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Abstract: In gastronomic tourism, food is viewed as the central tourist attraction. Specifically,
indigenous food is known to represent the expression of local culture and identity. To promote
gastronomic tourism, it is critical to have a model for the food business analytics system. This
research undertakes an empirical evaluation of recent transfer learning models for deep learning
feature extraction for a food recognition model. The VIREO-Food172 Dataset and a newly established
Sabah Food Dataset are used to evaluate the food recognition model. Afterwards, the model is
implemented into a web application system as an attempt to automate food recognition. In this
model, a fully connected layer with 11 and 10 Softmax neurons is used as the classifier for food
categories in both datasets. Six pre-trained Convolutional Neural Network (CNN) models are
evaluated as the feature extractors to extract essential features from food images. From the evaluation,
the research found that the EfficientNet feature extractor-based and CNN classifier achieved the
highest classification accuracy of 94.01% on the Sabah Food Dataset and 86.57% on VIREO-Food172
Dataset. EFFNet as a feature representation outperformed Xception in terms of overall performance.
However, Xception can be considered despite some accuracy performance drawback if computational
speed and memory space usage are more important than performance.

Keywords: food recognition; deep learning; transfer learning; CNN; food sentiment; food features;
gastronomic tourism

1. Introduction

Food and beverage expenditures are estimated to account for roughly a quarter of total
tourism spending worldwide. As food and tourism are inextricably linked, gastronomic
tourism, in which the local cuisine serves as the primary attraction for travelers, has gained
popularity in recent years [1]. Local foods can contribute to the development of a local
brand, which encourages tourism growth in several countries [2]. Sabah, one of Malaysia’s
states, is a well-known tourist destination for its magnificent scenery, contributing signifi-
cantly to its economy. Sabah’s diversity of indigenous groups and subgroups is notable for
its unique traditions, cultures, practices, and traditional local foods. According to [3], it is
highly likely that acceptance of local food brands among tourists and Sabah residents is
critical to preserving the culinary heritage and providing visitors with a sense of unique-
ness, and special, memorable experiences. Besides the preservation and appreciation, local
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foods also require more innovative strategies to make them more appealing, particularly to
younger generations, and survive in a competitive business environment [4,5]. Thus, this
research proposes a deep learning-based food recognition model for the Sabah food busi-
ness analytics system to promote gastronomic tourism in Sabah. Subsequently, the trained
model is deployed to a web application system to demonstrate the end-user functionality
to automatically recognize the specific name of foods based on real-time food images.

The recent emergence of deep-learning techniques, particularly in food recognition
studies [6–9], has motivated the investigation of deep-learning approaches, particularly in
dealing with the local context of this research. Despite extensive research in deep learning
to support food recognition tasks [10], the analysis can be extended further, particularly
when dealing with the novel or local context encountered in this research. Currently,
there is a lack of research investigating the effect of recent deep-learning models on food
recognition performance, particularly on the feature extraction aspect of food recognition
studies. Additionally, food recognition remains a difficult task, due to the foods’ complex
appearance, which include a range of shapes, sizes, and colors, as well as their reliance on
the foods’ local context or origins [6]. The following summarizes this paper’s contributions:

• An empirical analysis was conducted to investigate the effect of deep-learning tech-
niques on food recognition performance, using transfer-learning approaches as feature
extractors on the Sabah Food Dataset and the VIREO-Food172 Dataset.

• A Sabah Food Dataset was created, which contains 11 different categories of popular
Sabah foods. It was used to train the machine-learning model for the classification of
Sabah foods.

• A preliminary prototype of a web-based application for a food recognition model
is presented.

The following sections outline the structure of this paper. Section 2 discusses the
related works of deep learning in food recognition, and Section 3 discusses the theoretical
background of transfer learning through the use of a pre-trained deep-learning architec-
ture. Subsequently, Section 4 explains the details of the experiment’s procedure that was
conducted. Then, in Section 5, the results of the experiments and the deployment of the
food recognition model are discussed. Finally, Section 6 discusses the overall conclusion of
the work and future works.

2. Related Works

Machine learning is used as a data processing technique to solve a wide range of
problems in a variety of fields, including smart homes [11], human identification in health-
care [12], face recognition [13–15], water quality research [16], and many more. In tra-
ditional machine learning, tedious and exhaustive feature extraction is a very common
practice in order to produce a highly discriminative feature. However, due to computa-
tional and storage capability advancements, a more profound representation of features
based on deep learning has become a common practice for better performance for classi-
fication and regression. A deep Artificial Neural Network (ANN) composed of various
layers with multilevel feature learning defines the general concept of deep learning. Specif-
ically, a set of components comprising pooling, convolutional, and fully connected layers
dubbed as the Convolutional Neural Network (CNN) has gained popularity as a pattern-
recognition technique, including in studies involving food recognition. This is due to the
fact that the recognition capability is exceptional, even with simple CNN configurations.
For instance, Lu [17] demonstrated four layers of hidden neurons to classify ten categories
of a small-scale food images dataset. The RGB component of the image was reshaped into
a two-dimensional form as input data. First, a convolutional layer with a 7 by 7 dimension
and a stride value of one was used to extract 32 feature maps. Secondly, a 5 by 5 size of
convolutional layers was used to extract 64 feature maps. Lastly, a total of 128 feature maps
were generated from 3 by 3 convolutional layers. The best accuracy on the test set reported
was 74%. However, over-fitting is suspected as a result of the limited size of the training
data, which limits the accuracy of the testing dataset at a higher epoch.
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A study conducted by [18] implemented CNN to recognize 11 categories of self-
collected Malaysian foods. The architecture of VGG19-CNN was modified by adding more
layers consisting of 21 convolutional layers and three fully connected layers as compared
to 16 convolutional layers in VGG19. However, the performance results were not reported.
Islam et al. [19] evaluated their proposed CNN configuration and Inception V3 model on
the Food-11 dataset for their food recognition module. The images were reshaped into
224 by 224 by 3 dimensions, and ZCA whitening was applied to eliminate unnecessary
noise within the images. The accuracy reported for the proposed CNN configuration and
pre-trained Inception V3 model was 74.7% and 92.86%, respectively.

The hyper-parameter configurations in conventional CNN are complicated and time-
consuming. Jeny et al. [20] proposed another method for managing the massive number of
layers by implementing a FoNet-based Deep Residual Neural Network and testing it on
six categories of Bangladesh foods. The model comprises 47 layers that contained pooling
layers, activation functions, flattened layers, dropout and normalization. The reported
accuracy of 98.16% on their testing dataset outperformed the Inception V3 and MobileNet
models, which reported an accuracy of 95.8% and 94.5%, respectively.

In summary, previous research has demonstrated that CNN and transfer learning-
based techniques are effective at food image recognition. However, there is a lack of
analysis and evaluation of recent CNN architecture models, particularly in terms of feature
extraction. Furthermore, CNNs have hyperparameters that must be tuned to the newly
created dataset. Table 1 summarizes the related works on CNN models.

Table 1. A summary of related works on CNN models for food recognition.

Authors Dataset Number of Categories Techniques Results

Lu (2016) [17] Small-scale dataset 10

A proposed CNN
configuration model with
3 convolution-pooling layers
and 1 fully connected layer.

Test set accuracy of 74%

Subhi and Ali
(2018) [18]

Self-collected
Malaysian
foods dataset

11
Modified VGG19-CNN model
with 21 convolutional layers
and 3 fully connected layers.

Not reported

Islam et al.
(2018) [19] Food-11 dataset 11

(i) A proposed CNN
configuration model with
5 convolution layers,
3 max-pooling layers and
1 fully connected layer.
(ii) Inception V3 pre-trained
model with 2 fully
connected layers.

(i) Proposed approach
achieved 74.7% accuracy.
(ii) Pre-trained
Inception V3 achieved
92.86% accuracy.

Jeny et al.
(2019) [20]

Self-collected
Bangladesh
foods dataset

6

FoNet-based Deep Residual
Neural Network with 47 layers
comprises of pooling layers,
activation functions, flattened
layers, and dropout
and normalization.

Testing set accuracy
of 98.16%.

3. A Transfer Learning Approach Using Pre-Trained Deep Learning Architecture

This section discusses the theoretical background of the approaches that have been
considered for feature extraction. The approaches to feature extraction include ResNet50,
VGG16, MobileNet, Xception, Inception, and EfficientNet. Additionally, the RGB compo-
nent of an image is used to represent the features.



Information 2021, 12, 322 4 of 24

3.1. ResNet50

The ResNet50 approach was introduced in the 2015 ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [21]. This model is a residual learning framework that
can alleviate the vanishing gradient problem of Deep Convolutional Neural Networks
during deeper networks’ training. The ResNet50 model was pre-trained on over a million
high-resolution images from the ImageNet database. Zahisham et al. (2016) [22] proposed
a ResNet50-based Deep Convolutional Neural Network (DCNN) for the food recognition
task. The ResNet50 model architecture is imitated; pre-trained weights are imported; and
classification layers are trained on three different food datasets (UECFOOD100, ETHZ-
FOOD101, and UECFOOD256). The rank one accuracy achieved for the proposed DCNN-
ResNet50 model was 39.75%, 41.08%, and 35.32% on the UECFOOD100, ETHZ-FOOD10,
and UECFOOD256 datasets, respectively. This proposed model outperformed the accuracy
of CNN-3CV (25%, 24.3% and 22%), CNN + Support Vector Machine (SVM) (33.1%, 31.9%
and 30%) and CNN-5CV (20%, 17.9% and 15.5%).

3.2. VGG16

The VGG-16 approach was introduced by Simonyan and Zisserman [23] at the 2014
ILSVRC conference and was developed by the University of Oxford’s Visual Graphics
Group. This model is widely used in image classification tasks, as it can outperform the
AlexNet-based model. The VGG-16 is trained on the ImageNet dataset with over fifteen
million high-resolution images and 22,000 image classes. A comparison of CNN tolerance
to the intraclass variety in food recognition was conducted by [24]. The feature extraction
process was carried out using a variety of pre-trained CNN models, including ResNet,
VGG16, VGG19, MobileNet, and InceptionV3. Additionally, the Food101 dataset was used
to evaluate their performance. It was reported that InceptionV3 obtained the highest Top-1
accuracy of 87.16%, followed by VGG16 with a Top-1 accuracy of 84.48, when using 70% as
the training set and 30% as the testing set.

3.3. MobileNet

Howard et al. [25] proposed MobileNet, a low-latency, low-computation model for
on-device and embedded applications. Its architecture is based on depthwise separable
convolution that significantly reduces computation and model size while maintaining
classification performance similar to that of large-scale models, such as Inception. The
ImageNet database was used in their experiment, and it was reported that the MobileNet
achieved an accuracy of 70.6%, which is comparable to GoogLeNet (69.8%) and VGG-16
(71.5%) while requiring approximately ten times the computational resources required by
GoogLeNet and VGG-16. Additionally, on the Stanford Dogs dataset, the MobileNet model
achieved an accuracy of 83.3% for fine-grained recognition, which is nearly identical to
the 84% accuracy of a large-scale Inception model, with ten times the computation and
a twentyfold reduction in the parameter count. Following that, the paper in [7] imple-
mented FD-MobileNet-TF-YOLO as an embedded food recognizer. FD-MobileNet was
used as a food categorizer, while TF-YOLO was used as an ingredient locator and classifier.
The FD-MobileNet approach achieved higher downsampling efficiency by conducting
32 downsamples within 12 levels on an image of 224 by 224 dimensions, resulting in re-
duced computational complexity and costs. The TF-YOLO approach identified smaller
objects in images, using the YOLOv3-tiny procedure based on the K-means technique.
The recognition accuracy of FD-MobileNet was 94.67%, which is higher than MobileNet’s
recognition accuracy of 92.83%.

3.4. Xception

Chollet [26] introduced the Xception model, a modified depthwise separable convolu-
tion model based on the Inception model. The Xception model outperforms the Inception
model because it reduces the number of model parameters and makes more efficient use
of them, allowing for the learning of richer representations with fewer parameters. On
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the ImageNet dataset, the Xception model achieved the highest Rank-1 accuracy of 79%,
followed by Inception V3 at 78.2%, ResNet-152 at 77%, and VGG-16 at 71.5%. Additionally,
the Xception model outperforms Inception V3 in terms of mean accuracy prediction (mAP)
when evaluated against the FastEval14k dataset, containing 14,000 images classified into
6000 classes. In another report, Yao et al. [27] conducted a study on the classification of
peach disease using the traditional Xception and the proposed improved Xception model.
The proposed improved Xception network was based on ensembles of regularization
terms of the L2-norm and mean. An experiment was conducted using a peach disease
image dataset comprised of seven different disease categories and seven commonly used
deep-learning models. It was reported that the validation accuracy for Xception and the
improved Xception was 92.23% and 93.85%, respectively.

3.5. Inception

Inception is a deep neural network architecture for computer vision, introduced by [28]
at the 2014 ILSVRC conference. The Inception architecture uses a sparse structure of a
convolutional network with one-by-one convolution dimensions to reduce dimensionality.
GoogLeNet is a deep-learning model that uses the Inception architecture, which comprises
nine modules. Inception modules employ a total of 22 layers and five pooling layers.
Singla et al. [29] demonstrated the feasibility of the Inception network—GoogLenet—for
food category recognition. They reported that the food identification module achieved an
accuracy of 83.6% when tested against the Food-11 dataset.

3.6. EfficientNet

Tan and Le [30] proposed the EfficientNet (EFFNet) model, which utilizes a simple and
effective compound coefficient to scale up CNN structurally. In comparison to conventional
neural network approaches, EFFNet uses a fixed set of scaling coefficients to scale each
dimension of depth, width, and resolution uniformly. The EFFNet baseline network was
built with the AutoML Mobile Neural Architecture Search (MNAS) framework to optimize
accuracy and efficiency, while the remaining architecture was built with mobile inverted
bottleneck convolution (MBConv). The performance of EFFNet on ImageNet is compared
to that of conventional CNNs, and the findings shows that EFFNet models outperform
conventional CNN models in both accuracy and efficiency. For instance, the EfficientNet-B0
model achieved a Rank-1 and Rank-5 accuracy of 77.1% and 93.3%, higher than ResNet-
50’s Rank-1 (76%) and Rank-5 (93.3%) accuracy. Liu et al. [31] implemented a transfer
learning-based EFFNet model to recognize and classify maize leaf disease images. For
their experiments, a larger leaf dataset containing 9279 images classified into eight disease
categories was divided into a 7:3 training to testing set ratio. The reported recognition
accuracy of their proposed model (98.52%) outperformed VGG-16’s accuracy of 93.9%,
Inception V3’s accuracy of 96.35%, and ResNet-50’s accuracy of 96.76%.

4. Experiments
4.1. Food Dataset Preparation

For the classification performance evaluation, two types of datasets are used: (i) the
Sabah Food Dataset and (ii) the VIREO-Food172 Dataset. Figures 1 and 2 illustrate food
image samples from the Sabah Food Dataset and VIREO-Food172 Dataset. These images
are real-world food images that are diverse in terms of quality and image background.
Most of the images have a cluttered and non-uniform background.
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The Sabah Food Dataset is a newly created food dataset that was used in this study.
The images in Sabah Food Dataset were gathered via Google image search and include a
range of image resolutions and compression formats. A total of 1926 food images were
collected for the Sabah Food Dataset, which includes 11 different famous food categories.
The details for each food category of the Sabah Food Dataset are presented in Table 2.
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The purpose of this dataset is to train a machine-learning classifier for the purpose of
developing a Sabah food recognition model.

Table 2. Image number for each category of food items for Sabah Food Dataset.

Category Label Category Name Number of Images

1 Bakso 85
2 Sinalau Bakas 219
3 Ambuyat 242
4 Barobbo 83
5 Buras 198
6 Martabak Jawa 92
7 Nasi Kuning 245
8 Mee Tauhu 145
9 Hinava 164
10 Latok 236
11 Nasi lalap 217

The VIREO-Food172 Dataset [32] samples, as shown in Figure 2, are popular Chinese
dishes retrieved from Google and Baidu image searches. Based on the recipes, the images
were labeled with category names as well as over 300 ingredients. This dataset comprises
172 food categories from eight major groups, including (i) soup, (ii) vegetables, (iii) bean
products, (iv) egg, (v) meat, (vi) fish, (vii) seafood, and (viii) staple. However, only ten
categories (categories 1 to 10) of the food images were used in this experiment. The
details for each food category of the VIREO-Food172 Dataset are presented in Table 3.
For performance evaluation, a total of 9015 food images were selected from the VIREO-
Food172 Dataset’s ten categories. The test will be more challenging, due to the low interclass
differences among those ten categories, most of which are pork-based. This will serve to
further validate the system’s capability for accurate classification.

Table 3. Image number for each category of food items for VIREO-Food-172 dataset.

Category Label Category Name Number of Images

1 Braised pork 1023
2 Sautéed spicy pork 987
3 Crispy sweet and sour pork slices 991
4 Steamed pork with rice powder 803
5 Pork with salted vegetable 997
6 Shredded pork with pepper 708
7 Yu-Shiang shredded pork 1010
8 Eggs, black fungus, and sautéed sliced pork 830
9 Braised spare ribs in brown sauce 712
10 Fried sweet and sour tenderloin 954

As for data training and testing preparation, 80% and 20% of the datasets (Sabah Food
Dataset and VIREO-Food172 Dataset) are prepared for the training and testing dataset,
respectively. For the Sabah Food Dataset, the distribution of the training and testing
datasets is selected randomly, using the Python random sampling function. Additionally,
the images in the training and testing datasets are not identical. The datasets are available
upon request from the corresponding author for reproducibility purposes. For the VIREO-
Food172 Dataset, the 80% (training dataset) and 20% (testing dataset) distribution was
provided by the original source of the database.

4.2. Feature Representations and Classifiers

In order to conduct a more thorough evaluation, the efficiency of the feature represen-
tation based on the transfer learning approaches described in Section 3 is compared. The
six pre-trained CNN models selected as the feature extractor are (i) ResNet50, (ii) VGG16,
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(iii) MobileNet, (iv) Xception, (v) Inception V3, and (vi) EfficientNet. In addition to the list,
(vii) the RGB component of an image is also used as the feature representation.

Furthermore, ten different classifiers are considered for this paper. They are (i) non-
linear SVM (one-versus-one mode), denoted as SVM (OVO), (ii) non-linear SVM (one-
versus-all mode), denoted as SVM (OVA), (iii) Linear SVM (one-versus-one mode), denoted
as LSVM (OVO), (iv) LSVM (one-versus-all mode), denoted as LSVM (OVA), (v) Decision
Tree (DT), (vi) Naïve Bayes (NB), (vii) Artificial Neural Network (ANN), (viii) Random
Forest (RF), (ix) k-Nearest Neighbor (kNN), and (x) CNN.

The proposed approach in this paper is labeled as “Feature Representation + Clas-
sifier”. For instance, an approach labeled ResNet50 + SVM (OVO) implies the use of
ResNet50 as a feature representation and SVM (OVO) as a classifier. Table 4 shows the
CNN feature extractor’s configuration details. The following are the definitions of the
parameters shown in Table 4:

1. The Model denotes a convolutional base of existing pre-trained CNN models as a
feature extractor.

2. The No.of.param denotes the total number of model parameters from the input layer
to the final convolutional layer.

3. The Input Shape (x, y, z) denotes input image data with a three-dimensional shape.
The x represents the height of an image; the y represents the image’s width; and the z
represents the depth of an image.

4. The Output Shape (x, y, z) denotes the output data shape produced from the last
convolutional layer. The x represents the height of an image; the y represents the
image’s width; and the z represents the depth of an image.

5. The Vector size denotes an output shape that is flattened into a one-dimensional
linear vector.

Table 4. The architecture of pre-trained CNN-based models.

Model No. of. Param Input Shape
(x, y, z)

Output Shape (Conv2D)
(x, y, z)

Vector Size
(Conv1D)

ResNet50 25,636,712 (224, 224, 3) (32, 32, 2) (1, 2048)
VGG16 138,357,544 (224, 224, 3) (64, 64, 1) (1, 4096)

MobileNet 3,228,864 (64, 64, 3) (128, 128, 2) (1, 32,768)
Xception 22,910,480 (299, 299, 3) (32, 32, 2) (1, 2048)

Inception V3 21,802,784 (299, 299, 3) (128, 128, 3) (1, 49,152)
EFFNet 5,330,564 (224, 224, 3) (16, 16, 245) (1, 62,720)

The images are resized to fit the fixed input form of the pre-trained CNN model.
Numerous hyperparameters are included in pre-trained CNN models, and as shown in the
second column of Table 4, EFFNet and VGG16 generate the most and fewest parameters, re-
spectively. The Output Shape (Conv2D) and Vector Size (Conv1D) of the final CNN layer,
which serves as the feature representation, are manually reshaped into a one-dimensional
vector before being fed into a machine-learning classifier. The Conv2D generates the
spatial features necessary for the detection of edges and colors. Both Input Shape and
Output Shape represent the height, width, depth of the image. The Conv2D features are
fed into the sequential model for classification.

The summary of the CNN architecture used for the data training phase is shown in
Table 5. The following are the definitions of the parameters shown in Table 5:

1. The Layer denotes the layer name.
2. The Type denotes the type of layer.
3. The Output denotes feature maps generated from the layer.
4. The number of parameters of a layer is denoted as No.of.param.
5. The conv2d_1, conv2d_2, and conv2d_3 denotes the convolutional layer of 1, 2, 3.
6. The max_pooling2d_1 and max_pooling2d_2 denotes the max-pooling layer of 1 and 2.
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7. The dropout_1, dropout_2, dropout_3, and dropout_4 denotes the dropout layer
of 1, 2, 3, 4.

8. The flatten_1 denotes the flatten layer.
9. The dense_1, dense_2, and dense_3 denotes the dense layer 1, 2, 3.

Table 5. The layers configuration of the CNN classifier.

Layer Type Output No.of.Param

conv2d_1 (Conv2D) (None, 64, 64) 500
conv2d_2 (Conv2D) (None, 64, 64) 33,825

max_pooling2d_1 (MaxPooling2 (None, 32, 32) 0
dropout_1 (Dropout) (None, 32, 32) 0
conv2d_3 (Conv2D) (None, 32, 32) 84,500

max_pooling2d_2 (MaxPooling2 (None, 16, 16) 0
dropout_2 (Dropout) (None, 16, 16) 0
flatten_1 (Flatten) (None, 32,000) 0
dense_1 (Dense) (None, 500) 16,000,500

dropout_3 (Dropout) (None, 500) 0
dense_2 (Dense) (None, 250) 125,250

dropout_4 (Dropout) (None, 250) 0
dense_3 (Dense) (None, 12) 3012

Total parameters: 16,247,587
Trainable parameters: 16,247,587

Non-trainable parameters 0

The layers of the CNN classifier shown in Table 5 is a network that comprises three
layers of neurons: two convolutional-pooling layers and one fully connected layer. The
input is based on two parameters: (i) the output shape of the features generated by the pre-
trained CNN model, referred from Table 4, and (ii) the color features of a two-dimensional,
reshaped 64 by 64 image, where the color features are composed of an image’s RGB com-
ponent. The first convolutional-pooling layer has the kernel dimensions of 3 by 3 to extract
32 feature maps. Subsequently, a max-pooling layer is added in a 2 by 2 dimension region.
The fully connected layer has 512 rectified linear unit neurons with 11 and 10 Softmax
neurons that indicate the 11 Sabah Food Dataset categories and the 10 VIREO-Food172
Dataset categories. In this paper, the Keras deep learning packages are used to train the
CNN model [2,33].

On the other hand, the Conv1D features are represented in a vector and feed to ten
machine-learning classifiers, including (i) non-linear SVM (OVO), (ii) non-linear SVM
(OVA), (iii) LSVM (OVO), (iv) LSVM (OVA), (v) DT, (vi) NB, (vii) ANN, (viii) RF, (ix)
kNN, and (x) CNN. The parameters for each classifier used in this work are presented
in Tables 6–15.

Table 6. SVM (OVO) parameters from scikit-learn library.

Parameters Value Description

C 1.0 Regularization parameter.
kernel rbf Specifies the kernel type to be used in the algorithm.
degree 3 Degree of the polynomial kernel function (‘poly’).
gamma scale Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’.
coef0 0.0 Independent term in kernel function.
decision_function_shape ovo Multi-class strategy.
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Table 7. SVM (OVA) parameters from scikit-learn library.

Parameters Value Description

C 1.0 Regularization parameter.
kernel rbf Specifies the kernel type to be used in the algorithm.
degree 3 Degree of the polynomial kernel function (‘poly’).
gamma scale Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’.
coef0 0.0 Independent term in kernel function.
decision_function_shape ovr Multi-class strategy.

Table 8. LSVM (OVO) parameters from scikit-learn library.

Parameters Value Description

penalty l2 Specifies the norm used in the penalization. The ‘l1′

leads to coef_ vectors that are sparse.

loss square_hinge
Specifies the loss function. ‘hinge’ is the standard
SVM loss (used e.g., by the SVC class) while
‘squared_hinge’ is the square of the hinge loss.

dual True Select the algorithm to either solve the dual or
primal optimization problem.

tol 0.0001 Tolerance for stopping criteria.

C 1.0
Regularization parameter. The strength of the
regularization is inversely proportional to C. Must
be strictly positive.

multi_class ovo
Whether to calculate the intercept for this model. If
set to false, no intercept will be used in calculations
(i.e., data is expected to be already centered).

intercept_scaling 1

When self.fit_intercept is True, instance vector x
becomes [x, self.intercept_scaling], i.e., a “synthetic”
feature with constant value equals to
intercept_scaling is appended to the instance vector.

class_weight None
Set the parameter C of class i to class_weight[i]*C for
SVC. If not given, all classes are supposed to have
weight one.

verbose 0

Enable verbose output. Note that this setting takes
advantage of a per-process runtime setting in
liblinear that, if enabled, may not work properly in a
multithreaded context.

random_state None

Controls the pseudo-random number generation for
shuffling the data for the dual coordinate descent (if
dual = True). When dual = False the underlying
implementation of LinearSVC is not random and
random_state has no effect on the results.

max_iter 1000 The maximum number of iterations to be run.

Table 9. LSVM (OVA) parameters from scikit-learn library.

Parameters Value Description

penalty l2 Specifies the norm used in the penalization. The ‘l1′

leads to coef_ vectors that are sparse.

loss square_hinge
Specifies the loss function. ‘hinge’ is the standard
SVM loss (used e.g., by the SVC class) while
‘squared_hinge’ is the square of the hinge loss.

dual True Select the algorithm to either solve the dual or
primal optimization problem.

tol 1e-4 Tolerance for stopping criteria.

C 1.0
Regularization parameter. The strength of the
regularization is inversely proportional to C. Must
be strictly positive.
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Table 9. Cont.

Parameters Value Description

multi_class ovr
Whether to calculate the intercept for this model. If
set to false, no intercept is used in calculations
(i.e., data are expected to be already centered).

intercept_scaling 1

When self.fit_intercept is True, instance vector x
becomes [x, self.intercept_scaling], i.e., a “synthetic”
feature with constant value equals to
intercept_scaling is appended to the instance vector.

class_weight None
Set the parameter C of class i to class_weight[i]*C for
SVC. If not given, all classes are supposed to have
weight one.

verbose 0

Enable verbose output. Note that this setting takes
advantage of a per-process runtime setting in
liblinear that, if enabled, may not work properly in a
multithreaded context.

random_state None

Controls the pseudo-random number generation for
shuffling the data for the dual coordinate descent (if
dual = True). When dual = False, the underlying
implementation of LinearSVC is not random and
random_state has no effect on the results.

max_iter 1000 The maximum number of iterations to be run.

Table 10. Decision tree parameters from scikit-learn library.

Parameters Value Description

criterion gini This function is used to measure the quality of a split.
splitter best The strategy used to choose the split at each node.
max_depth None The maximum depth of the tree

min_samples_split 2 The minimum number of samples required to split an
internal node.

min_samples_leaf 1 The minimum number of samples required to be at a
leaf node.

Table 11. Naïve Bayes parameters from scikit-learn library.

Parameters Value Description

var_smoothing 1e-9 Portion of the largest variance of all features that is added
to variances for calculation stability.

sample_weight None Weights applied to individual samples.

Deep True Return the parameters for this estimator and contained
sub-objects that are estimators if the value is true.

Table 12. ANN parameters from scikit-learn library.

Parameters Value Description

hidden_layer_sizes (100,) The ith element represents the number of neurons in the
ith hidden layer.

activation relu Activation function for the hidden layer.
solver adam The solver for weight optimization.
alpha 0.0001 L2 penalty (regularization term) parameter.
batch_size auto Size of minibatches for stochastic optimizers.
learning_rate constant Learning rate schedule for weight updates.
max_iter 200 The maximum number of iterations.
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Table 13. Random Forest parameters from scikit-learn library.

Parameters Value Description

n_estimators 100 The number of trees in the forest.
criterion gini The function to measure the quality of a split.
max_depth None The maximum depth of the tree.

min_samples_split 2 The minimum number of samples required to split an
internal node.

min_samples_leaf 1 The minimum number of samples required to be at a
leaf node.

max_features auto The number of features to consider when looking for the
best split.

Table 14. kNN parameters from scikit-learn library.

Parameters Value Description

n_neighbors 5 Number of neighbors to use by default for kneighbors queries.
weights uniform Weight function used in prediction.
algorithm auto Algorithm used to compute the nearest neighbors.

Table 15. CNN parameters from TensorFlow tf.keras.layers.Conv2D function.

Parameters Value Description

kernel_size 32 (3,3) This parameter determines the dimensions of the kernel.

strides (1,1)
This parameter is an integer or tuple/list of 2 integers,
specifying the step of the convolution along with the height
and width of the input volume.

padding valid The padding parameter of the Keras Conv2D class can take
one of two values: ‘valid’ or ‘same’.

activation relu
The activation parameter to the Conv2D class, allowing us to
supply a string specifying the name of the activation function
you want to apply after performing the convolution.

4.3. Performance Metrics

The accuracy metric is used as the performance metric to measure the model’s overall
performance on the testing set, supposing that CM is a confusion matrix of n by n di-
mensions, where n is the total number of different food categories. Furthermore, the
row of CM indicates the actual category, while the column of CM indicates the predicted
category. Finally, let Ci,j indicates the CM cell’s value at index row i and column j, where
i, j = 1, 2, . . . , n. The accuracy metrics is defined as in (1):

accuracy =
∑n

i,j=1 Ci,j

∑n
i=1 ∑n

j=1 Ci,j
(1)

5. Results and Discussions

This section is divided into four main sections. Section 5.1 describes the experiment
results of the trained model on the Sabah Food Dataset and VIREO-Food172 Dataset,
followed by Section 5.2, which describes the comparison of feature dimensions, using CNN
as the classifier. Finally, Section 5.3 demonstrates the deployment of the food recognition
model through a prototype web application.
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5.1. Experiments Results

Figures 3 and 4 shows the classification accuracy of six CNN-based features derived
from the transfer-learning process and one color feature over seven different traditional
machine learning classifiers and one CNN-based classifier, tested on the Sabah Food Dataset
and VIREO-Food172 Dataset, respectively. As seen in Figures 3 and 4, this paper evaluates
a total of 56 combinations of machine-learning approaches.
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The ten highest accuracies of those machine-learning approaches for the Sabah
Food Dataset and VIREO-Food172 Dataset shown in Figures 3 and 4 are presented in
Tables 16 and 17. The bold formatted machine learning approaches and accuracy in
Tables 16 and 17 indicate the best machine learning approaches in that table. Additionally,
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Figures 5 and 6 present the confusion matrix for the CNN configuration that performs the
best on the Sabah Food and VIREO-Food172 testing sets, respectively.

Table 16. The ten highest performing machine-learning approaches for Sabah Food Dataset.

Machine Learning Approaches Accuracy

EFFNet + CNN 0.9401
Xception + SVM (OVO) 0.8632

Xception + CNN 0.8620
EFFNet + LSVM (OVA) 0.8601
EFFNet + LSVM (OVO) 0.8553
Xception + LSVM(OVO) 0.8522

InceptionV3 + LSVM (OVA) 0.8475
EFFNet + SVM (OVO) 0.8459
VGG16 + LSVM(OVA) 0.8082

Xception + LSVM (OVA) 0.8003

Table 17. The ten highest performing machine-learning approaches for VIREO-Food172 Dataset.

Machine Learning Approaches Accuracy

EFFNet + SVM (OVO) 0.8657
EFFNet + LSVM (OVO) 0.8560
EFFNet + LSVM (OVA) 0.8553
EFFNet + SVM (OVA) 0.8516

Xception + SVM (OVO) 0.8489
Xception + LSVM (OVO) 0.8382
Xception + LSVM (OVA) 0.8304

EFFNet + KNN 0.8035
InceptionV3 + SVM (OVO) 0.8025
InceptionV3 + SVM (OVA) 0.7917
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From Table 16, it can be seen that the EFFNet + CNN approach gives the best per-
formance, yielding 0.9401 accuracy for the Sabah Food Dataset. This is followed by
Xception + SVM (OVO) (0.8632) and Xception + CNN (0.8620). Additionally, as shown
in Table 16, performance decreases significantly from EFFNet + CNN to Xception + SVM
(OVO) (the accuracy drops with 0.0769 difference) before gradually decreasing from Xcep-
tion + SVM (OVO) and the rest of the top 10 highest performing approaches (with differ-
ences ranging from 0.0012 to 0.0377). The results suggest that the EFFNet + CNN may
only work well on a specific training and testing dataset of the Sabah Food Dataset rather
than representing the overall best approach. Nevertheless, EFFNet + CNN is the best
performing approach on the Sabah Food Dataset.

On the other hand, for the VIREO-Food172 Dataset, it is observed that the EFFNet + SVM
(OVO) provides the best performance (0.8657), as shown in Table 17. However, compared
to the top ten performing machine-learning approaches in the Sabah Food Dataset, the
differences between each machine-learning approach on the VIREO-Food172 Dataset
are more stable (with differences ranging from 0.0007 to 0.0269). In contrast to the best
performing approach on the Sabah Food Dataset (Table 16), there is no significant drop in
accuracy from the highest to the second-highest accuracy on the VIREO-Food172 Dataset.
Additionally, both the Sabah Food Dataset and the VIREO-Food172 Dataset demonstrate
that EFFNet provides the best performance when used as a feature representation.

As previously stated, there are seven different feature representations. Therefore,
Tables 18 and 19 present seven machine-learning approaches for the Sabah Food Dataset
and VIREO-Food172 Dataset, with the best one selected from each group of feature repre-
sentations and ranked from best to worst accuracy. In Tables 18 and 19, the bold formatted
machine learning approaches and accuracy denote the best machine learning approaches
in that table. Tables 18 and 19 are similar in that EFFNet is the best feature representa-
tion, followed by Xception, Inception V3, and VGG16. Further examination of Table 18
reveals that the accuracy falls precipitously between Color + CNN (0.7422) and ResNet50 +
LSVM (OVA) (0.5236), yielding 0.2186 differences. On the other hand, examining Table 19
reveals a gradual decline in accuracy within the first four machine-learning approaches
before a significant decrease from VGG16 + LSVM (OVO) (0.7725) to MobileNet + LSVM
(OVO) (0.6332), yielding a 0.1393 difference. This drop in accuracy is significant because it
tells us which machine-learning approaches should be considered for any future work or
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subsequent experiments if accuracy is the most important factor in the food recognition
model development.

Table 18. The highest accuracy based on feature representation for Sabah Food Dataset.

Machine Learning Approaches Accuracy

EFFNet + CNN 0.9401
Xception + SVM (OVO) 0.8632

Inception V3 + LSVM (OVA) 0.8475
VGG16 + LSVM (OVA) 0.8082

MobileNet + CNN 0.7708
Color + CNN 0.7422

ResNet50 + LSVM (OVA) 0.5236

Table 19. The highest accuracy based on feature representation for VIREO-Food172 Dataset.

Machine Learning Approaches Accuracy

EFFNet + SVM (OVO) 0.8657
Xception + SVM (OVO) 0.8489

Inception V3 + SVM (OVO) 0.8025
VGG16 + LSVM (OVO) 0.7725

MobileNet + LSVM (OVO) 0.6332
ResNet50 + LSVM (OVA) 0.4519

Color + CNN 0.4237

When the similarities between Tables 18 and 19 are compared, it is seen that EFFNet,
Xception, Inception V3, and VGG16 provide more stable performance, with EFFNet feature
representation being the best. As a result, an ensemble-based approach based on these four
feature representation methods can be considered for future work.

Additionally, Tables 20 and 21 present ten machine-learning approaches for the Sabah
Food Dataset and VIREO-Food172 Dataset. The best one was selected from each clas-
sifier group and ranked from best to worst accuracy. In Tables 20 and 21, the bold for-
matted machine learning approaches and accuracy represent the best machine learning
approaches in that table. Tables 20 and 21 are then subjected to a similar analysis. From
Tables 20 and 21, it can be seen that the EFFNet-based feature representation appears most
frequently. Table 20 shows four occurrences of EFFNet, whereas Table 21 shows eight
occurrences. Although this is a minor point, it is worth noting that the SVM (OVO) classi-
fier (Xception + SVM (OVO) in the Sabah Food Dataset and EFFNet + SVM (OVO) in the
VIREO-Food172 Dataset) appears in the top two of Tables 20 and 21.

Table 20. The highest accuracy based on classifier for Sabah Food Dataset.

Machine Learning Approaches Accuracy

EFFNet + CNN 0.9401
Xception + SVM (OVO) 0.8632
EFFNet + LSVM (OVA) 0.8601
EFFNet + LSVM (OVO) 0.8553

Inception V3 + KNN 0.7783
Xception + SVM (OVA) 0.7657
EFFNet + Naïve Bayes 0.7642

Inception V3 + Random Forest 0.6368
Inception V3 + Decision Tree 0.5142

VGG16 + ANN 0.3899
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Table 21. The highest accuracy based on classifier for VIREO-Food172 Dataset.

Machine Learning Approaches Accuracy

EFFNet + SVM (OVO) 0.8657
EFFNet + LSVM (OVO) 0.8560
EFFNet + LSVM (OVA) 0.8553
EFFNet + SVM (OVA) 0.8516

EFFNet + KNN 0.8035
EFFNet + Naïve Bayes 0.7561

EFFNet + ANN 0.7315
EFFNet + Random Forest 0.7201

Xception + CNN 0.7182
EFFNet + Decision Tree 0.5791

In a subsequent analysis of the Sabah Food Dataset and the VIREO-Food172 Dataset,
the overall performance of each feature representation is compared in Table 22. The value
in the second row and second column in Table 22 (EFFNet) is produced by calculating the
average of all machine-learning approaches that use EFFNet as a feature representation
technique for the Sabah Food Dataset. This calculation is repeated for all feature represen-
tations and both datasets to fill in the second and third columns in Table 22. The value in
the fourth column of Table 22 is filled with a value produced by the Overall Score defined
in (2). The Overall Score is calculated by averaging the Mean Accuracy of the Sabah Food
Dataset and the Mean Accuracy of the VIREO-Food172 Dataset from the second and third
columns of Table 22. Equation (2) is applied to all of the feature representations listed in
Table 22 to complete the fourth column.

Overall Score =
MASFD + MAVFD

2
(2)

where

MASFD = Mean Accuracy of Sabah Food Dataset, and
MAVFD = Mean Accuracy of VIREO-Food172 Dataset.

The Overall Score in (2) indicates the performance of a feature representation on both
proposed datasets. Following that, the Overall Score calculated in (2) is used to facilitate
the comparison of all feature representations. The bold formatted Feature Representation
and Overall Score in Table 22 represent the best Feature Representation.

Table 22. The overall performance of all feature representations.

Feature
Representation

Mean Accuracy of
Sabah Food Dataset

Mean Accuracy of
VIREO-Food172 Dataset Overall Score

EFFNet 0.6311 0.7714 0.7013
Xception 0.5991 0.7017 0.6504

Inception V3 0.6240 0.6375 0.6308
VGG16 0.5770 0.5896 0.5833

MobileNet 0.5053 0.3516 0.4285
ResNet50 0.3121 0.2977 0.3049

Color 0.3626 0.2370 0.2998

From Table 22, it can be seen that the EFFNet has the best overall performance,
followed by Xception, Inception V3, and VGG16 before the Overall Score drops significantly
for MobileNet, ResNet50, and Color. Therefore, a combination of the EFFNet, Xception,
Inception V3, and VGG16 approaches can be considered as components of an ensemble-
based approach.

Table 23 shows the overall performance of each classifier. The Overall Score in the
fourth column of Table 23 is calculated based on (2), which is obtained by averaging the
Mean Accuracy of the Sabah Food Dataset and the Mean Accuracy of the VIREO-Food172
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Dataset from the second and third columns of Table 23. Similar to the analysis conducted
in Table 22, the Overall Score calculated in (2) is used to facilitate the comparison of all
classifiers. The bold formatted Classifier and Overall Score in Table 23 represent the
best Classifier.

Table 23. The overall performance of classifiers.

Classifier Mean Accuracy of
Sabah Food Dataset

Mean Accuracy of
VIREO-Food172 Dataset Overall Score

LSVM (OVO) 0.6941 0.6466 0.6704
LSVM (OVA) 0.6954 0.5976 0.6465
SVM (OVO) 0.6049 0.6389 0.6219

CNN 0.6431 0.5555 0.5993
kNN 0.5117 0.5041 0.5079

SVM (OVA) 0.4398 0.5656 0.5027
Naïve Bayes 0.5133 0.4725 0.4929

Random Forest 0.5071 0.4633 0.4852
Decision Tree 0.3933 0.3714 0.3824

ANN 0.1563 0.3082 0.2323

From Table 23, it can be seen that the LSVM (OVO) classifier gives the best overall
performance (0.6704), followed by LSVM (OVA) (0.6465), SVM (OVO) (0.6219), and CNN
(0.5993) as the classifier. After the CNN classifier, there is a significant drop of Overall Score
from CNN to kNN, yielding 0.914 difference. As a result, if one is considering a classifier,
LSVM (OVO) and LSVM (OVA) are the best options. Additionally, for future work, LSVM
(OVO), LSVM (OVA), and SVM (OVO) can be considered as components of an ensemble-
based approach.

Finally, Table 24 compares the accuracy of the other methods in Table 1 as well as
the accuracy of the food recognition reported in [32] to our work. However, a direct
comparison between our model and their model is not possible, due to the differences
in the training and testing conditions. Nonetheless, our best performance of 94.01% is
comparable to that of [20], which has a 98.16% accuracy. Additionally, our EFFNet + CNN
model outperformed the CNN and InceptionV3+CNN models in terms of overall accuracy.

Table 24. A comparison of several food recognition models.

Work Dataset Number of
Categories Model Accuracy (%)

Our Proposed method Sabah Food Dataset 11 EFFNet + CNN 94.01

Our Proposed method VIREO-Food172 Dataset The first ten categories in
VIREO-Food172 Dataset EFFNet + SVM (OVO) 85.57

Jeny et al. (2019) [20] Self-collected Bangladesh
foods dataset 6 FoNet 98.16

Islam et al. (2018) [19] Food-11 dataset 11 InceptionV3 + CNN 92.86

Chen and Ngo [32] VIREO-Food172 Dataset 20 MultiTaskCNN 82.12
(Top-1)

Lu (2016) [17] Small-scale dataset 10 CNN 74.00

5.2. A comparison of Feature Dimension Using CNN as the Classifier

In this work, pre-processing and feature extraction is performed, using a transfer
learning strategy based on a pre-trained CNN. As the pre-trained CNN is built up with
several layers, there is an option to use all the layers or to pick only a few layers in order
to extract the relevant features. The relevance of features is determined by the type and
volume of datasets used to train CNNs. For instance, the ImageNet dataset is used to train
the CNN model, as it is one of the benchmark datasets in Computer Vision. However,
the types of datasets and volume of data used to train the pre-trained CNN models vary,
and the effectiveness of the transfer-learning strategy is dependent on the degree to which
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the trained models are related to the applied problem domains. Hence, the experiments
conducted in this work have revealed the compatibility between the pre-trained CNN
model as the feature extractor with the food recognition domain, especially the local food
dataset, based on their classification performance.

The selection of layers in the pre-trained CNN model determines not only the rel-
evancy of features but also their feature dimension. The size of the generated features
determines the efficiency of running the algorithm. A large number of features entails
additional computational effort but likely result in more discriminative features. As shown
in Figure 7, the size of the generated features varies according to the final layer or the layer
selection on the CNN architecture. It can be seen that the EFFnet has generated the largest
feature dimensions (62,720), followed by Inception V3 (49,152), MobileNet (32,768), VGG16
(4096), Color (4096), ResNet50 (2048), and Xception (2048).
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Table 25 compares the feature dimension and the Overall Score of feature representa-
tion. The bold formatted Feature Representation and Overall Score in Table 25 represent
the best Feature Representation. While EFFNet as feature representations outperforms
Xception in terms of overall performance, Table 25 shows that if computational speed is
more important than performance, Xception as feature representation can be considered
at the cost of some accuracy performance. The results in Table 25 also indicate that the
data used in EFFNet training potentially contain the most relevant and consistent data for
extracting meaningful features from food images when compared to other CNN models.

Table 25. A comparison of feature dimension and overall accuracy performance.

Feature Representation Feature Dimension Overall Score

EFFNet 62,720 0.7013
Xception 2048 0.6504

Inception V3 49,152 0.6308
VGG16 4096 0.5833

MobileNet 32,768 0.4285
ResNet50 2048 0.3049

Color 4096 0.2998

Additionally, Figure 8 presents the length and width of features of a pre-trained CNN
model for training with a CNN classifier. Each bar in Figure 8 has a label that represents
the length and width values. In this case, the length and width are equal. As seen in
Figure 8, the Conv2D features generated by EFFNet are minimal (16, 16, 245), compared to
the Conv1D features. Despite the high depth of the feature dimension (245), the experiment
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revealed no noticeable effect of time efficiency during the training phase. Based on this
finding, the model trained with EFFNet features is the best model, as it achieves the highest
overall accuracy and generates highly distinctive, yet compact features. In this context, the
depth level (z) of the feature’s representation determines the efficacy of the classification
performance, as more insight of spatial information can be generated. Furthermore, the
level of depth of features (z) are more likely have less effect on the overall classification
efficiency, compared to the value of x and y axis of the features. As depicted in Figure 8,
the MobileNet- and Inception V3-based feature representations produce the highest values
of x and y but cost more in terms of execution time than ResNet50, VGG16, Xception,
and EFFNet based feature representations. However, in addition to the compatibility of
the pre-trained CNN models with the newly developed classification model, the shape
of the feature representations is another factor that must be taken into account in the
experiment settings.
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5.3. Food Recognition Model Deployment

As described previously, a web application system is deployed with the best recogni-
tion model (EFFNet-LSVM). The trained model is prepared as a NumPy data structure file
using the Joblib library. At the same time, the back-end algorithm for food recognition is
integrated with HTML using the Flask framework. Figure 9 shows the main homepage of
the preliminary outcome of the prototype web application. Two modules are developed:
food recognition and customer feedback module, as shown in Figures 10–12.
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As shown in Figure 10, the user must upload a JPG image of the food and click the
Recognize food button to invoke the back-end of the food recognition algorithm. The
food’s name will then appear beneath the image. Finally, another feature included in this
system is the ability to collect user feedback on foods via a form, as shown in Figure 11.
The administrator can then view all of the customer feedback, as shown in Figure 12.

To summarize, the prototype web application is designed to accomplish three pur-
poses: (i) to provide a food recognition feature for users who are unfamiliar with the food’s
name, (ii) to enable users to share their food-related experiences via a feedback feature,
and (iii) to enable the administrator of this web application system to collect image and
feedback data for use in food sentiment analyses and food business analytics. Furthermore,
the user’s new images can be added to the current food dataset to update the training
database, which in turn updates the training model.

6. Conclusions

This paper compared the performance of 70 combinations of food recognition ap-
proaches, which consist of six different pre-trained CNN-based models used as feature
extractors, one feature representation based on the RGB component of an image, and ten
commonly used machine-learning classifiers. Additionally, two types of datasets were used
for performance evaluation: (i) the Sabah Food Dataset and (ii) the VIREO-Food172 Dataset.
From the comparison, on the Sabah Food Dataset, it was found that the EFFNet + CNN
(94.01% accuracy) approach gives the best performance, followed by Xception + SVM
(OVO) (86.32% accuracy). However, the significant drop of accuracy from 94.01% to 86.32%
suggests that the EFFNet + CNN may be an outlier and only works well on a specific
training and testing dataset of the Sabah Food Dataset, rather than representing the overall
best approach. On the VIREO-Food172 Dataset, it was found that the EFFNet + SVM (OVO)
(86.57% accuracy) provides the best performance, followed by EFFNet + LSVM (OVO)
(85.60% accuracy). In comparison to the Sabah Food Dataset, the difference between the
best and second-best performing approaches in VIREO-Food172 Dataset is insignificant
(0.97% difference). It should be noted that the best performing feature representation for
both the Sabah Food Dataset and the VIREO-Food172 Dataset is the EFFNet-based feature
representation. This is supported by the paper’s discussion of the Overall Score of feature
representation, which demonstrates that EFFNet has the highest Overall Score of feature
representation. A similar comparison was made for the classifiers, and it was found that the
LSVM (OVO) classifier gives the best overall performance for food recognition, followed by
LSVM (OVA) as the classifier. In terms of computational complexity and memory space us-
age, while EFFNet (with 62,720 feature dimension) as feature representations outperformed
Xception in terms of overall performance, if computational speed and memory space usage
are more important than performance, then Xception (with 2048 feature dimension) can
be considered at the expense of a small accuracy performance reduction. As part of the
implication of this work, this paper also presented a food recognition model for indigenous
foods in Sabah, Malaysia, by utilizing a pre-trained CNN model as a feature representation
and a classifier. The classification accuracy (94.01%) achieved by EFFNet + CNN in the
performance evaluation results for the Sabah Food Dataset is very promising for real-time
use. As a result, a prototype web-based application for the Sabah food business analytics
system was developed and implemented using the EFFNet + CNN approach for a fully
automated food recognition using real-time food images.

Future Work

For future work, this research should conduct more experiments to obtain a more
rigorous analysis of the CNN hyper-parameters and the CNN layers to achieve more
solid and concrete findings. The types and number of implemented CNN layers and the
feature shape can be further analyzed. Additionally, the feature selection algorithm can be
studied further to reduce the dimensionality of the features, as this has a significant effect
on the computational time. Furthermore, the criteria for selecting the training database
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for a food recognition system can be explored further. It was found in [34] that using
the database’s mean class in the training database can potentially improve the system’s
performance. Finally, to further improve the accuracy, a study on an ensemble-based
approach, using a combination of EFFNet, Xception, Inception V3, VGG16, LSVM, and
CNN, can be considered. Another interesting area to consider is food sentiment analysis.
The user feedback data can be incorporated into a food sentiment analysis module, with the
aim that it will assist business owners in remaining informed about the market acceptance
of their food products. The customer feedback data can be analyzed further to improve the
quality and innovation of indigenous foods, allowing them to be more commercialized and
ultimately contribute to Sabah’s gastronomic tourism industry. Finally, another area that
can be investigated is the food business prediction module, which allows for the analysis
of food market trends and provides additional data to industry practitioners in order to
strategize their food business direction.
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24. Taşkıran, M.; Kahraman, N. Comparison of CNN Tolerances to Intra Class Variety in Food Recognition. In Proceedings of the
2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), Sofia, Bulgaria, 3–5 July
2019; pp. 1–5.

25. Howard, G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv Preprint 2017, arXiv:1704.04861.

26. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

27. Yao, N.; Ni, F.; Wang, Z.; Luo, J.; Sung, W.-K.; Luo, C.; Li, G. L2MXception: An improved Xception network for classification of
peach diseases. Plant. Methods 2021, 17, 1–13. [CrossRef] [PubMed]

28. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deep-er with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9. [CrossRef]

29. Singla, A.; Yuan, L.; Ebrahimi, T. Food/Non-food Image Classification and Food Categorization using Pre-Trained GoogLeNet
Model. In Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management, Amsterdam, The
Netherlands, 16 October 2016.

30. Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946.
31. Liu, J.; Wang, M.; Bao, L.; Li, X. EfficientNet based recognition of maize diseases by leaf image classification. J. Physics: Conf. Ser.

2020, 1693, 012148. [CrossRef]
32. Chen, J.; Ngo, C.-W. Deep-based Ingredient Recognition for Cooking Recipe Retrieval. In Proceedings of the 24th ACM

international conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 32–41.
33. Hatcher, W.G.; Yu, W. A Survey of Deep Learning: Platforms, Applications and Emerging Research Trends. IEEE Access 2018, 6,

24411–24432. [CrossRef]
34. Dargham, J.A.; Chekima, A.; Moung, E.G.; Omatu, S. The Effect of Training Data Selection on Face Recognition in Surveillance

Application. Adv. Intell. Syst. Comput. 2015, 373, 227–234. [CrossRef]

http://doi.org/10.30534/ijatcse/2020/56922020
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1186/s13007-021-00736-3
http://www.ncbi.nlm.nih.gov/pubmed/33794942
http://doi.org/10.1109/CVPR.2015.7298594
http://doi.org/10.1088/1742-6596/1693/1/012148
http://doi.org/10.1109/ACCESS.2018.2830661
http://doi.org/10.1007/978-3-319-19638-1_26

	Introduction 
	Related Works 
	A Transfer Learning Approach Using Pre-Trained Deep Learning Architecture 
	ResNet50 
	VGG16 
	MobileNet 
	Xception 
	Inception 
	EfficientNet 

	Experiments 
	Food Dataset Preparation 
	Feature Representations and Classifiers 
	Performance Metrics 

	Results and Discussions 
	Experiments Results 
	A comparison of Feature Dimension Using CNN as the Classifier 
	Food Recognition Model Deployment 

	Conclusions 
	References

