailable when other diabetes prediction models were constructed.

The progression of diabetes in Asian patients is different from that reported in western
countries. For Asian patients, ASHD, chronic kidney disease, and stroke are the most
likely first complications to occur than CHF, ASHD, retinopathy, and amputation. Risks
of developing a further complication vary according to patients’ existing complication
profiles. Patients with an existing cardiovascular complication or retinopathy have a higher
risk of developing ASHD and chronic kidney disease. These results inform clinical decision-
making regarding prioritising monitoring and interventions for diabetic patients who are
at high risk of developing severe complications in this region.

The study demonstrates how a simplified whole disease model approach can be
applied to rare diseases to provide the disease burden estimation, serving as an information
tool for payers, for diseases with small patient volume and an unknown cost burden.
Additionally, machine learning, data mining, and text mining can be applied to data
contained in electronic health records to further research other diseases.

Though efficacy and safety were not taken into account in this model, we believe that
it still provides a good understanding of resource utilisation and costs of conditions with
poorly documented epidemiology and disease burden. The enormous economic burden of
type 2 diabetes mellitus T2D can be reduced by implementing inexpensive, easy-to-use
interventions, such as joining a diabetes prevention programme.

T2DHoc is a prediction model with a single analytic framework suitable for predicting
T2D risks, both for long-term and short-term complications. This pilot study demonstrated
that non-homogeneous-based modelling is useful for T2DHoc modelling. Further research,
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including the most updated treatments, should be sustained to complete the disease process
of T2D with diabetes management.
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Appendix A

Clinical Definition of Diabetic Complications

• Retinopathy

◦ Diabetic retinopathy is a primary cause of blindness worldwide, and this seri-
ous complication of diabetes is already present at the time of clinical diagnosis
of type 2 diabetes in some patients.

◦ In the Wisconsin Epidemiologic Study of Diabetic Retinopathy, 3.6% of patients
with type 1 diabetes and 1.6% of patients with type 2 diabetes were blind.

◦ It is recommended that patients with type 2 diabetes have an initial compre-
hensive eye examination by an ophthalmologist or optometrist shortly after
being diagnosed with diabetes.

• Neuropathy

◦ Diabetic peripheral neuropathy is frequent, and 50% of people with type 2
diabetes have neuropathy and therefore are at risk of developing diabetic
foot ulcers.

◦ Diabetic neuropathy is known by the American Diabetes Association as “the
presence of symptoms and/or signs of peripheral nerve dysfunction in peo-
ple with diabetes after the exclusion of other causes.” A foot ulcer is one of

https://www.mdpi.com/article/10.3390/info12080326/s1
https://www.mdpi.com/article/10.3390/info12080326/s1
https://www.nhi.gov.tw/content_list.aspx?N=2d2faf5214807829&topn=787128dad5f71b1a
https://www.nhi.gov.tw/content_list.aspx?N=2d2faf5214807829&topn=787128dad5f71b1a
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the major complications in patients with diabetes, with a 15% lifetime risk
of amputation.

• Nephropathy

◦ Diabetic nephropathy is the leading cause of renal failure in the United States.
◦ The kidneys begin to leak, and albumin passes into the urine. This can be

preceded by lower degrees of proteinuria or microalbuminuria and can proceed
to renal failure in the worst case.

◦ Identification of people at high risk of rapid decline in renal function is impor-
tant, and evidence-based interventions have been shown to prevent or slow
the development toward advanced stages of nephropathy.

• Heart Disease

◦ Diabetes is a well-known risk factor for coronary heart disease. Diabetes adds
an about 2-fold risk for a wide range of vascular diseases, independently of
other conventional risk factors.

◦ Much research has been conducted to develop predictive models or risk scores
for at-risk individuals from the general population. One of the best models is
the Framingham score (link), which has been widely accepted and includes
diabetes as a predictor.

• Hypoglycemia

◦ People with type 1 diabetes often experience episodes of hypoglycaemia be-
cause they need to reduce the level of blood sugar by using insulin. Addition-
ally, patients with type 2 diabetes may experience episodes of hypoglycaemia
because of the increasing use of insulin in this group.

◦ The fear induced by hypoglycaemia is pronounced, and the clinical results
of this condition are serious. The literature suggests that the incidence of
hypoglycaemia requiring emergency assistance reaches 7.1% per year among
patients with diabetes and that as many as 6% of all deaths in patients with
type 1 diabetes are due to hypoglycaemia.

• Insulin-Associated Weight Gain

◦ In most patients with type 2 diabetes, it will eventually be necessary to be-
gin insulin treatment to achieve the therapeutic goal of HbA1c < 7 mmol/L
(126 mg/dL). The problem of weight gain induced by insulin has long been
documented as an issue in diabetes treatment.

◦ In the Diabetes Control and Complications Trial (DCCT), the average weight
gain of patients with type 1 diabetes undergoing intensive treatment was 5.1
kg compared with 2.4 kg in the standard treatment arm, and similar results are
seen for type 2 diabetes.

Appendix B. An Explanation of Markovian Approach

Appendix B.1. The Basic Computational Model

In this appendix, the Markov modelling approach is applied to consider the progres-
sion of diabetes disease with complications. Here, the primary purpose is to introduce the
mathematical notations and formulae used in the paper. For detailed treatments to these
topics, they may be referred to [27].

Consider a sequence of random variables Y = {Yn, n ∈ N ∪ {0}} defined on a prob-
ability space (Ω,F, P) with a finite set {s0} ∪ E = {s1, s2,, · · · , sm} for m < ∞, where N
is the set of all positive integers. In our case, a unit cycle is defined as one month and
E = {ASHD, CHF, ISC, FESRD, EYE, FINFOOT, ASHD + CHF, ASHD + ISC, CHF +
ISC, ASHD + CHF + ISC, ESRD, DEAD}. The state symbols are defined and shown in
Table A1.
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Table A1. Symbols of the states.

Disease State Symbol

DM s0
ASHD s1
CHF s2
ISC s3

FESRD s4
EYE s5

FIN_FOOT s6
ASHD + CHF s7
ASHD + ISC s8
CHF + ISC s9

ASHD + CHF + ISC s10
ESRD s11

CHF + FIN_FOOT s12
DEATH s13

Abbreviation: ASHD, arteriosclerotic heart disease; CHF, chronic heart failure; DEAD, death; DM, diabetes
mellitus; EYE, retinopathy; FESRD, first-time renal failure; FIN_FOOT, amputation; ISC, ischemic stroke.

According to Grossetti et al. [27] and Equations (1)–(4) in our paper, a risk equation
from state i at age a to state j during time t is defined in Equation (5). For example, a risk
equation from ASHD to j, j ∈ E, where t ∈ (t0, t1)

ra(t, ASHD, j) =
(

1− exp
(

σ(ASHD, j)×
(
(t− 1)c(ASHD,j) − tc(ASHD,j)

)
× Ca(t, ASHD, j)

))
where σ (ASHD, j) denotes the scale and c (ASHD, j) denotes the shape of Weibull dis-
tribution from ASHD to j, respectively. Table A2 illustrates those parameters of Weibull
distributions that have been excerpted from NHIRD associated with all possible states
for the T2DHoc model. In addition, Ca(t, ASHD, j) is computed by Ca(t, ASHD, j) =
exp(Ra(t, ASHD, j)), where

Ra(t, ASHD, j) = ∑ βi(j)xi + βHbA1c(j)× xHbA1c(a, t) + βage(a, t, j).

Table A2. Weibull distribution with associated parameters from diabetes mellitus to different states.

DM−−> Distribution Parameter Symbol Estimate

ASHD + CHF + ISC Weibull Threshold Theta 416.999

ASHD + CHF + ISC Weibull Scale Sigma 253.4067

ASHD + CHF + ISC Weibull Shape C 0.339735

ASHD + CHF + ISC Weibull Mean 1833.863

ASHD + CHF + ISC Weibull Std Dev 5953.267

ASHD Weibull Threshold Theta −24.101

ASHD Weibull Scale Sigma 842.6903

ASHD Weibull Shape C 1.664991

ASHD Weibull Mean 728.9132

ASHD Weibull Std Dev 464.655

ASHD + CHF Weibull Threshold Theta −23.4148

ASHD + CHF Weibull Scale Sigma 864.1454

ASHD + CHF Weibull Shape C 1.669587

ASHD + CHF Weibull Mean 748.6106
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Table A2. Cont.

DM−−> Distribution Parameter Symbol Estimate

ASHD + CHF Weibull Std Dev 475.191

ASHD + ISC Weibull Threshold Theta −144.766

ASHD + ISC Weibull Scale Sigma 1017.946

ASHD + ISC Weibull Shape C 2.201152

ASHD + ISC Weibull Mean 756.753

ASHD + ISC Weibull Std Dev 432.3723

CHF Weibull Threshold Theta 5.251415

CHF Weibull Scale Sigma 743.1523

CHF Weibull Shape C 1.547657

CHF Weibull Mean 673.7453

CHF Weibull Std Dev 441.0139

CHF + FIN_FOOT Weibull Threshold Theta 125.999

CHF + FIN_FOOT Weibull Scale Sigma 22.69363

CHF + FIN_FOOT Weibull Shape C 0.178777

CHF + FIN_FOOT Weibull Mean 7858.026

CHF + FIN_FOOT Weibull Std Dev 180,164.4

CHF + ISC Weibull Threshold Theta −2305.04

CHF + ISC Weibull Scale Sigma 3287.634

CHF + ISC Weibull Shape C 15.92766

CHF + ISC Weibull Mean 875.576

CHF + ISC Weibull Std Dev 245.5491

DEATH Weibull Threshold Theta −43.0451

DEATH Weibull Scale Sigma 921.1229

DEATH Weibull Shape C 1.970673

DEATH Weibull Mean 773.5216

DEATH Weibull Std Dev 432.5532

ESRD Weibull Threshold Theta 3.999

ESRD Weibull Scale Sigma 56.41532

ESRD Weibull Shape C 0.363986

ESRD Weibull Mean 252.7458

ESRD Weibull Std Dev 919.6434

EYE Weibull Threshold Theta 1.989741

EYE Weibull Scale Sigma 606.3383

EYE Weibull Shape C 1.358656

EYE Weibull Mean 557.3697

EYE Weibull Std Dev 413.3502

FESRD Weibull Threshold Theta −197.796

FESRD Weibull Scale Sigma 1121.817

FESRD Weibull Shape C 2.548924

FESRD Weibull Mean 798.0508

FESRD Weibull Std Dev 418.8006
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Table A2. Cont.

DM−−> Distribution Parameter Symbol Estimate

FIN_FOOT Weibull Threshold Theta −55.233

FIN_FOOT Weibull Scale Sigma 909.3811

FIN_FOOT Weibull Shape C 1.899072

FIN_FOOT Weibull Mean 751.7311

FIN_FOOT Weibull Std Dev 441.9696

ISC Weibull Threshold Theta −15.9275

ISC Weibull Scale Sigma 839.8184

ISC Weibull Shape C 1.527653

ISC Weibull Mean 740.5984

ISC Weibull Std Dev 505.0916
Abbreviation: ASHD, arteriosclerotic heart disease; CHF, chronic heart failure; DM, diabetes mellitus; EYE,
retinopathy; FESRD, first-time renal failure; FIN_FOOT, amputation; ISC, ischemic stroke.

Note that ∑ βi(j)xi is calculated with βi and xi, where βi is chosen from the corre-
sponding values in Table A1 and xi is chosen from the corresponding value in Table 2.
Similarly, ∑ βHbA1c(j)× xHbA1c(a, t) + βage(a, t, j) is computed with the associated glycated
haemoglobin (HbA1c) function, which is defined by

xHbA1c(a, t) =
{

θ(a, t) + ϕ(a, t)xHbA1c(a, t− 1) + ψ(a, t)× t, t < 60
xHbA1c(a, t− 1), t ≥ 60

where show in Table A2.
Since the unit step transition probability matrix changes with age a, the proposed

model clearly generates a nonhomogeneous Markovian process. With a given starting age
and an initial healthy state, the probability associated with any likely realization consisting
of chronically experienced states can be computed. Now, define the transition function
pt,s

i,j = P(Ys = j
∣∣∣Yt = i) as a transition probability matrix with the elements Pt,s = (pt,s

i,j )i,j∈E
.

Namely, Pt,s
i,j is the probability that a patient with the initial healthy state i at age written in

terms of cycle time t will be at the health state j at age in terms of cycle time s. Specifically,
when s = t + 1, pt,t+1

i,j in this matrix is the one-step transition probability from state i
to state j with a starting time t and an ending time t + 1. That is for i 6= j we have
pt,t+1

i,j = rt(t + 1, i, j) and pt,t+1
i,i = 1−∑k 6=j pt,t+1

i,k for i = j.
Let P(k) denote the unit step transition matrix with starting cycle time k and ending

cycle time k + 1. Then, the transition probability matrix Pt,s can be computed by

Pt,s =
s−1

∏
k=t

P(k)

where,
P(k) = (pk,k+1

i,j )
i,j∈E
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Table A3. The coefficients of linear regressions associated with each ∑ βi(j)xi + βHBA1C(j)× xHBA1C(a, t) .

To DEAD FESRD ASHD ISC CHF EYE FIN_FOOT ASHD + CHF ASHD + ISC CHF + ISC ASHD + CHF + ISC ESRD

β st dev β st dev β st dev β st dev β st dev β st dev β st dev β st dev β st dev β st dev β st dev β st dev

age20 −0.7789 0.1475 −0.0260 0.1812 −1.0272 0.4221 −1.2432 1.0259 −0.9531 1.0313 −1.3342 1.0446 0.3192 0.6812 −1.7127 1.1356 −16.0922 1485 −17.2909 6587 −55.3862 5554 1.2294 1449,048
age65 0.9191 0.0615 0.1533 0.1170 0.0835 0.1673 0.6429 0.2815 0.5981 0.3349 −1.7501 0.7359 −0.1431 0.5337 0.9108 0.2478 −0.4589 0.8408 2.7913 1.3747 1.8459 1.6850 −1.2748 1186,030
age75 1.7633 0.0674 0.4914 0.1503 0.4381 0.2021 0.9106 0.3559 1.0436 0.3934 −14.9763 847.6930 0.9108 0.5319 0.8869 0.3132 0.3527 0.7851 −18.7117 33,476 −21.0000 82,119 −7.7770 2655,494
male 0.5092 0.0526 0.2445 0.0956 0.9019 0.1521 0.0768 0.2461 −0.0822 0.2897 −0.3124 0.3500 0.6981 0.4176 0.6349 0.2272 0.5823 0.6758 3.3709 1.7556 20.2201 5289 −12.7064 2551,357
e_ht 0.0277 0.0583 0.7992 0.1141 0.6795 0.1696 1.0867 0.3641 0.6678 0.3901 1.6708 0.4581 0.5130 0.4558 0.2664 0.2770 −1.1441 0.6901 21.6020 3265 −3.9781 2.6120 13.8813 1470,210

e_cva 0.4707 0.0636 0.3209 0.1309 0.0826 0.1878 1.7122 0.2547 −0.2178 0.4201 0.0224 0.6075 0.8527 0.4647 0.0514 0.2735 2.8948 0.6656 0.7688 1.2840 4.0271 1.8501 −9.3843 1660,328
e_chf 0.5454 0.0786 1.1513 0.1303 0.5479 0.1939 −0.0854 0.4423 2.2933 0.3171 −0.6067 1.0243 0.6316 0.5776 2.0512 0.2371 0.4045 0.8412 1.4417 1.3454 4.7762 2.2172 5.2080 1459,719

e_ashd 0.0489 0.0607 0.1033 0.1116 1.5602 0.1371 −0.0581 0.2880 0.1161 0.3162 −0.1384 0.4878 0.6804 0.4197 1.1186 0.2255 2.1065 0.6522 −0.6428 1.2976 1.7371 1.5976 −18.1875 1087,827
hba1c 0.0436 0.0113 0.1420 0.0183 −0.0023 0.0312 0.1163 0.0529 0.1019 0.0565 0.0851 0.0727 0.0734 0.0832 0.0893 0.0434 −0.0903 0.1632 0.3321 0.2284 0.6072 0.2443 −7.8867 178,588

BASE_SBP 0.0021 0.0013 0.0068 0.0009 −0.0012 0.0036 0.0051 0.0053 0.0043 0.0065 0.0080 0.0047 0.0072 0.0024 0.0088 0.0026 0.0135 0.0162 0.0230 0.0281 0.0632 0.0381 −0.2593 13,366
bmi −0.0569 0.0072 −0.0534 0.0126 −0.0288 0.0182 −0.0310 0.0334 −0.0653 0.0382 −0.0574 0.0443 0.0027 0.0482 −0.0921 0.0310 −0.0234 0.0814 0.3129 0.0933 0.0970 0.1213 −1.9589 97,178

BLDL −0.0056 0.0010 −0.0007 0.0018 0.0072 0.0024 0.0045 0.0050 0.0051 0.0054 −0.0019 0.0061 −0.0044 0.0078 0.0022 0.0047 −0.0072 0.0104 −0.0194 0.0286 0.0026 0.0223 −0.1735 9480
BHDL −0.0036 0.0021 −0.0028 0.0039 −0.0120 0.0059 0.0060 0.0104 0.0083 0.0118 −0.0107 0.0135 −0.0096 0.0159 0.0088 0.0091 −0.0022 0.0237 0.0648 0.0351 0.0302 0.0558 0.6522 14,198

BCHOL_T 0.0019 0.0009 0.0021 0.0015 −0.0013 0.0019 −0.0016 0.0043 −0.0041 0.0043 0.0050 0.0050 0.0022 0.0068 0.0015 0.0042 −0.0058 0.0087 0.0049 0.0220 0.0334 0.0172 −0.1649 6465
BTG 0.0000 0.0002 0.0007 0.0004 0.0010 0.0005 0.0011 0.0011 0.0004 0.0014 −0.0007 0.0015 −0.0028 0.0023 0.0007 0.0010 0.0015 0.0022 −0.0061 0.0104 −0.0114 0.0104 0.0367 1098

BCREAT 0.0915 0.0295 0.2103 0.0190 0.0628 0.0798 0.1896 0.0642 0.0350 0.2336 −0.0261 0.4008 0.0259 0.2990 0.0091 0.1814 −0.4221 0.9489 −1.2522 2.0243 0.0100 1.6549 4.4446 119,284
UMICRO 0.0001 0.0000 0.0002 0.0000 −0.0003 0.0005 0.0001 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 −0.0012 0.0036 −0.0642 0.1126 −0.1126 0.2165 0.0012 2995
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Table A4. Parameters for glycated haemoglobin function.

Age (a) θ ϕ ψ

0–19 5.976 0.2493 0.0107

20–39 3.740 0.4810 0.0064

40–64 5.626 0.1805 0.0061

65–74 7.389 −0.1011 0.0057

75–84 7.027 −0.0611 0.0038

85 + 7.076 −0.0741 0.0020

Appendix B.2. Numerical Experiments

Based on data reported in NHRID, we compute the probability of 5 years’ and 10 years’
complication risks of diabetes according to a nonhomogeneous Markovian process. The
probabilities of complication risks of diabetes are generated through the formulae men-
tioned above, assuming the DM patient starts from 55 years old on average. These possible
outcomes by cycles (months) are given in the Supplementary Material. Summarised results
are depicted in Figures A1 and A2.

Figure A1. Risks of diabetic complication in 5 years.
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Figure A2. Risks of diabetic complication after 5 years.
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