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Abstract: Previous work established the set of square-free integers n with at least one factorization
n = p̄q̄ for which p̄ and q̄ are valid RSA keys, whether they are prime or composite. These integers
are exactly those with the property λ(n) ∣ (p̄− 1)(q̄− 1), where λ is the Carmichael totient function.
We refer to these integers as idempotent, because ∀a ∈ Zn, ak(p̄−1)(q̄−1)+1

≡
n

a for any positive integer
k. This set was initially known to contain only the semiprimes, and later expanded to include
some of the Carmichael numbers. Recent work by the author gave the explicit formulation for the
set, showing that the set includes numbers that are neither semiprimes nor Carmichael numbers.
Numbers in this last category had not been previously analyzed in the literature. While only the
semiprimes have useful cryptographic properties, idempotent integers are deserving of study in their
own right as they lie at the border of hard problems in number theory and computer science. Some
idempotent integers, the maximally idempotent integers, have the property that all their factorizations
are idempotent. We discuss their structure here, heuristics to assist in finding them, and algorithms
from graph theory that can be used to construct examples of arbitrary size.

Keywords: carmichael totient function; number theory; RSA; computational number theory; factorizations

1. Introduction

Take two integers p̄ and q̄, let n = p̄q̄. Let φ
′(n) = (p̄− 1)(q̄− 1). Find two integers d

and e such that de ≡
φ′(n)

1. Publish e, keep d secret. Let M be a message, let its encrypted

version be given by by E ≡
n

Me. Let the decryption operation be given by D ≡
n

Ed. What are
the conditions on p̄ and q̄ such that D = M?

Readers will recognize this as the RSA protocol [1], with the required conditions
constraining encryption and decryption to “work”: Encrypting and decrypting in this
manner will recover the original message. Ref. [1] showed that choosing p̄ and q̄ as prime
numbers will not only meet this required condition, but also provides the valuable property
of making n empirically difficult to factor (when p̄ and q̄ are sufficiently large). This in turn
leads to the security of RSA.

While choosing n as a semiprime provides the necessary security properties, and re-
duces φ

′ to Euler’s totient function, semiprimes are not the only integers for which the
correctness of this protocol is preserved. Ten years after [1,2] implicitly showed, with-
out explicitly stating, that the set of these integers also includes some of the Carmichael
numbers. Whether there were other possible values of n = p̄q̄ that were neither semiprimes
nor Carmichael numbers remained unknown.

In [3], we introduced the notion of idempotent integers, the set of square-free integers n
that can be factored into two positive integers p̄ and q̄ such that λ(n) ∣ (p̄− 1)(q̄− 1), where
λ is the Carmichael totient function. We refer to these integers as idempotent because
∀a ∈ Zn, ak(p̄−1)(q̄−1)+1

≡
n

a for any positive integer k. These integers are exactly those for
which p̄ and q̄ generate valid keys in the 2-prime RSA protocol, regardless of whether they
are prime or composite [3].
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While only the semiprimes have useful cryptographic properties [4], idempotent inte-
gers are deserving of study in their own right, as they lie at the border of hard problems in
number theory and computer science. Some idempotent integers, the maximally idempotent
integers, have the property that all their factorizations are idempotent. We discuss their
structure here, heuristics to assist in finding them, and algorithms from graph theory that
can be used to construct examples of arbitrary size. We discuss what is currently known,
present new results since [3], and discuss open problems.

2. Materials and Methods
2.1. Definitions

Let n = p1 p2 . . . pm be a square-free integer, where p1 < p2 < . . . < pm are primes. Let
ai = pi − 1 ∶ i = 1 . . . m. We will call ai the predecessor of pi and pi the successor of ai. It
is a known property of the function λ that λ(n) = lcm(a1, a2, . . . , am), where lcm denotes
the least common multiple. We will write λ instead of λ(n) when the meaning is clear. We
write p̄i as shorthand for ∏

i=1...m
pi.

Let n = p1 p2 . . . pm. Let P be the set {p1, p2 . . . pm}. Sets A and B are said to partition
P if (a) ∀p ∈ P, either p ∈ A or p ∈ B, (b) A⋂ B = ∅, and (c) A⋃ B = P. A factorization of
n into p̄q̄ is any p̄, q̄ such that p̄ = ∏

p∈A
p, q̄ = ∏

p∈B
p where A and B partition P. An idempotent

factorization is a factorization n = p̄q̄ for which λ(n) ∣ (p̄− 1)(q̄− 1). We will refer to an
integer n that has an idempotent factorization as idempotent when the meaning is clear.

Let p, q be prime, consider a semiprime n = pq. It is a known property of λ that
λ(n) ∣ φ(n). Since φ(n) = (p− 1)(q− 1), all semiprimes are trivially idempotent. We do
not consider them further here.

Any square-free integer with m factors has (m
1) = m factorizations of the form

p̄ = pi, q̄ =∏
j≠i

pj, (m
2) factorizations of the form p̄ = pi pj, q̄ = ∏

k≠i,j
pk, and so forth. Each factor-

ization corresponds to a single equation in n, p̄ and q̄ that represents a possible idempotent
factorization. We refer to these as single-factor equations/factorizations, double-factor,
etc. We call idempotent single-factor factorizations semi-composite factorizations of n,
because p̄ is prime while q̄ is composite. All other factorizations are fully composite.

The first eight square-free n with three or more factors and fully composite idempotent
factorizations are shown in Table 1 [3].

Table 1. The first 8 integers with fully composite idempotent factorizations.

n Prime Factorization Idempotent Factorization n = p̄q̄ λ

210 2*3*5*7 10*21 12
462 2*3*7*11 21*22 30
570 2*3*5*19 10*57 36
1155 3*5*7*11 21*55 60
1302 2*3*7*31 6*217 60
1330 2*5*7*19 10*133 36
1365 3*5*7*13 15*91 12
1785 3*5*7*17 21*85 48

The smallest integer with two fully composite idempotent factorizations is 2730, when
factored into 10*273 and 21*130. The complete list of all n < 227 with fully composite
idempotent factorizations is available at [5].

2.2. Maximally Idempotent Integers

An integer is maximally idempotent if all its factorizations are idempotent. These integers
have the property that all their factorizations n = p̄q̄ produce correctly functioning RSA keys.
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The first 16 maximally idempotent n with 3 and 4 prime factors are shown in Table 2,
along with the two 5-factor cases <230 [3]. Carmichael numbers are underlined.

Table 2. Maximally idempotent integers with 3, 4 and 5 factors.

3 Factors λ 4 Factors λ 5 Factors λ

273 = 3*7*13 12 63,973 = 7*13*19*37 36 72,719,023 = 13*19*37*73*109 216
455 = 5*7 *13 12 137,555 = 5*11*41*61 120 213,224,231 = 11*31*41*101*151 300
1729 = 7*13*19 36 145,607 = 7*11*31*61 60
2109 = 3*19*37 36 245,791 = 7*13*37*73 72
2255 = 5*11*41 40 356,595 = 5*19*37*73 72
2387 = 7*11*31 30 270,413 = 11*13*31*61 60
3367 = 7*13*37 36 536,389 = 7*19*37*109 108
3515 = 5*19*37 72 667,147 = 13*19*37*73 72
4433 = 11*13*31 60 996,151 = 13*19*37*109 108
4697 = 7*11*61 60 1,007,903 = 13*31*41*61 120
4921 = 7*19*37 36 1,847,747 = 11*17*41*241 240
5673 = 3*31*61 60 1,965,379 = 13*19*73*109 216
6643 = 7*13*73 72 2,060,863 = 7*37*73*109 216
6935 = 5*19*73 72 2,395,897 = 7*31*61*181 180
7667 = 11*17*41 80 2,778,611 = 11*41*61*101 600
8103 = 3*37*73 72 3,140,951 = 11*31*61*151 300

Maximally idempotent integers are rare. Below 230 there are 15,189 with three prime
factors, 315 with 4, and 2 with 5.

The smallest and smallest known maximally idempotent integers with m factors for
3 ≤ m ≤ 9 are shown below in Table 3:

Table 3. Smallest or smallest known (m = 8, 9) maximally idempotent integers with m factors.

m n Factorization

3 273 3*7*13
4 63,973 7*13*19*37
5 72,719,023 13*19*37*73*109
6 13,006,678,091 11*31*41*61*101*151
7 7,817,013,532,691 11*31*41*61*101*151*601

8 1,461,152,759,521,471,960,628,611 31*211*421*631*2521*4201*6301*12,601
9 35 digits 61*2021*3061*6121*8161*12,241*24,481*40,801*122,401

3. Results
3.1. Some Structural Properties of Maximally Idempotent Integers

A number of quantities affect whether or not an integer is maximally idempotent: The
smallest prime p1, the largest prime pm, the number of factors m, the GCD of each distinct
set of factorizations, and the least common multiple of the ai.

We begin with a universal property of maximally idempotent integers:

Theorem 1. All maximally idempotent integers with at least three factors are odd.

Proof. First, we consider the case m = 3. There are three equations that must be satisfied
for n to be maximally idempotent:

(p1 − 1)(p2 p3 − 1) ≡
λ

0

(p2 − 1)(p1 p3 − 1) ≡
λ

0

(p3 − 1)(p1 p2 − 1) ≡
λ

0
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Assume p1 = 2. Plugging it into the above, we obtain:

(p2 p3 − 1) ≡
λ

0→ p2 p3 ≡
λ

1

(p2 − 1)(2p3 − 1) ≡
λ

0→ 2p2 p3 − p2 − 2p3 + 1 ≡
λ

0

(p3 − 1)(2p2 − 1) ≡
λ

0→ 2p2 p3 − p3 − 2p2 + 1 ≡
λ

0

Applying the first equation to the second and third, we have:

2− p2 − 2p3 + 1 ≡
λ

0→ p2 + 2p3 ≡
λ

3

2− p3 − 2p2 + 1 ≡
λ

0→ 2p2 + p3 ≡
λ

3

→ p2 + 2p3 ≡
λ

2p2 + p3 → p3 ≡
λ

p2 → a3 ≡
λ

a2

For distinct ai with a2 < a3, λ = lcm(a1, a2, a3) = lcm(1, a2, a3) ≥ a3, so the above
is impossible.

Now, let n = p1 p2 . . . pm be a maximally idempotent integer with m > 3. There are m
single-factor equations that n satisfies:

(p1 − 1)(p2 p3 . . . pm − 1) ≡
λ

0

(p2 − 1)(p1 p3 . . . pm − 1) ≡
λ

0

. . .

(pm − 1)(p1 p2 . . . pm−1 − 1) ≡
λ

0

Assume p1 = 2 and substitute. We have

(2− 1)(p2 p3 . . . pm − 1) ≡
λ

0→ p2 p3 . . . pm ≡
λ

1 (i = 1)

(pi − 1)(2pj≠1,i − 1) ≡
λ

0 (i > 1)

Multiplying out the second equation and substituting the first, we have

(pi − 1)(2pj≠1,i − 1) ≡
λ

0→ 2p2 p3 . . . pm − pi − 2pj≠1,i + 1 ≡
λ

0

→ ∀i>1 ∶ pi + 2∏
j≠1,i

pj ≡
λ

3

Now, consider the double factor equations resulting from moving p1 = 2 from the
right side of a single-factor equation for i > 1. Since n is maximally idempotent, it satisfies
these equations as well. We have:

(2pi − 1)(pj≠1,i − 1) ≡
λ

0→ 2p2 p3 . . . pm − 2pi − pj≠1,i + 1 ≡
λ

0

→ ∀i>1 ∶ 2pi +∏
j≠1,i

pj ≡
λ

3

By setting all these equations equal to each other mod λ and working through the
algebra, we find the mutual equivalences from the single and double factor equations imply
∀ipi ≡

λ
pj ,→ ai ≡

λ
aj. For λ as defined previously with distinct ai, this is impossible.

The above is an example of a restriction on p1 as a result of increasing m (since for m = 2,
the result does not hold). A similar result can be obtained showing that m = 4→ p1 > 3,
omitted here due to space limitations. We offer the following:
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Conjecture 1. If pi is the smallest prime factor of an m-factor maximally idempotent integer,
and pj is the smallest prime factor of an m+ 1-factor maximally idempotent integer, then pi ≤ pj.

This is consistent with all empirical results so far. Below Table 4 are the smallest p1,
for which maximally idempotent integers are known for m = 3, . . . , 9.

Table 4. Smallest p1 for given m for which maximally idempotent integers are known.

m Smallest p1

3 3
4 5
5 5
6 5
7 11
8 29
9 61

It is unknown if maximally idempotent integers exist for (m = 7, p1 < 11), (m = 8,
p1 < 29) or (m = 9, p1 < 61). We propose these and the conjecture above as open problems,
waiting for proofs of nonexistence or counterexamples.

3.2. A Structure Theorem for Maximally Idempotent Integers

Let n = p1 p2 . . . pm be an m-factor maximally idempotent integer, p1 < p2 . . . < pm.
Let ai = pi − 1, λ(a2 . . . am) = λ = lcm(a2 . . . am) (note we are deliberately omitting a1). Let
p1 = N. Consider the first two single-factor equations, where the first term is (pi − 1),
under modulo a2. (The equation with a left factor of p2 − 1 is trivially true mod a2, so we
consider the equations with left factors of (p1 − 1) and (p3 − 1)). We obtain

(N − 1)(p2 . . . pm) ≡
a2

0→ (N − 1)(p3 . . . pm) ≡
a2

(N − 1)

(p3 − 1)(Np4 . . . pm − 1) ≡
a2

0

→ Np3 . . . pm − p3 − Np4 . . . pm + 1 ≡
a2

0

(Recall that pi ≡ai
1). Next, consider the factorization equation (p1 p3 − 1)(p2 p4 . . . pm −

1). By the requirements of maximal idempotency, we have

(p1 p3 − 1)(p2 p4 . . . pm − 1) ≡
a2

0

→ (Np3 − 1)(p4 . . . pm − 1) ≡
a2

0

→ Np3 . . . pm − Np3 − p4 . . . pm + 1 ≡
a2

0

Multiplying this equation by N and then subtracting the previous result, we get

(N2
− N)p3 . . . pm + (1− N2)p3 + N − 1 ≡

a2
0

→ N(N − 1)p3 . . . pm + (1− N2)p3 + N − 1 ≡
a2

0

→ N(N − 1)+ (1− N2)p3 + N − 1 ≡
a2

0

→ N2
− 1− (N2

− 1)p3 ≡a2
0
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→ (N2
− 1)(1− p3) ≡a2

0

→ (N2
− 1)(p3 − 1) ≡

a2
0

→ (N2
− 1)a3 ≡a2

0

Applying this to the other mod a2 equations, and then to the other moduli a3, a4, a5,
we obtain

(N2
− 1)a2 ≡a2

(N2
− 1)a2 ≡a3

. . . ≡ (N2
− 1)a2 ≡am

0

(N2
− 1)a3 ≡a2

(N2
− 1)a3 ≡a3

. . . ≡ (N2
− 1)a3 ≡am

0

. . .

(N2
− 1)am ≡

a2
(N2

− 1)am ≡
a3

. . . ≡ (N2
− 1)am ≡

am
0

Letting (N2 − 1) = C, it is easily shown that for distinct ai, we must have am ≤ Ca2,
and that a set of distinct positive ai is a solution ⟺ ∀ai, λ/ai ∣ C, i > 1. So any maximally
idempotent integer has the property ∀ai, λ/ai ∣ (p1

2 − 1), i > 1.
Since am ≤ Ca2, there are a finite number of m-factor maximally idempotent integers

with a given p1 and p2.
The results above are expressed in terms of p1. We noted previously that for the

resulting system of modular equations, am ≤ (p1
2 − 1)a2. In fact, we may fix any factor, not

just p1. This gives a Ratio Theorem for Maximally Idempotent Integers:

Theorem 2. Let n be a maximally idempotent integer with factors p1 < p2 ⋅ ⋅ ⋅ < pm. For any
pj > pi,

pj

pi
< pk

2 − 1, k ≠ i, j.

The Ratio Theorem means that all but one of the prime factors of maximally idem-
potent integers are constrained to be within a certain range of one another; there can
be at most one outlier. For example, the primes [7, 11, 127, 211, 853] could not form a
maximally idempotent integer, because 853/7 > 112 − 1. However, the primes [7, 727,
1453, 2179, 4357] can and do form a maximally idempotent integer. Note for this integer
λ = 4356, {λ/a2, λ/a3, λ/a4, λ/a5} = {{6, 3, 2, 1}, all of which divide 48 = p1

2 − 1). Note as
well that the Ratio Theorem holds.

The Ratio Theorem also has computational implications. It means fixing any two
prime factors permits the enumeration of all maximally impotent integers containing
those factors.

We have not yet considered the equations corresponding to the factorization (N − 1)
(p2 . . . pm − 1), for moduli > a1:

(N − 1)(p2 . . . pm − 1) ≡
ai

0

These also form a set of modular equations similar to the one considered above. This
time the constant C is (N − 1)(p2 . . . pm − 1), which here implies that for any solution
a2, . . . , am we must have λ/gcd(a2, . . . , am) ∣ (N − 1)(p2 . . . pm − 1).
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We sum up the results of this section as a Structure Theorem for Maximally Idempo-
tent Integers:

Theorem 3. Let n = p1 p2 . . . pm be a maximally idempotent integer with m factors, m ≥ 4, pi prime.
Let ai = pi − 1, λ(a2, . . . , am) = λ = lcm(a2, . . . , am). n must satisfy the following conditions:

(1) ∀ai λ/ai ∣ (p1
2 − 1), i > 1

(2) λ ∣ (p1 − 1)(p2...pm − 1)

We emphasize that these are necessary conditions, but not sufficient. [5, 7, 13, 19]
satisfies both criteria, but does not form a maximally idempotent integer.

The smallest possible value of λ is am. Thus, for small p1, condition 2 will most likely be
met when λ is at or close to am. For example, the four smallest maximally idempotent integers
with p1 = 5 and m = 4 are 137,555 = 5*11*41*61, 356,595 = 5*19*37*73, 5,521,745 = 5*29*113*337,
and 23,988,515 = 5*59*233*349. In these cases, λ is either 2am or am. For m = 5 and p1 = 5,
the smallest maximally idempotent integer is 146,168,311,505 = 5*101*401*601*1201, with λ
at the minimum value am = 1200. Similarly, for the previously considered maximally
idempotent example 70,200,928,349,251 = 7*727*1453*2179*4357, λ also has minimum value
of am = 4356. Note that both these examples meet Condition 1. We will have more to say
about the value of λ in the sections that follow.

Condition 1 imposes a crude lower limit on p1 as a function of m, in that (p1
2 − 1) must

contain at least m− 1 divisors. These limits for small m are shown in the Table 5 below:

Table 5. These limits for small m are shown.

p1
Max m = D + 1

D = #divisors of p1
2 − 1

3 5
5 9
7 11
11 17
13 17
17 19

In some cases, tighter bounds have already been established by the work previously
shown. Cases where gaps remain are offered as open problems.

3.3. The Role of Factorization Equation GCD’s

Let Di(n) denote the gcd of all factorization equations of n with i factors on the left
side. For example, with n = p1 p2 p3 p4 = 43*79*223*331, we have

D1(n) = gcd((p1 − 1)(p2 p3 p4 − 1), (p2 − 1)(p1 p3 p4 − 1),

(p3 − 1)(p1 p2 p4 − 1), (p4 − 1)(p1 p2 p301)) = 108

D2(n) = gcd(p1 p2 − 1)(p3 p4 − 1), (p1 p3 − 1)(p2 p4 − 1),

(p1 p4 − 1)(p2 p3 − 1)) = 144

We will omit the argument n if the meaning is clear. It is easily seen that n is maximally
idempotent if λ ∣ Di for all i for which i-factor factorizations exist.

Empirically, D1 and D2 are almost always equal, with the probability rapidly approach-
ing 1 as m increases, Di becomes smaller. Below Table 6 shows data for m = 4.12, based on a
million random permutations of length m from the first 100,000 primes.
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Table 6. Data for m = 4.12, based on a million random permutations of length m from the first
100,000 primes.

m D1 = D2 D1 ∣ D2 D2 ∣ D1 Neither

4 699,799 298,253 1534 414
5 996,571 235 3194 0
6 931,969 64,968 2946 117
7 997,686 32 2282 0
8 983,371 15,292 1322 15
9 999,280 0 720 0
10 996,162 3536 301 1
11 999,875 0 125 0
12 999,149 797 54 0

The fact that D1 = D2 so often has implications for improving the efficiency of search
algorithms for maximally idempotent integers.

3.4. Finding Maximally Idempotent Integers

The equations of idempotency have some redundancy. In particular, let p̄ and q̄ be
a factorization of n. Because pk ≡

λ
1, any pk may be moved from q̄ to p̄ without affecting

the product mod ak ∶ (p̄− 1)(q̄− 1) ≡
λ

0→ (p̄pk − 1)(q̄/k− 1) ≡
ak

0. Thus, in addition to the

explicit equivalence equation of a given factorization, there are implied equivalences mod
ak. If equations are chosen such that a given equivalence is implied for all ak, then it holds
for λ even if it is not explicitly given (recall that ∀i, ai ∣ λ).

This has implications when testing for maximal idempotency. For example, only the
single factor equations need to be tested for m = 3, 4, as they imply the three double factor
ones. For m = 5, only 12 of the possible 15 equations need be tested, and so forth.

However, based on the results regarding D1 and D2 above, it is empirically more
efficient to check the single factor equations first. If any one of them fail, n is not maximally
idempotent. If they all pass, then the double factorizations can be checked, and so forth.
It is also more efficient to compute Di one equation at a time. If the current value Di ever
drops below λ, further testing is not required since λ can never divide it.

One way to find maximally idempotent integers is to simply iterate through a range of
integers n, factor them, calculate λ for the ones that are square free, and then see if the equations
for maximal idempotency are satisfied. As this requires factoring, this is computationally
intensive. A more productive approach is to start with the primes in a given range and test
products for m = 3, 4 . . . etc. In particular, we may fix p1 and pm and then identify all the
maximally idempotent integers with factors inclusively between those two values.

Based on the results previously discussed, we may expect maximally idempotent
integers to be found only when λ is at a local minimum (am or a small multiple thereof)
and the Di’s are at a local maximum. This confirmed in the figures below, which show
log2 D1 and log2 λ as a function of n. Logarithmic values are used due to the differences in
magnitude between λ and D1.

Figure 1 shows this plot for p1 = 7, m = 3, pm ≤ 97. The orange data set is the log of λ,
the gray is the log of D1. Each data point is for a value of n = p1 p2 p3, sorted in increasing
order. The values of n where λ ≤ D1 are marked with vertical lines. The value of that ratio
is read from the right vertical axis. Red lines correspond to those cases where D1/λ is an
integer, and indicate all the maximally idempotent integers in this range.

Figure 2 shows these lines alone, along with their data values. The left value in each label
with a reciprocal integer ratio (indicated with a red line) is a maximally idempotent integer.

Figures 3 and 4 show similar plots with m = 4. Increasing the number of factors to
4 increases the number of data points, but it also increases λ as it starts to pull away from
Di. (Recall that logarithmic scales are used, making the absolute difference exponentially
larger than that depicted in the figure). The overall effect is to decrease the number of
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integers with λ ≤ D1. We note, however, that the proportion of those integers which are
maximally idempotent increases. We conjecture this ratio approaches 1 with increasing m.

Figure 1. p1 = 7, m = 3, pm ≤ 97.

Figure 2. p1 = 7, m = 3, pm ≤ 97, λ
D1

≤ 1.

Figure 3. p1 = 7, m = 4, pm ≤ 97.
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Figure 4. p1 = 7, m = 4, pm ≤ 97, D1
λ
≤ 1.

Figure 5 increases p1 from 7 to 11. Increasing p1 increases the average D1 slightly,
but significantly increases λ. It also reduces the number of candidates that can satisfy the
Ratio Theorem. The overall effect is a net decrease in the number of integers with λ ≤ D1,
and therefore the number of maximally idempotent integers. No maximally idempotent
integers exist in this range with p1 ≥ 17.

Figure 5. p1 = 11, m = 4, pm ≤ 97.

Figure 6 increases pm from 97 to 199. Doubling pm increases the number of candidates
in the combinatorially expected manner, which increases the probability of an maximally
idempotent integer being found. On the other hand, their asymptotic density decreases.
We conjecture the asymptotic density of maximally idempotent integers for a given p1
approaches zero. It is unknown if for a given p1 for which an maximally idempotent integer
exists, there is a maximum pm beyond which no more maximally idempotent integers can
be found, or if there are infinitely many.

Figure 7 further increases m to 6, showing the smallest 6-factor maximally idempotent
integer in the given range (indicated with a red circle). This is the entry for m = 6 in Table 2.
The black rectangle appears to indicate a second example, but that is an artifact of scale,
due to both the large number of points on the x axis (approximately 750 million) and the
logarithmic scales employed on the y axis. While in both of the indicated areas there are D1
values at the maximum of 600, with log2(Di) ≈ 9.2, the minimum λ in the rectangle is 760,
log2(λ) ≈ 9.6. The apparent match in the rectangle is in fact a local minimum λ between
two local maximum D1. Figure 8 makes this clearer.
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Figure 6. p1 = 11, m = 4, pm ≤ 199.

Figure 7. p1 = 11, m = 6, pm ≤ 199.

Figure 8. Detail from p1 = 11, m = 6, pm ≤ 199.

Thus, there is only one maximally idempotent integer with m = 6 in the indicated
range, the smallest one with 6-factors. There are none with m = 7, 8. We conjecture there
are no other maximally idempotent integers with pi ≥ 11, pm ≤ 199 for m ≥ 6.

3.5. Constructive Techniques
3.5.1. Improving the Odds with Divisor Sequences

More than half of the entries in Table 2 are primes in arithmetic progression, where
each factor is of the form a1k+ 1. As m increases, more and more maximally idempotent
integers take this form. This is because sequences of increasing ai where all ai divide
am iff λ = am, the minimum possible value. This is more likely to occur with primes in
arithmetic progression. This not a sufficient condition, due to the influence of the Di, nor
is it necessary, since λ may still be a local minimum if all the ai divide a small multiple of
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am. Nonetheless, as a heuristic it is useful for finding maximally idempotent integers faster
than brute force or searching arbitrary combinations of m primes.

To find an maximally idempotent integer with m factors, we begin with a desired p1
and a number N that contains at least m divisors di, with (N− 1)∗ (p1 − 1)+ 1 prime. Next,
we identify those di such that di ∗ (p1 − 1)+ 1 is prime, discarding the rest. The resulting
subsets will have (a1, . . . , amax) such that λ will be at its smallest possible value amax. These
subsets can then be tested for maximal idempotency. We refer to these subsets as divisor
sequences, since all of them are divisors of amax.

For example, suppose we are searching for 6-factor maximally idempotent integers
with p1 = 11. 300 has 8 divisors, but 301 is not prime. Additionally, 40 has 8 divisors
and 401 is prime, but only four of them have the property that 10di + 1 is prime. Addi-
tionally, 60 has 12 divisors, of which 7 have 10di + 1 prime, giving the divisor sequence
{10, 30, 40, 60, 100, 150, 600}. (Note that all ai divide the largest value of 600). There are
seven possible subsets of size 6 to test, one of which produces the maximally idempotent
integer 11*31*41*101*151*601. Note that this not the smallest 6-factor example, which has
the corresponding divisor set {10, 30, 40, 60, 100, 150}. These are not all divisors of 150, so
this is a case of an maximally idempotent integer where λ is not equal to am.

The complete subset of all seven primes above is also maximally imdepotent; it is the
smallest seven-factor example. All maximally idempotent integers known to the author
with seven or more factors have either been found using this technique, or explicitly
constructed using a technique from graph theory. We discuss that next.

3.5.2. Constructing Large Maximally Idempotent Integers Using k-Cliques in
Congruence Graphs

Random primes in modern cryptography are hundreds of bits long, found efficiently
using probabilistic algorithms [6]. Do similarly large maximally idempotent integers exist,
and if so, can they be found? The answer is yes, and probabalistic techniques are not required.
They can be constructed explicitly, of any size desired.

It is not difficult to show that every equation for idempotency is a linear sum of
products of ai, where each term is of length ≥2. For maximal idempotency, all such sums
must be ≡

λ
0. Any set of ai for which all distinct products aiaj ≡

λ
0 will have this property,

and will therefore correspond to a maximally idempotent integer. This is not a necessary
condition, but it is sufficient.

Such sets of ai can be constructed in the following way. (1) Choose λ0 a highly
composite number. (2) Make nodes in a graph corresponding to all divisors ai of λ0 such
that the successor of ai is prime. (3) Connect all node pairs ai, aj such that aiaj ≡

λ0
0. We call

the resulting graph a congruence graph.
For any congruence graph, λ of any subset of its nodes is their lcm, which in turn

must divide λ0. For all pairs of nodes in a k-clique, aiaj is congruent to 0 mod λ0. Therefore
all aiaj are congruent to zero mod the lcm of any subset of divisors of λ0, including the
members of the clique themselves.

Thus, every aiaj ≡
λ

0, where λ is the lcm of every node in the clique. This means that

every k-clique corresponds to a maximally idempotent integer with k factors. Similarly,
any divisor of a maximally idempotent integer constructed in this way is also maximally
idempotent. Thus, a k-clique in a congruence graph contains ( k

mi
) maximally idempo-

tent integers with 3 ≤ mi ≤ k factors, for a total of 2k − (k
2)− (k

1) (we ignore the primes
and semiprimes).

For example, consider λ0 = 36. The resulting divisors ai with pi = ai + 1 prime are
1, 2, 4, 12, 18, 36. This produces the congruence graph of Figure 9.

This graph contains six 3-cliques and one 4-clique. These correspond to seven maxi-
mally idempotent integers with λ = 36. Five of the six 3-cliques correspond to integers in
Table 2. The 4-clique is the smallest maximally idempotent integer with four factors, also
shown in Table 2.
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In general, to construct a maximally idempotent integer with a large number of factors,
choose λ0 highly composite. The divisor graph will then have a large number of nodes,
high connectivity and a greater likelihood of k-cliques for larger k.

Figure 9. Congruence graph for λ0 = 36.

Table 7 shows the values of λ0 when the first cliques of size k appear using this
method, along with some information about the graph and the size of the largest maximally
idempotent integer it contains.

Figure 10 shows the congruence graph for λ0 = 44,100 = 22325272, corresponding to
k = 10 in Table 7.Version July 22, 2021 submitted to Information 15 of 17

Figure 10. Congruence graph for λ0 � 44100

Conflicts of Interest: “The authors declare no conflict of interest."328

Figure 10. Congruence graph for λ0 = 44,100.
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Table 7. Smallest λ0 where k-cliques first appear in congruence graph.

k Prime Factorization of λ0 Divisors Nodes Edges #Digits in Largest Max Idempotent Integer

3 223 6 5 6 3
4 2232 9 7 11 5
5 2333 16 9 15 9
6 22345 30 17 58 16
7 2232112 27 15 46 21
8 2734 40 20 71 25
9 24355 60 30 149 32
10 22325272 81 31 129 36
11 24325272 135 53 311 45
12 263252 126 51 381 58
13 26325272 1889 71 424 57
14 283552 162 63 386 66
15 26335272 252 93 743 72
16 27335272 288 104 963 84
17 22325272112 243 73 531 87
18 28335272 324 115 1203 99
19–22 24325272112 405 125 1237 120
23–24 26325272112 567 168 1866 143
25–26 27325272112 648 195 2326 161
27–28 24345272112 675 200 2976 181
29 28325272112 729 215 2738 182
30–34 26345272112 945 275 4657 232

35–39 28345272112 (λ0 conjectured) 1215 353 6374 272
40–41 28365272112 (λ0 conjectured) 1701 471 9453 315

The largest k-clique currently constructed by the author has 141 nodes, correspond-
ing to an maximally idempotent integer of 2081 digits. It contains approximately 1043

maximally idempotent integers as divisors.
Idempotent factorizations can also be constructed from a congruence graph. It can

be shown that any complete (j, k) bipartite subgraph of the congruence subgraph corre-
sponds to an idempotent factorization of an integer n with j and k factors, respectively,
where n is the product of the successors of the corresponding ai’s. For example, Figure 9
has a complete (2, 2) bipartite subgraph on (4, 6) and (18, 36), shown in Figure 11. This
corresponds to the idempotent factorization p̄ = 5∗ 7, q̄ = 19∗ 37. n = 5∗ 7∗ 19∗ 37 is not
maximally idempotent, but it does have the indicated fully composite idempotent factor-
ization. Complete subgraphs of congruence graphs correspond to maximally idempotent
integers, while complete bipartite graphs correspond to idempotent integers. Again, we
emphasize these are sufficient conditions, not necessary ones.
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Figure 11. Complete bipartite subgraph on (4, 6) and (18, 36).

4. Discussion, Conclusions, and Directions for Future Work

We define the class of idempotent integers as those n which can be factored into p̄q̄
such that λ(n) ∣ (p̄− 1)(q̄− 1). This set includes the primes, semiprimes, and Carmichael
numbers, but is not unique to them. Maximally idempotent integers are those for which
all factorizations are idempotent. This last category presents interesting open problems.
For maximally idempotent integers as defined above, for a given p1 and a given m is the
number of maximally idempotent integers infinite? Of those n for which λ ≤ Di, does the
proportion for which λ/Di = 1 approach 1 as n increases? What lower bounds on p1 can be
proven as a function of m?

Rather than regard idempotency as a discrete property of factorizations and integers,
idempotency could be viewed on a continuum. Factorizations of n that are not fully idempo-
tent may be viewed as partially idempotent, depending on the (e, d) pair chosen according to
the RSA protocol [7]. In this case, the k in the definition of idempotency is replaced by ed.
Some integers may then be regarded as minimally idempotent, meaning that no (e, d) pairs
for any factorization are idempotent. The ai values for minimally idempotent integers are
solutions to a system of nonlinear modular equations, a known NP-complete problem. The
statistical properties of partial idempotency and heuristics for finding minimal idempotency
are a work in progress.
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