
 information

Article

Integer-Wise Functional Bootstrapping on TFHE: Applications
in Secure Integer Arithmetics †

Hiroki Okada 1,* , Shinsaku Kiyomoto 1 and Carlos Cid 2,3

����������
�������

Citation: Okada, H.; Kiyomoto, S.;

Cid, C. Integer-Wise Functional

Bootstrapping on TFHE: Applications

in Secure Integer Arithmetics.

Information 2021, 12, 297. https://

doi.org/10.3390/info12080297

Academic Editor: Giovanni Russello

Received: 5 July 2021

Accepted: 22 July 2021

Published: 26 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 KDDI Research, Inc., Saitama 356-8502, Japan; kiyomoto@kddi-research.jp
2 Royal Holloway, University of London, London WC1E 7HU, UK; Carlos.Cid@rhul.ac.uk
3 Simula UiB, Thormøhlens Gate 53D, 5006 Bergen, Norway
* Correspondence: ir-okada@kddi-research.jp
† This paper is an extended version of our presentation in the 23rd Information Security Conference (ISC 2020),

Online, 16–20 December 2020.

Abstract: TFHE is a fast fully homomorphic encryption scheme proposed by Chillotti et al. in
Asiacrypt’ 2018. Integer-wise TFHE is a generalized version of TFHE that can encrypt the plaintext
of an integer that was implicitly presented by Chillotti et al., and Bourse et al. presented the actual
form of the scheme in CRYPTO’ 2018. However, Bourse et al.’s scheme provides only homomorphic
integer additions and homomorphic evaluations of a sign function. In this paper, we construct a
technique for operating any 1-variable function in only one bootstrapping of the integer-wise TFHE.
For applications of the scheme, we also construct a useful homomorphic evaluation of several integer
arithmetics: division, equality test, and multiplication between integer and binary numbers. Our
implementation results show that our homomorphic division is approximately 3.4 times faster than
any existing work and that its run time is less than 1 second for 4-bit integer inputs.

Keywords: fully homomorphic encryption; secure computation; secure division; LWE; TFHE

1. Introduction

Gentry first proposed a fully homomorphic encryption (FHE) construction in 2009 [1,2],
and a variety of new features and hardness assumptions for FHE schemes [3–13] have been
considered. The FHE performs computations on encrypted data without decryption of
the data.

One notable application is secure computation in order to protect the secrecy of
data against computation servers. An example of secure computation services is privacy-
preserving machine learning as a service (MLaaS) [14,15]. In such a service, users want
to hide sensitive data (e.g., genomic, anamnesis data, etc.) from the server and the server
does not want to provide its cognitive models to users. FHE should be a fundamental
component of secure multi-party computation (MPC). However, most applications are
constructed without FHE operations because the MPC may require FHE operations many
times and the run time of the operations would be substantial due to the inefficiency of
FHE schemes.

Most FHE schemes consist of bit-wise or integer-wise encryption operations; the plain-
text space is Z2 in bit-wise encryption, and the plaintext space is Zp for some p > 2 in
integer-wise encryption [16–18]. Some schemes have been executed via integer arithmetics,
but bit-wise integer addition and multiplication are not practical even though the bit-wise
integer comparison algorithm is efficient [19]. In particular, the full adder algorithm has
to execute homomorphic multiplication l times for an l-bit length integer. Thus, homo-
morphic integer multiplication based on the full adder must execute approximately l2

[18] operations.
On the other hand, integer-wise FHE schemes can efficiently perform addition and

multiplication because the construction of those calculations in a homomorphic manner is

Information 2021, 12, 297. https://doi.org/10.3390/info12080297 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-5687-620X
https://doi.org/10.3390/info12080297
https://doi.org/10.3390/info12080297
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12080297
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12080297?type=check_update&version=2

Information 2021, 12, 297 2 of 18

merely integer addition and multiplication. Recent studies [14,15,20,21] on secure MLaaS
used integer-wise homomorphic encryption. Secure integer-wise comparison [22] and
integer-wise division [23] have recently been proposed; however, arithmetic operations
such as division are remain impractical. The design of efficient algorithms for basic arith-
metic operations is an open issue required to reduce computational costs of the operations.

HElib [24], HEAAN [25], PALISADE [26], SEAL [27], and TFHE [6–8] are open-source
implementations of homomorphic encryption. TFHE is a variant of the FHEW scheme [28]
in which the bootstrapping procedure can be performed in less than 0.1 seconds, which
is a major bottleneck of FHE. TFHE successfully improved the overall performance of
arithmetic operations, although TFHE does not explicitly provide integer-wise arithmetics.
Moreover, the number of bootstrapping operations required is equal to the number of bits.
Bourse et al. [14] modified TFHE to enable integer-wise encryption, which only supports
homomorphic integer addition and homomorphic evaluation of the sign function.

Contribution

In this paper, we present an approach where an arbitrary function is executed during a
bootstrap procedure in the integer-wise TFHE scheme with a generalization of the constant
variable “test vector” in the bootstrapping. Our bootstrapping procedure is applicable
to homomorphic operations of fundamental arithmetics, where specific settings of the
value of test vector are given: We propose the homomorphic equality test (Eq, Algorithm 6)
and its variant, which test the equality between a ciphertext and a plaintext (ConstEq,
Algorithm 7); the homomorphic multiplication between an integer and a binary number
(MultbyBin, Algorithm 8); and homomorphic division, where the dividend is a ciphertext
and the divisor is a constant plaintext (DivbyConst, Algorithm 9). Based on these building
blocks, we propose a homomorphic algorithm for integer division (Div, Algorithm 10).
Our implementation of Divruns approximately 3.4 times faster than the fastest existing
work. We also generalize the Divalgorithm to a homomorphic evaluation of an any 2-
variable function.

2. Preliminaries
2.1. Notation

We write the security parameter as λ. We denote by T the torus of real numbers
modulo 1, R/Z. For any ringR, polynomials of the variable X with coefficients inR are
denoted by R[X]. We define RN [X] := R[X]/(XN + 1), ZN [X] := Z[X]/(XN + 1), and
their quotient TN [X] := RN [X]/ZN [X], which are the ring of polynomials of variable X
with quotient XN + 1 and real coefficients modulo 1. Let B := {0, 1} be a set, and we write

vectors in bold. We write s $← S when s is uniformly random sampled from S . We denote
by U (S) the uniform distribution over the set S , and we denote by e← χ the process of
sampling e according to the distribution χ.

2.2. Background of TFHE
2.2.1. Learning with Errors

The learning with errors (LWE) problem is a computational problem introduced by
Regev [29]. We use the torus variant of LWE, as in [6,30]. Let n ∈ N, and let χ be a statistical
distribution on R. The torus LWE distribution for a fixed uniformly random secret vector

s $← Bn is defined as follows:

LWEn,s,χ := {(a, b)|a $← Tn, e← χ, b = a · s + e ∈ T}.

The search-LWE problem is to find the secret vector s from LWE samples {(ai, ai ·
s + ei)}m

i=1 sampled from LWEn,s,χ. The decision-LWE problem is to distinguish whether
samples {(ai, s · ai + ei)}m

i=1 are drawn from LWEn,s,χ or U (Tn+1).
TFHE uses a sub-Gaussian distribution for the error distribution. A distribution χσ over

R such that ∀t ∈ R, E(etX) ≤ eσ2t2/2 is called σ-sub-Gaussian. Let Y and Z be independent

Information 2021, 12, 297 3 of 18

random variables that are σ- and σ′-sub-Gaussian, respectively. Then, for all k, l ∈ R,
k ·Y + l · Z is

√
k2σ2 + l2σ′2-sub-Gaussian.

2.2.2. Bit-Wise LWEEncryption

We briefly explain bit-wise Regev’s encryption [29], which is a building block of the
(bit-wise) TFHE. Let m ∈ B be a plaintext. The encryption scheme works as follows:

• Setup(λ): Let the security parameter be λ. Select and fix public parameters n = n(λ),

σ = σ(λ); then, Setup(λ) samples a secret key s $← Bn and outputs it.

• Enc(s, m): a uniformly random vector a $← Tn and a noise e← DTN [X],σ are sampled,
where DTN [X],σ is the Gaussian distribution over TN [X] with a standard deviation σ.
Then, the algorithm outputs a ciphertext (a, b), where

b = a · s + e + m/2. (1)

• Dec(s, (a, b)): The decryption algorithm returns d2(b− a · s)c. It outputs plaintext
correctly if the size of noise e is bounded as

|e| < 1/4, (2)

Since 2(b− a · s) = 2e + m, |2e| < 1
2 , thus d2(b− a · s)c = m.

We explain later in Section 2.4 that this scheme can be extended to integer-wise encryptions.

2.2.3. Torus LWE(TLWE)

The General-LWEproblem (GLWE) proposed by Brakerski, Gentry, and Vaikuntanathan [31]
is a general problem that includes the LWE problem, and the Ring-LWE problem proposed
by Lyubashevsky, Peikert, and Regev in [32]. TLWE is a torus analogue of the GLWE
problem. Let k be a positive integer, N be a power of 2, and χ be a probability distribution
over RN [X]. A TLWE secret key s is a vector of k polynomials over ZN [X] with binary
coefficients, denoted as s ∈ BN [X]k. Given a polynomial message µ ∈ TN [X], a “fresh”
TLWE ciphertext of µ under the key s is a TLWE sample (a, b) ∈ TN [X]k ×TN [X], where
a← TN [X]k and b = s · a + µ + e, where e← χ.

Let (a, b) be a TLWE ciphertext of a polynomial message µ ∈ TN [X] under a TLWE key
s ∈ BN [X]k. Notice that the coefficients of the TLWE sample is an LWE ciphertext of the con-
stant term of the polynomial message µ. We define the function SampleExtract that simply
extracts the coefficients vector of the TLWE sample, and we denote the vector of coefficients
of a polynomial a ∈ TN(X) by coefs(a(X)). Then, we can obtain the extracted LWE cipher-
text as (a′, b′) := SampleExtract((a, b)), where a′ = (coefs(a1(1/X)), . . . , coefs(ak(1/X)))
and b′ is the constant term of the polynomial b. This is the ciphertext encrypted with an
extracted key s′ := KeyExtract(s) := (coefs(s1(X)), . . . , coefs(sk(X))) ∈ ZkN .

As mentioned before, TLWE includes the LWE problem and the Ring-LWE problem.
When N > 1 is large and k = 1, TLWE is the (binary-secret) Ring-LWE. Conversely, when
N = 1 and k is large, TLWE is the (binary-secret) LWE. Note that, in the TFHE library [33],
N = 1024 and k = 1 by default; thus, TLWE is simply a Ring-LWE in the library, i.e., we
can simple consider the TLWE samples as Ring-LWE samples (a, b) ∈ TN [X]× TN [X] in
this paper.

2.2.4. TGSW

TGSW is a generalized variant of the GSW FHE scheme proposed by Gentry, Sahai,
and Waters [10]. TGSW can be regarded as the matrix extension of TLWEbecause GSW
is the matrix extension of LWE. Each row of a TGSW sample is a TLWE sample. As with
TFHE [6], an external product � that maps � : TGSW× TLWE → TLWE can be defined.
The product of the TGSW ciphertext of a polynomial message µTGSW ∈ TN [X] and the
TLWE ciphertext of a polynomial message µTLWE ∈ TN [X] becomes a TLWE ciphertext

Information 2021, 12, 297 4 of 18

of a polynomial message (µTGSW · µTLWE) ∈ TN [X]. We refer the readers to [6] for more
details.

2.3. Overview of TFHE Bootstrapping

We refer to the bootstrapping procedure of the TFHE in [6]. We present the bootstrap-
ping algorithm in Algorithm 1. As we mentioned before, in the default settings of the
TFHE library [33], the dimension of the TLWE sample is set as k = 1. This means that
the TLWE sample is simply the Ring-LWEsample (a, b) ∈ TN [X]× TN [X]. In the rest of
this paper, we set k = 1: we also consider the TLWE sample to be the Ring-LWEsample
(a, b) ∈ TN [X]×TN [X].

Algorithm 1: TFHE bootstrapping [6] for binary arithmetics.

Input: An LWE sample (a, b) ∈ LWEs(min) whose plaintext min ∈ {0, 1}, a constant mset ∈ {0, 1}, a
bootstrapping key BKs→s′′ ,α, and a keyswitching key KSs′→s,γ, where s′ = KeyExtract(s′′).

Output: An LWE sample LWEs(mout), where mout = min ·mset.
1 µ := mset

2 ∈ T, µ′ = µ
2 ∈ T

2 b := d2Nbc, ai := d2Naic for each i ∈ [1, n]
3 testv := (1 + X + · · ·+ XN−1) · X N

2 · µ′ ∈ TN [X]

4 ACC← Xb · (0, testv) ∈ TN [X]×TN [X]

5 for i = 1 to n do ACC← [h + (X−ai − 1) · BKi]� ACC
// ACC = TLWE(X(b−as) · testv) = TLWE(X(min N+e) · testv)

6 u := (0, µ′) + SampleExtract(ACC) // msg(SampleExtract(ACC)) = µ′ (min = 1), −µ′ (min = 0)
7 return KeySwitchKS(u)

2.3.1. Input

The input for the bootstrapping is an LWE ciphertext of message binary message
min ∈ B, (a, b) ∈ Tn × T, where b = a · s + e + min

2 . The noise e is sampled according
to the distribution such that |e| < 1

4 to satisfy the condition for correct decryption of the
LWE encryption.

2.3.2. Rounding

After the rounding operation in line 2, we obtain an rounded LWE ciphertext (a, b) ∈
Zn

2N ×Z2N , where

b− a · s = d2Nbc −
n

∑
i=1
d2Naicsi = 2Nb + ξ0 −

n

∑
i=1

(2Nai + ξi)si

= 2N(e + min/2) + eACC, (3)

and eACC := ξ0 −∑n
i=1 ξisi and ξ0, . . . ξn are rounding errors that are uniformly distributed

over (− 1
2 , 1

2). Note that eACC = 0 when the coefficients (a, b) are in 1
2NZ/Z; thus, we can

ignore eACC when we use the default parameter setting in the TFHE library of N = 1024.

2.3.3. BlindRotate

At the line 4, ACC is a trivial TLWE ciphertext (0, Xb · testv) ∈ TN [X]×TN [X]; thus,
‖Error(ACC1)‖∞ = 0. After the loop in line 5, from [6] (Theorem 4.6), we have

‖Error(ACCn)‖∞ ≤ 2n(k + 1)lNβαBK + n(1 + kN)ε, (4)

where β = Bg/2 and ε = 1/2Bl
g are the precision parameters of the gadget decomposition,

l ∈ N, Bg ∈ N, and αBK is a error size ratio of the bootstrapping key BK. After the loop in

Information 2021, 12, 297 5 of 18

line 5, the message of ACC becomes a polynomial Xb−as · testv. From (3) and eACC = 0, we
have ψ((a, b)) := b− a · s = 2N(e + min/2). Notice that

Xb−a·s · testv = Xb−a·s+ N
2 · (1 + X−1 + · · ·+ X−(N−1)) · µ′,

where b − a · s + N
2 = 2Ne + N

2 + Nmin, and from (2), we obtain 0 < 2Ne + N
2 < N.

Therefore, we have the following facts:

b− a · s + N
2
∈
{

[0, N) (min = 0),
[N, 2N) (min = 1),

the constant term of Xb−a·s · testv =

{
µ′ (min = 0),
−µ′ (min = 1).

Note that, here, we used the fact that X−i ≡ −XN+i, which follows the definition
XN + 1 ≡ 0.

2.3.4. Extract

The output of SampleExtract in line 6 is simply the coefficients vector of the TLWE sam-
ple over the torus (a′, b′) := (coefs(a′′(X)), b′′0) ∈ TN × T, where coefs(a′′(X)) is a coeffi-
cient vector of a′′ ∈ TN(X) and b′′0 ∈ T is a constant term of the polynomial b′′ ∈ TN(X).
The message of the extracted sample msg((a′, b′)) is the constant term of the polynomial
(Xb−a·s · testv). The message is µ′ if min = 0 and −µ′ if min = 1. Therefore,

msg(u) = µ′ +msg(SampleExtract(ACC) =
{

2µ′(= µ) (min = 0),
0 (min = 1);

i.e., msg(u) = µ · (1 − min). The size of the error of (a′, b′) remains ‖Error(ACC)‖∞
since SampleExtract adds no extra noise.

2.3.5. KeySwitch

The output of KeySwitchin line 7 is a TLWE sample (a, b) ∈ Tn × T of a message
mout

2 ∈ T, with the secret key s. We write this TLWE ciphertext as LWEs(mout) for simplicity
of the notation. The KeySwitchprocedure is the same as that in [6]. We refer to KeySwitch in
Algorithm 2 for completeness of this paper. The keyswitching key is defined as KSs′→s,γ,t,
where KSi,j ∈ LWEs,γ(s′i · 2−j) for i ∈ [1, N] and j ∈ [1, t]. Here, γ ∈ R is a parameter that
decides the size of the noise of the key switching key, which satisfies

∥∥Error(KSi,j)
∥∥

∞ ≤ γ,
and t ∈ N is a parameter that decides the precision. From [6] (Lemma 4.3), we obtain

ψs(a, b) = ψs(0, b′)−
N

∑
i=1

t

∑
j=1

a′i,j ϕs(KSi,j),

= ψs′(a
′, b′)−

N

∑
i=1

t

∑
j=1

a′i,jError(KSi,j) +
N

∑
i=1

(a′i − a′i)s
′
i.

Therefore, we have the bound on the size of the noise as follows:

‖Error(a, b)‖∞ ≤ ‖Error(ACC)‖∞ + Ntγ + N2−(t+1),

≤ 2n(k + 1)lNβαBK + n(1 + kN)ε + Ntγ + N2−(t+1),

where the second inequality follows from (4). The bootstrapping outputs a “fresh” LWE ci-
phertext when the parameters satisfy the following:

2n(k + 1)lNβαBK + n(1 + kN)ε + Ntγ + N2−(t+1) < 1/4. (5)

Information 2021, 12, 297 6 of 18

Algorithm 2: KeySwitch.

Input: An LWE ciphertext (a′ = (a′1, . . . , a′N), b′) ∈ LWEs′(µ), a keyswitching key KSs′→s where s′ ∈ {0, 1}N ,
s ∈ {0, 1}n and t ∈ N a precision parameter.

Output: An LWE sample LWEs(µ)
1 for i = 1 to N do
2 Let a′i be the nearest multiple of 1

2t to a′i , thus |a′i − a′i| < 2−(t+1)

3 Perform binary decomposition each a′i = ∑t
j=1 a′i,j · 2−j, where a′i,j ∈ {0, 1}

4 end
5 return (a, b) = (0, b′)−∑N

i=1 ∑t
j=1 a′i,j ·KSi,j

This upper bound follows from (2).

2.4. Integer-Wise LWE Encryption

We use a integer-extended variant of Regev’s encryption following the scheme pro-
posed by Bourse et al. in [14]. Let τ ∈ N, the message m ∈ {−τ, . . . , τ − 1}. The integer-
wise LWE encryption works as follows:

• Setup(λ): On a input security parameter λ, n = n(λ) and σ = σ(λ) are fixed; a secret

key s $← Bn is output.

• Enc(s, m): A uniformly random vector a $← Tn and a noise e← DTN [X],σ are sampled,
where DTN [X],σ is a Gaussian distribution over TN [X] with a standard deviation σ. A
ciphertext (a, b) is output, where

b = a · s + e +
m
2τ

. (6)

• Dec(s, (a, b)): The decryption algorithm returns d(b − a · s) · 2τc. The decryption
works correctly if the size noise |e| is small enough, i.e.,

|e| < 1/4τ, (7)

Since (b− a · s) · 2τ =
(
e + m

2τ

)
· 2τ = m + 2τe and |2τe| < 1

2 holds from (7).

3. Integer-Wise General Functional Bootstrapping

We modify TFHE to a variant that can encrypt the plaintext of an integer and perform
any 1-variable function in only one bootstrapping. We highlight this section as follows:

• We present our general bootstrapping in Algorithm 3 of Section 3.1, which is built
upon the integer-wise LWE encryption Section 2.4.

• Our key technique to construct the general bootstrapping is generalizing the setting
of the coefficients of the test vector, which is used in the BlindRotate part of the
bootstrapping procedure, in Algorithm 4.

• We also discuss the possible security issue that arose after our modification in Section 3.2.

3.1. General Functional Bootstrapping
We present our bootstrapping scheme in Algorithm 3. Our bootstrapping is different

from that of Chillotti et al.’s Algorithm 1 in the setting of the test vector used in the BlindRo-
tatepart. Our bootstrapping procedure is constructed over the integer-wise LWE encryption
described in Section 2.4, where homomorphic evaluation is performed in an integer-
wise manner. We summarize in Table 1 how the input ciphertext is converted line by line
for clarity.

Information 2021, 12, 297 7 of 18

Algorithm 3: General functional bootstrapping.

Input: A ciphertext Cmin := An LWE sample (a, b) ∈ LWEs(min), such that its plaintext min ∈ {−τ, . . . , τ − 1}, a
bootstrapping key BKs→s′′ ,α, a keyswitching key KSs′→s,γ, where s′ = KeyExtract(s′′), a constant function
f : {0, . . . , τ − 1} → {−τ, . . . , τ − 1}, and a set of coefficients {µ0, . . . , µN−1} of the test vector that
corresponds to the function f .

Output: An LWE sample LWEs(mout) := Bootstrap(Cmin , f), where

mout = f ′(min) :=

{
f (min) (min ∈ {0, . . . , τ − 1}),
− f (τ + min) (min ∈ {−τ, . . . ,−1}). (8)

1 b := d2Nbc, ai := d2Naic for each i ∈ [1, n]
2 Set the test vector as

testv := µ0 + µ1X−1 + · · ·+ µN−1X−(N−1) ∈ TN [X]. (9)

3 ACC← Xb · (0, testv) ∈ TN [X]×TN [X]

4 for i = 1 to n do ACC← [h + (X−ai − 1) · BKi]� ACC
5 u := SampleExtract(ACC)
6 return KeySwitchKS(u)

Table 1. Overview of the bootstrapping scheme.

Ctxt Ptxt Noise (or Its Bound)

(a, b) ∈ Tn ×T min
2τ e ∈ T

Round→ (a, b) ∈ Zn
2N ×Z2N 2N(min

2τ) 2Ne

BlindRotate→ (a′′, b′′) ∈
TN [X]×TN [X] Xb−as · testv ‖Error(ACC)‖∞

SampleExtract→ (a′, b′) ∈ TN ×T mout
2τ ‖Error(ACC)‖∞

KeySwitch→ (a, b) ∈ Tn ×T mout
2τ

‖Error(ACC)‖∞
+ N(tγ + 2−(t+1))

3.1.1. Input

The input for our bootstrapping scheme is an LWE ciphertext (a, b) ∈ Tn × T of
an integer message min ∈ {−τ, . . . , τ − 1}, where b = a · s + e + min/2τ. The noise e is
sampled according to the distribution such that (7) holds to satisfy the condition for correct
decryption of the LWE encryption.

3.1.2. Rounding (Line 1)

The output of the rounding is an rounded LWE ciphertext (a, b) ∈ Zn
2N ×Z2N . Similar

to (3), we have

b− as = 2N(e + min/2τ) + eACC. (10)

Concretely, we obtain eACC = 0 when N = 1024, as we mentioned in Section 2.3.

3.1.3. BlindRotate (Line 3 to Line 4)

At line 3, the ACC is a trivial (noiseless) TLWE sample (0, Xb · testv) ∈ TN [X]×TN [X].
After the iteration in line 4, the message of ACC becomes a polynomial Xb−as · testv. Since
eACC = 0 and from (10), we have ψ((a, b)) := b − as = 2N

(
e + min

2τ

)
. Thus, we obtain

from (7) that

− N
2τ

< 2Ne <
N
2τ

. (11)

Note that we define the test vector in general form testv := µ0 + µ1X−1 + · · · +
µN−1X−(N−1) ∈ TN [X], which is the core modification of our scheme. In the following, we

Information 2021, 12, 297 8 of 18

explain how to set the value of the testv coefficients for a homomorphic evaluation of the
arbitrary input function f in one bootstrapping. We summarize the setting in Algorithm 4
and show its illustration in Figure 1.

f (0)
2τ

[m = 0]

f (1)
2τ

[m = 1]
f (2)
2τ

[m = 2]

f (3)
2τ

[m = 3]

f (4)
2τ

[m = 4]

− f (4)
2τ

[m = −1]
− f (3)

2τ

[m = −2]

− f (2)
2τ

[m = −3]

− f (1)
2τ

[m = −4]

− f (0)
2τ

[m = −5]
N/2τ

Figure 1. Illustration of the “slices” for the integer-wise LWEencryption and bootstrapping procedure
when τ = 5.

• When min = 0, we have ψ((a, b)) = 2Ne and (a, b) ∈ {−b N
2τ c, . . . , b N

2τ c}. Thus, the
constant term of the polynomial

Xψ((a,b)) · testv = Xψ((a,b)) · (µ0 + µ1X−1 + · · ·+ µN−1X−(N−1))

= Xψ((a,b)) · (· · · − µN−1X1 + µ0 + µ1X−1 . . .)

is in
M0 := {−µN−b N

2τ c
, . . . ,−µN−1, µ0, µ1, . . . , µb N

2τ c
}.

We define the value of all elements µ ∈ M0 as µ := f (0)
2τ ∈ T. Note that, since

XN + 1 ≡ 0, we now have X−i ≡ −XN−i or, equivalently, Xi ≡ −X−(N−i). Similar
to this case, when min = −τ, the constant term of the polynomial Xψ((a,b)) · testv is
in {µN−b N

2τ c
, . . . , µN−1, −µ0, −µ1, . . . , −µb N

2τ c
} :=M−τ . The elements of this set are

the sign inversions of the elements of the setM0. Therefore, µ ∈ M−τ are already
defined as µ := − f (0)

2τ ∈ T.
• When min ∈ {1, . . . , τ − 1}, we have ψ((a, b)) = 2N

(
e + min

2τ

)
. From (11), we have

N
2τ <

(
min − 1

2

)
N
τ < ψ((a, b)) <

(
min + 1

2

)
N
τ < N. Thus, we obtain ψ((a, b)) ∈{⌈(

min − 1
2

)
N
τ

⌉
, . . . ,

⌊(
min + 1

2

)
N
τ

⌋}
, and the constant term of the polynomial

Xψ((a,b)) · testv is in

Mmin := {µd(min− 1
2)

N
τ e, . . . , µb(min+

1
2)

N
τ c}.

We define the value of all µ ∈ Mmin as µ := f (min)
2τ ∈ T. Similarly, when min ∈ {−(τ−

1), . . . ,−1}, we have −N <
(

min − 1
2

)
N
τ < ψ((a, b)) <

(
min + 1

2

)
N
τ < − N

2τ . Thus,

ψ((a, b)) ∈
{⌈(

min − 1
2

)
N
τ

⌉
, . . . ,

⌊(
min + 1

2

)
N
τ

⌋}
, and the constant term of the poly-

nomial Xψ((a,b)) · testv is in {−µN+d(min− 1
2)

N
τ e, . . . , −µN+b(min+

1
2)

N
τ c}. These values

are the sign inversions of the previously defined µ ∈ Mmin for min ∈ {1, . . . , τ − 1}.

Information 2021, 12, 297 9 of 18

Algorithm 4: Our setting of the test vector coefficients defined in (9).

Input: A constant function f : {0, . . . , τ − 1} → {−τ, . . . , τ − 1}
Output: The coefficients {µ0, µ1, . . . , µN−1} of the test vector
1 For all µ ∈ {−µN−b N

2τ c
, . . . ,−µN−1, µ0, µ1, . . . , µb N

2τ c
}, define µ := f (0)

2τ ∈ T.

2 for min ∈ {1, . . . , τ − 1} do
3 For all µ ∈ {µd(min− 1

2)
N
τ e, . . . , µb(min+

1
2)

N
τ c}, define µ := f (min)

2τ ∈ T.

4 end

3.1.4. Extract (Line 5)

The message of the output u := SampleExtract(ACC) in line 5, denoted as msg((a′, b′)),
is the constant term of (Xb−as · testv). By our construction of BlindRotate, it is the coefficient
µ = mout

2τ = f ′(min)
2τ ∈ T, where f ′ is defined in (8).

3.1.5. KeySwitch (Line 7)

Our scheme uses the same KeySwitchprocedure as the original TFHE, which is men-
tioned in Section 2.3.5. The output KeySwitchKS(u) of line 6 is a TLWE sample denoted as
(a, b) ∈ Tn ×T. The sample is the encryption of the message mout

2τ ∈ T with the secret key
s. We denote this TLWE ciphertext as LWEs(mout) for simplicity of the notation. Only the
difference from the original bit-wise TFHE is the upper bound of (5): From (7), we need to
choose the parameters that satisfy the upper bound

2n(k + 1)lNβαBK + n(1 + kN)ε + Ntγ + N2−(t+1) < 1/4τ, (12)

so that we can obtain a “fresh” LWE sample after the bootstrapping with overwhelming prob-
ability.

3.2. Security

The security of our scheme largely relies on the original TFHE scheme because we
only modify the test vector, and it changes only the bound of the size of noise given in (12).
Although the noise bound of TFHE is fixed to 1/4, as in (5), that of our scheme is 1/4τ.
Therefore, when we use the larger plaintext space, the bound becomes lower. This means
that we need to use the TLWE sample with smaller noise if the bound (12) does not hold.
Conversely, we select the security parameters and τ that satisfy (12); then, the security of
our scheme relies solely on the original TFHE scheme. We use the same security parameters
and noise as those in the original TFHE scheme and choose a value of τ that satisfies (12)
in our experiments in Section 5. Notably, the bound in (12) is independent of the input
function f ; therefore, our scheme can run arbitrary functions with the same parameters
and running time.

4. Applications

We present several basic applications of our integer-wise general TFHE bootstrapping
procedure (Algorithm 3):

• Csign(a) = Sign(Ca): Homomorphic evaluation of the sign function over a ciphertext
(Algorithm 5)

• C(a=b) = Eq(Ca, Cb): Homomorphic evaluation of the equality test (Algorithm 6)
• C(a=b) = ConstEq(Ca, b): Homomorphic evaluation of the equality test with a plaintext

(Algorithm 7)
• Ca·b = MultbyBin(Ca, Cb): Homomorphic evaluation of multiplication by a binary

number (Algorithm 8)
• Cba/dc = DivbyConst(Ca, d): Homomorphic evaluation of division by a plaintext

(Algorithm 9)

Information 2021, 12, 297 10 of 18

• Cba/dc = Div(Ca, Cd): Homomorphic evaluation of division (Algorithm 10)

The function Sign(), which is the homomorphic algorithm of sign, was already pre-
sented by Bourse et al. in [14]. For clarity, we describe Sign() performed in our scheme to
show that our general Bootstrapping schemes includes the sign function. Additionally, the
integer-wise TFHE proposed by Bourse et al. [14] can evaluate only Sign() bootstrapping;
it does not support the homomorphic multiplication of integer ciphertexts.

We show Eqand ConstEqin Section 4.2, MultbyBinin Section 4.3, and DivbyConstin
Section 4.4. We propose Divin Section 4.5 using DivbyConst, ConstEq, and MultbyBinas
building blocks. We also generalize the Divfunction to the homomorphic algorithm that
evaluates any 2-variable function in Section 4.5.

Algorithm 5: Sign(Cmin): Homomorphic sign evaluation in our bootstrapping
scheme.
Input: A ciphertext Cmin , where min ∈ {−τ, . . . , τ − 1}.

Output: Cmout := Sign(Cmin), where mout =

−1 (min ∈ {−τ + 1, . . . ,−1}),
0 (min ∈ {−τ, 0}),
1 (min ∈ {1, . . . , τ − 1}).

1 return Bootstrap(Cmin , fsign), where fsign(x) := 1 if x ∈ {1, . . . , τ − 1}, 0 if x = 0.

Algorithm 6: Eq(Cm1 , Cm2): Equality test.

Input: Two ciphertexts Cm1 and Cm2 , where m1, m2 ∈ {0, . . . , τ − 1}.

Output: Cmout := Eq(Cm1 , Cm2), where mout =

{
τ (true) if m1 = m2,
0 (false) otherwise.

1 return Bootstrap(Cm1 − Cm2 , fztest), where fztest(x) := τ if x = 0, fztest(x) := 0
otherwise.

Algorithm 7: ConstEq(Cm1 , m2): Equality test with a constant

Input: A ciphertext Cm1 and plaintext m2, where m1, m2 ∈ {0, . . . , τ − 1}.

Output: Cmout := ConstEq(Cm1 , m2), where mout =

{
τ (true) if m1 = m2,
0 (false) otherwise.

1 Encode m2 ∈ {0, . . . , τ − 1} to νm2 := m2
2τ ∈ T.

2 return Bootstrap(Cm1 − (0, νm2), fztest), where fztest(x) := τ if x = 0,
fztest(x) := 0 otherwise.

4.1. Homomorphic Evaluation of the Sign Function: Sign()

Algorithm 5 shows that our algorithms homomorphically evaluate the sign function.
This algorithm is constructed using Bootstrap with an input function fsign. Specifically, we
“express” fsign by defining the coefficients µ0, . . . , µN−1 ∈ T of test vector using Algorithm 4,
as follows:

µ0, . . . , µb N
2τ c

:= 0,

µb N
2τ c+1, . . . , µN−b N

2τ c−1 := 1
2τ ,

µN−b N
2τ c

, . . . , µN−1 := 0.

We illustrate the setting of the test vector coefficients in Figure 2. We can confirm
from (8) that mout = f ′(min) = fsign(min) = 1 for min ∈ {1, . . . , τ − 1}, mout = f ′(min) =
− fsign(B + min) = −1 for min ∈ {−τ + 1, . . . ,−1}, mout = f ′(min) = 0 for min = 0, and
mout = f ′(min) = − fsign(B + min) = 0 for min = −τ. Note that the plaintext of the output
with min = −τ is the same as that with min = 0.

Information 2021, 12, 297 11 of 18

Algorithm 8: MultbyBin(Cmint , Cmbin): Homomorphic multiplication by binary number

Input: Ciphertexts Cmint , Cmbin , where mint ∈ {0, . . . , τ − 1}, mbin ∈ {τ (true), 0 (false)}.

Output: Cmout := MultbyBin(Cmint , Cmbin) =

{
Cmint (mbin = τ (true)),
C0 (mbin = 0 (false)).

1 Ctmp = Bootstrap(Cmint + Cmbin + (0, τ
2τ), fid) // Ctmp =

{
Cmint (mbin = τ (true)),
C−mint (mbin = 0 (false)).

2 return Bootstrap(Cmint + Ctmp, fhalf) // Cmint + Ctmp =

{
2 · Cmint (mbin = τ (true)),
C0 (mbin = 0 (false)).

Algorithm 9: DivbyConst(Cmin , md): Homomorphic division by a constant

Input: A ciphertext Cmin , where min ∈ {0, . . . , τ − 1}, and a constant plaintext
md ∈ {1, . . . , τ − 1}.

Output: Cmout := DivbyConst(Cmin , md) := Cbmin/mdc
1 return Bootstrap(Cmin , fdiv,md

)

Algorithm 10: Div(Cmin , Cmd): Homomorphic division.

Input: Ciphertexts Cmin and Cmd , where min ∈ {0, . . . , τ − 1} and
md ∈ {1, . . . , τ − 1}.

Output: Cmout := Div(Cmin , Cmd) := Cbmin/mdc
1 CSUM := C0 (noiseless TLWEsample of 0)
2 for i = 1 to (τ − 1) do
3 Cbmin/ic = DivbyConst(Cmin , i),
4 C(md=i) = ConstEq(Cmd , i)
5 CSUM = Bootstrap(CSUM +MultbyBin(Cbmin/ic, C(md=i)), fid)

// MultbyBin(Cbmin/ic, C(i=md)
) = Cbmin/mdc if i = md, C0 otherwise

6 end
7 return CSUM

0N
N/2τ

0

1

−1

0

Figure 2. Illustration of the slices for the test vector coefficients of sign bootstrapping (when τ = 5).

4.2. Homomorphic Equality Test: Eq() and ConstEq()

For clarity, we present that our bootstrapping scheme includes the homomorphic
equality test. This concept is similar to the homomorphic comparison on TFHE proposed
by Bourse et al. in [34]. Note that we require the input plaintext space to be in {0, . . . , τ − 1}
(or in {−τ, . . . ,−1}), for our equality tests Algorithms 6 and 7. This restriction is required
since, if we allowed m1 and m2 to be in {−τ, . . . , τ − 1}, we would have m2 −m1 = τ and
would obtain the trueoutput when m2 = τ + m1, although m1 6= m2.

Some previous integer-wise homomorphic equality tests were performed based on
Fermat’s little theorem [35] in other FHE schemes, such as HElib. For example, in HElib

Information 2021, 12, 297 12 of 18

(i.e., in the BGV FHE scheme [31]), the plaintext space was Zp for some prime number
modulus p, and the equality test was constructed using the fact

(x− y)p−1 ≡
{

1 mod p (x− y 6≡ 0)
0 mod p (x− y ≡ 0).

However, this approach is not efficient because it calls for homomorphic multiplication
many (≈ log(p)) times, and thus, some additional bootstrapping are required in order to
reduce the increase in noise caused by the homomorphic multiplication. Our homomorphic
equality test is efficient because it calls only one bootstrapping procedure.

Algorithm 6 shows Eq(·, ·), the equality test between two ciphertexts. The algorithm
is based on the integer-wise “zero test” bootstrapping with the function fztest, where
fztest(x) := τ if x = 0, 0 otherwise. Concretely, we define the test vector coefficients
µ0, . . . , µN−1 ∈ T that correspond to fztest, based on Algorithm 4, as follows:

µ0, . . . , µb N
2τ c

:= τ
2τ = 1

2 ,

µb N
2τ c+1, . . . , µN−b N

2τ c−1 := 0,

µN−b N
2τ c

, . . . , µN−1 := −τ
2τ = − 1

2 .

We show the illustration of the setting of the coefficients of the test vector in Figure 3.

0N
N/2τ

τ
2τ

0

0

−B
2τ

Figure 3. Illustration of the slices for the test vector coefficients of equality test bootstrapping (when
τ = 5).

Algorithm 7 shows the variant that is performed between a ciphertext and a plaintext.
Notice that the second argument of the algorithm is a plaintext m1, which is then encoded
as a trivial (0, νm1) LWE ciphertext in line 1.

4.3. Homomorphic Multiplication by a Binary Number: MultbyBin()

Algorithm 8 shows the algorithm used to homomorphically evaluate the multipli-
cation by a binary number (MultbyBin). As mentioned before, integer-wise TFHE cannot per-
form homomorphic multiplication between integer ciphertexts. MultbyBinhomomorphically
multiplies an integer ciphertext by a ciphertext of a binary message. MultbyBinis called
as a module in the homomorphic division Div, which we describe later in Algorithm 10.
Figure 4 illustrates how the MultbyBinworks. Note that we need restrictions for MultbyBin:
(1) τ to be an odd number and (2) min ∈ {0, . . . , τ − 1}. We explained these restrictions
later in this subsection.

Information 2021, 12, 297 13 of 18

0N 00

1
2τ

[m = 1]
2

2τ
3

2τ
4

2τ

− 4
2τ

[m = −1]
− 3

2τ− 2
2τ

− 1
2τ

Bootstrap

+Cτ

0N 00

−3
2τ

[m = 1]
1

2τ
−4
2τ

[m = 3]

2
2τ

−2
2τ

4
2τ

−1
2τ

3
2τ

Bo
ot

st
ra

p

Bootstrap

Figure 4. Illustration of MultbyBinwhen (mint, mbin) = (1, 0). The left figure illustrates the procedure
in line 1, and the right figure illustrates the procedure in line 2.

We define two functions fid and fhalf to be used as inputs of Bootstrapto construct
MultbyBin. The function fid : {0, . . . , τ − 1} → {0, . . . , τ − 1} is an identity function defined
as fid(x) := x. Based on Algorithm 4, we define the test vector coefficients µ0, . . . , µN−1 ∈ T
for fid as follows:

µ0, . . . , µb N
2τ c

:= fid(0)
2τ = 0,

µb (2i−1)N
2τ c+1

, . . . , µb (2i+1)N
2τ c := fid(i)

2τ = i
2τ , for i = 1, · · · , τ − 1,

µN−b N
2τ c

, . . . , µN−1 := − fid(0)
2τ = 0.

The function fhalf is defined as

fhalf(x) :=

{
x
2 (x is even),
− x+1

2 − τ−1
2 (x is odd).

For fhalf, we define the test vector coefficients µ0, . . . , µN−1 ∈ T based on Algorithm 4,
as follows:

µ0, . . . , µb N
2τ c

:= fhalf(0)
2τ = 0,

µb (2i−1)N
2τ c+1

, . . . , µb (2i+1)N
2τ c := fhalf(i)

2τ , for i = 1, · · · , τ − 1,

µN−b N
2τ c

, . . . , µN−1 := − fhalf(0)
2τ = 0.

We now explain Algorithm 8. First, in line 1, we homomorphically multiply a cipher-
text of a binary message in {τ, 0}, Cmbin and a constant (0, τ

2τ) to Cmint . The output of the
bootstrapping of the sum with fid is stored as Ctmp.

• If Cmbin is a ciphertext of 0 (which means false), then Cmbin + (0, τ
2τ) is Cτ (ciphertext

of the constant τ). Thus, the phase of Cmint is rotated to a position symmetrical about
the origin, as illustrated in Figure 4 by the dashed arrow in the left image. Then, the
phase of the ciphertext is rotated to a position symmetrical about the x-axis. After
bootstrapping with fid, Ctmp becomes a ciphertext of −mint.

• If Cmbin is a ciphertext of τ (which means true), then Cmbin + (0, τ
2τ) is C0 (ciphertext

of 0). Thus, Ctmp remains a ciphertext of mint.

Therefore, in line 2, Cmint + Ctmp = Cmint + Cmint when mbin = τ, and Cmint + Ctmp =
C0 when mbin = 0. After bootstrapping with fhalf, Cmint + Cmint is converted to Cmint , and
C0 remains C0, as illustrated in Figure 4. Finally, we obtain Cmout = Cmint when mbin = τ
and C0 when mbin = 0.

As noted before, we need to restrict τ to odd values. If τ is even, when mint =
τ
2 and

mbin = τ, the ciphertext in line 2 Cmint + Ctmp = Cmint + Cmint is converted to C0, but we

Information 2021, 12, 297 14 of 18

require it to remain as C τ
2
. Therefore, τ needs to be an odd number to homomorphically

evaluate the division by 2 with the function Bootstrap(·, fhalf). Additionally, we require the
input mint to be in {0, . . . , τ − 1} because we cannot perform multiplication with binary
values on negative plaintext mint ∈ {−τ + 1, . . . ,−1} with MultbyBin. (Although we can
perform binary multiplication on mint = −τ or τ, which is equivalent to mint = 0, we omit
−τ from the input plaintext space, for simplicity.)For mint ∈ {−τ + 1, . . . ,−1},
• if mbin = τ (which means true), the message of Ctmp in line 1 is −(τ + mint), and the

output becomes mout = 0 because Ctmp + Cmbin = Cτ for all mint ∈ {−B + 1, . . . ,−1}
while mbin = τ(true).

• If mbin = 0 (which means false), in line 1, the message of Ctmp is τ −mint and the
output is mout = −τ + mint.

Therefore, for negative inputs mint ∈ {−τ + 1, . . . ,−1}, MultbyBin does not work as
multiplication with binary values; thus, we need the restriction.

4.4. Homomorphic Division by a Constant: DivbyConst

Algorithm 9 shows that DivbyConsthomomorphically evaluates “division by a con-
stant”. DivbyConsttakes a ciphertext Cmin and a plaintext md as inputs, and it outputs
a ciphertext of Cbmin/mdc. Note that we need to restrict min ∈ {0, . . . , τ − 1} and md ∈
{1, . . . , τ − 1}.

Bit-wise integer division by 2 on TFHE was proposed in [7]. The algorithm was
constructed based on a right shift over the bits; therefore, it only supports a power of two
dividend. Homomorphic division by a (not only 2) constant was proposed in [23] based on
HElib. This algorithm uses polynomial interpolation, which needs to homomorphically
calculate all powers of the ciphertexts {Ca, C2

a , C3
a , . . . , Cp−1

a }, where p is the modulus of
the plaintext space Zp. Thus, it is not efficient since many (p− 1) homomorphic multipli-
cations are needed for a homomorphic polynomial interpolation. Contrary to that, our
homomorphic division by a constant on the integer-wise TFHE is efficient because it needs
only one bootstrapping.

The function fdiv,d : {0, . . . , τ − 1} → {0, . . . , τ − 1} is defined as fdiv,d(x) := bx/dc
for a constant d ∈ {1, . . . , τ − 1}. We define the test vector coefficients for fdiv,d based on
Algorithm 4, as follows:

µ0, . . . , µb N
2τ c

:= fdiv,d(0)
2τ = 0,

µb (2i−1)N
2τ c+1

, . . . , µb (2i+1)N
2τ c := fdiv,d(i)

2τ = bi/dc
2τ , for i = 1, · · · , τ − 1,

µN−b N
2τ c

, . . . , µN−1 := − fdiv,d(0)
2τ = 0.

(13)

Note that we need to have a set of {µ0, . . . , µN−1} for all d ∈ {0, . . . , τ − 1}: we need
to store NB values in T before starting the algorithm. Additionally, we need the restriction
min ∈ {0, . . . , τ − 1} since we cannot perform divisions for min ∈ {−τ, . . . ,−1}, as the
output mout becomes −b(τ −min)/mdc.

4.5. Homomorphic Division: Div()

As a final application, we construct a homomorphic division Divin Algorithm 10. It
calls DivbyConst, ConstEq, and MultbyBinas subalgorithms. As these subalgorithms need
the restriction min ∈ {0, . . . , τ − 1}, Divalso follows this restriction.

We now explain Div. First, in line 1, we set a CSUM = C0 = (0, 0) as a trivial TLWE ci-
phertext of a message 0. In the iteration on line 2 and 6, we obtain a ciphertext of da/ic,
denoted as Cda/ic with DivbyConst, and then, we test if i = d with ConstEq, where d is the
plaintext of the input Cd. The output is the ciphertext of the Boolean value of the test result
C(d=i). Second, in line 5, we have

Information 2021, 12, 297 15 of 18

MultbyBin(Cba/ic, C(i=d)) =

{
Cba/dc (i = d),
C0 (otherwise).

Therefore, after this loop, we have CSUM = C0 + · · ·+ Cba/dc + · · ·+ C0 = Cba/dc.

Generalization to a Two-Variable Function: Func()

We now generalize Divto any two-variable function Func(Cm1 , Cm2), in Algorithm 11.
The algorithm takes the following inputs: two ciphertexts Cm1 and Cm2 ; a two-variable
function f (x, y); and sets of test vector coefficients {µ0,y, . . . , µN−1,y}, which corresponds
to a one-variable function fy(x) := f (x, y) for all fixed y ∈ {0, . . . , τ − 1}. The output
of the algorithm is a ciphertext C f (m1,m2)

. This algorithm generalizes Divby generalizing
the DivbyConstto Bootstrap(Cmin , fy), which is the homomorphic evaluation of a general
one-variable function fy(x) := f (x, y) over a ciphertext Cx.
5. Results of Homomorphic Division

In this section, we present the implementation results of Div. We implemented our
bootstrapping procedure and Divby modifying the TFHE library [33]. The parameter values
are the same as the defaults of the TFHE library:

• The degree of the polynomials in the ring: N = 1024.
• The dimensions of the LWE and TLWE: n = 500 and k = 1.
• Decomposition basis and length of TGSWciphertexts: Bg = 210 and l = 2.
• Decomposition basis and length of KeySwitch: 2l and t = 8.
• Standard deviation of the noise of the key-switching keys KS: σKS = 2.44 · 10−5.
• Standard deviation of the noise of the bootstrapping keys BK: σBK = 7.18 · 10−9.

These choices of parameters achieve at least 128-bit security [6]. A single bootstrapping
procedure takes approximately 10 msec on our PC with a 3.4-GHz Intel Core i5 CPU. We
implemented Divfor a 4-bit integer, which is the same target as that of existing work on
homomorphic division algorithms [16–18,23]. Thus, we set B = 17 to encrypt 4-bit integers.

Table 2 shows our results, including the values taken from the existing works on
homomorphic division. We ran Div (Algorithm 10) 1000 times and took the average. Our
method is approximately 3.4 times faster than the fastest method ([23]) shown in the table
while achieving a higher level of security (λ > 128) than that of existing methods. For a fair
comparison, we also implemented the “non-restorative division algorithm” on the original
(bit-wise) TFHE library with the same parameters. The non-restorative division algorithm
is a classic bit-wise algorithm for integer division that is used in previous works [16–18].
We can confirm from Table 2 that our method is approximately 2.2 times faster than non-
restorative division. In the asymptotic analysis, as shown in the “Complexity” column of
the table, our division algorithm and that of [23] take exponential time. Thus, our algorithm
and that of [23] are asymptotically slower than other works based on the bit-wise non-
restorative division algorithm. The main bottle necks of our algorithm and that in [23] are
the exhaustive loop of line 2–6 in Algorithm 10, similar to the part in [23]. However, while
the method of [23] needs an O(22l) calculation, our algorithm is quadratically faster: it takes
a smaller O(2l) calculation. This is due to that our bootstrapping being able to evaluate any
one-variable function without extra computational costs over the original TFHE, and in
contrast, the bootstrapping in [23] needs an O(2l) calculation for homomorphic evaluation
of the general one-variable function.

Information 2021, 12, 297 16 of 18

Algorithm 11: Func(Cm1 , Cm2 , f (·, ·)): Homomorphic evaluation of a 2-variable function f (x, y).

Input: Ciphertexts Cm1 and Cm2 , where m1, m2 ∈ {0, . . . , τ − 1}, a 2-variable function
f (x, y) : {0, . . . , τ − 1} × {0, . . . , τ − 1} → {0, . . . , τ − 1}, and sets of test vector coefficients
{µ0,y, . . . , µN−1,y} which corresponds to 1-variable functions fy(x) := f (x, y), for all y ∈ {0, . . . , τ − 1}.

Output: Cmout := Func(Cm1 , Cm2) := C f (m1,m2)

1 CSUM := C0 (noiseless TLWEsample of 0)
2 for i = 0 to (τ − 1) do
3 C fi(m1)

= Bootstrap(Cmin , fi),
4 C(m2=i) = ConstEq(Cm2 , i)
5 CSUM = Bootstrap(CSUM +MultbyBin(C fi(m1)

, C(m2=i)), fid)
// MultbyBin(Cbmin/ic, C(i=md)

) = Cbmin/mdc if i = md, C0 otherwise

6 end
7 return CSUM

Table 2. Results: comparison with existing homomorphic division implementations. We abbrevi-
ate the non-restoring division method as NRD. The “Complexity” column shows the asymptotic
complexity for a one-bit-length integer input.

Method FHE lib. Type Bits (l) Time [sec] Complexity Security λ

[17] HElib Bit-wise 4 67.94 O(l2) >128
[18] HElib Bit-wise 4 14.63 O(l2) >128
[16] HElib Bit-wise 4 7.74 O(l2) >80

[23] HElib Integer-
wise 4 3.15 O(22l) >80

Ours (Div) TFHE Integer-
wise 4 0.93 O(2l) >128

NRD TFHE Bit-wise 4 2.05 O(l2) >128

We show in Table 3 the breakdown of the run time of our Div, which was com-
pleted in 930 msec in total. The run time for each of MultbyBin, ConstEq, DivbyConst, and
Bootstrap(·, fid) in line 5 of Algorithm 10 are shown in the table. The run times of these
subalgorithms account for almost the entire run time. As the single bootstrapping takes
approximately 10 msec on our PC, the cost of these functions is dominated by the run time
of bootstrapping, i.e., our functions entail minimal additional costs.

Table 3. A breakdown of the run time of our Div (Algorithm 10).

Functions # of Bootstrap Time [msec] # of Calls Mean [msec]

MultbyBin (line 5) 2 346.0 (37.2%) τ − 1 = 16 21.6
ConstEq (line 4) 1 174.8 (18.8%) τ − 1 = 16 10.9

DivbyConst (line 3) 1 175.8 (18.9%) τ − 1 = 16 11.0
Bootstrap(·, fid) (line 5) 1 173.9 (18.7%) τ − 1 = 16 10.9

Limitations of Correctness

In the parameter setting of this section, the final standard deviation of the noise after
bootstrapping is σ = 0.00961, as in [6]. The probability of decryption failure, i.e., the
probability of the standard deviation of noise after bootstrapping is larger than 1/16 and is
bounded by erf(1/16

√
2σ) < 2−32. The condition suffices for the bit-wise TFHE scheme.

However, for our scheme, decryption fails if the size of the noise after bootstrapping
is larger than 1/4τ, as shown in (12). The probability of decryption error is bounded
by erf(1/4τ

√
2σ) < 2−4.06 for our scheme. This upper bound appears large, but we

empirically observed in our experiment that the decryption error rate is approximately
0.08% (4 decryption errors in 5000 bootstrappings). In other words, there is a trade-off
between the size of the plaintext space τ and the decryption error rate. For 5-bit integers,

Information 2021, 12, 297 17 of 18

i.e., when B = 33, the upper bound of the decryption failure probability rapidly increases to
approximately 30%. Thus, for the parameter setting in this section, our scheme is practical
only for ≤ 4-bit integer input. Notably, although the decryption failure rate of our scheme
increases as τ increases, the security of the scheme is not affected because τ is independent
of the standard deviation σ of the noise [14].

6. Conclusions

We proposed a technique for performing arbitrary 1-variable functions with only one
bootstrapping procedure using the integer-wise variant of TFHE. The core modification is
to generalize the test vector used in the bootstrapping and the concrete setting of the values
of the test vector coefficients. Based on this general functional bootstrapping procedure,
we extended the functionality of the integer-wise TFHE scheme to construct several basic
applications, such as homomorphic equality testing, multiplication by a binary number,
and a division algorithm. We implemented our homomorphic division algorithm and
showed that it can be performed in less than 1 second, which is approximately 3.4 times
faster than the fastest division algorithm. However, as a limitation, our scheme is practical
only for ≤4-bit integer inputs, when we use the default parameters of TFHE library. In
order to use our scheme for larger integer inputs, we need to use a smaller error rate.

Efficient algorithms for basic arithmetic operations are needed to increase the options
for optimizing high-level secure computation applications. We believe our bootstrapping
scheme can be used to develop a wide variety of homomorphic calculation algorithms.

Author Contributions: Conceptualization, H.O.; methodology, H.O.; software, H.O.; validation,
H.O.; formal analysis, H.O.; writing—original draft preparation, H.O.; writing—review and editing,
H.O. and S.K.; visualization, H.O.; supervision, S.K. and C.C.; All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We thank Benjamin Curtis and Rachel Player for their comments on the prelimi-
nary version of this paper [36].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gentry, C. A Fully Homomorphic Encryption Scheme. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2009.
2. Gentry, C. Fully Homomorphic Encryption Using Ideal Lattices. In STOC 2009; ACM: New York, NY, USA, 2009; pp. 169–178.

[CrossRef]
3. Brakerski, Z.; Vaikuntanathan, V. Efficient Fully Homomorphic Encryption from (Standard) LWE. In FOCS 2011; IEEE: Piscataway,

NJ, USA, 2011; pp. 97–106. [CrossRef]
4. Brakerski, Z.; Vaikuntanathan, V. Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In

CRYPTO 2011; Rogaway, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 505–524. [CrossRef]
5. Brakerski, Z.; Vaikuntanathan, V. Lattice-based FHE As Secure As PKE. In ITCS 2014; ACM: New York, NY, USA, 2014; pp. 1–12.

[CrossRef]
6. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1

Seconds. In ASIACRYPT 2016; Cheon, J.H., Takagi, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–33. [CrossRef]
7. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. Faster Packed Homomorphic Operations and Efficient Circuit Bootstrapping

for TFHE. In ASIACRYPT 2017; Takagi, T., Peyrin, T., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp.
377–408. [CrossRef]

8. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. TFHE: Fast Fully Homomorphic Encryption Over the Torus. J. Cryptol.
2020, 33, 34–91. [CrossRef]

9. Gentry, C.; Halevi, S.; Smart, N.P. Homomorphic Evaluation of the AES Circuit. In CRYPTO 2012; Safavi-Naini, R., Canetti, R.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 850–867. [CrossRef]

10. Gentry, C.; Sahai, A.; Waters, B. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-
Faster, Attribute-Based. In CRYPTO 2013; Canetti, R.; Garay, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 75–92.
[CrossRef]

11. Smart, N.P.; Vercauteren, F. Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In PKC 2010;
Nguyen, P.Q., Pointcheval, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 420–443. [CrossRef]

http://doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1109/FOCS.2011.12
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1145/2554797.2554799
http://dx.doi.org/10.1007/978-3-662-53887-6_1
http://dx.doi.org/10.1007/978-3-319-70694-8_14
http://dx.doi.org/10.1007/s00145-019-09319-x
http://dx.doi.org/10.1007/978-3-642-32009-5_49
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-642-13013-7_25

Information 2021, 12, 297 18 of 18

12. Stehlé, D.; Steinfeld, R. Faster Fully Homomorphic Encryption. In ASIACRYPT 2010; Abe, M., Ed.; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 377–394.

13. van Dijk, M.; Gentry, C.; Halevi, S.; Vaikuntanathan, V. Fully Homomorphic Encryption over the Integers. In EUROCRYPT 2010;
Gilbert, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 24–43. [CrossRef]

14. Bourse, F.; Minelli, M.; Minihold, M.; Paillier, P. Fast Homomorphic Evaluation of Deep Discretized Neural Networks. In CRYPTO
2018; Shacham, H., Boldyreva, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018, pp. 483–512. [CrossRef]

15. Gilad-Bachrach, R.; Dowlin, N.; Laine, K.; Lauter, K.; Naehrig, M.; Wernsing, J. CryptoNets: Applying Neural Networks to
Encrypted Data with High Throughput and Accuracy. In Proceedings of the 33rd International Conference on Machine Learning,
New York, NY, USA, 19–24 June 2016; Volume 48, pp. 201–210. [CrossRef]

16. Chen, J.; Feng, Y.; Liu, Y.; Wu, W. Faster Binary Arithmetic Operations on Encrypted Integers. In WCSE 2017; SCIEI: Hong Kong,
China, 2017; pp. 956–960. [CrossRef]

17. Chen, Y.; Gong, G. Integer arithmetic over ciphertext and homomorphic data aggregation. In Proceedings of the IEEE Conference
on Communications and Network Security (CNS), Florence, Italy, 28–30 September 2015; pp. 628–632. [CrossRef]

18. Xu, C.; Chen, J.; Wu, W.; Feng, Y. Homomorphically Encrypted Arithmetic Operations Over the Integer Ring. In ISPEC 2016; Bao,
F., Chen, L., Deng, R.H., Wang, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 167–181. [CrossRef]

19. Çetin, G.S.; Doröz, Y.; Sunar, B.; Savaş, E. Depth Optimized Efficient Homomorphic Sorting. In LATINCRYPT 2015; Lauter, K.,
Rodríguez-Henríquez, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 61–80. [CrossRef]

20. Bost, R.; Popa, R.A.; Tu, S.; Goldwasser, S. Machine Learning Classification over Encrypted Data. In Proceedings of the Network
and Distributed System Security (NDSS) Symposium, San Diego, CA, USA, 8–11 February 2015. [CrossRef]

21. Juvekar, C.; Vaikuntanathan, V.; Chandrakasan, A. GAZELLE: A Low Latency Framework for Secure Neural Network Inference.
In USENIX Security 2018; USENIX Association: Baltimore, MD, USA, 2018; pp. 1651–1669.

22. Narumanchi, H.; Goyal, D.; Emmadi, N.; Gauravaram, P. Performance Analysis of Sorting of FHE Data: Integer-Wise Comparison
vs Bit-Wise Comparison. In AINA 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 902–908. [CrossRef]

23. Okada, H.; Cid, C.; Hidano, S.; Kiyomoto, S. Linear Depth Integer-Wise Homomorphic Division. In WISTP 2018; Blazy, O., Yeun,
C.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 91–106. [CrossRef]

24. Halevi, S.; Shoup, V. HElib—An Implementation of Homomorphic Encryption. 2019. Available online: https://github.com/
shaih/HElib/ (accessed on 26 July 2020).

25. Cheon, J.H.; Han, K.; Kim, A.; Kim, M.; Song, Y. Bootstrapping for Approximate Homomorphic Encryption. In EUROCRYPT
2018; Nielsen, J.B., Rijmen, V., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 360–384. [CrossRef]

26. New Jersey Institute of Technology. PALISADE. 2019. Available online: https://git.njit.edu/palisade/PALISADE (26 July 2020).
27. Chen, H.; Dai, W.; Kannepalli, S.; Khanpour, H.; Laine, K.; Lauter, K.; Singh, T.; Song, Y.; Tieman, J. Microsoft SEAL: Fast and

Easy-to-Use Homomorphic Encryption Library. 2019. Available online: https://www.microsoft.com/en-us/research/project/
microsoftseal/ (accessed on 26 July 2020).

28. Ducas, L.; Micciancio, D. FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second. In EUROCRYPT 2015; Oswald,
E., Fischlin, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 617–640. [CrossRef]

29. Regev, O. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In STOC ’05; ACM: New York, NY, USA,
2005, pp. 84–93. [CrossRef]

30. Cheon, J.H.; Stehlé, D. Fully Homomophic Encryption over the Integers Revisited. In EUROCRYPT 2015; Oswald, E., Fischlin,
M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 513–536. [CrossRef]

31. Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (Leveled) Fully Homomorphic Encryption Without Bootstrapping. In ITCS 2012;
ACM: New York, NY, USA, 2012; pp. 309–325. [CrossRef]

32. Lyubashevsky, V.; Peikert, C.; Regev, O. On Ideal Lattices and Learning with Errors over Rings. In EUROCRYPT 2010; Gilbert, H.,
Ed.; Springer: Berlin/Heidelberg, Germany, 2010, pp. 1–23. [CrossRef]

33. Carpov, S.; Chillotti, I.; Gama, N.; Georgieva, M.; Izabachene, M. TFHE: Fast Fully Homomorphic Encryption over the Torus.
2019. Available online: https://tfhe.github.io/tfhe/ (accessed on 26 July 2020).

34. Bourse, F.; Sanders, O.; Traoré, J. Improved Secure Integer Comparison via Homomorphic Encryption. In CT-RSA 2020; Jarecki,
S., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 391–416. [CrossRef]

35. Çetin, G.S.; Doröz, Y.; Sunar, B.; Martin, W.J. Arithmetic Using Word-wise Homomorphic Encryption. Cryptology ePrint Archive,
Report 2015/1195. 2015. Available online: https://eprint.iacr.org/2015/1195 (26 July 2020).

36. Okada, H.; Kiyomoto, S.; Cid, C. Integerwise Functional Bootstrapping on TFHE. In Information Security; Susilo, W., Deng, R.H.,
Guo, F., Li, Y., Intan, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 107–125. [CrossRef]

http://dx.doi.org/10.1007/978-3-642-13190-5_2
http://dx.doi.org/10.1007/978-3-319-96878-0_17
http://dx.doi.org/10.5555/3045390.3045413
http://dx.doi.org/10.18178/wcse.2017.06.166
http://dx.doi.org/10.1109/CNS.2015.7346877
http://dx.doi.org/10.1007/978-3-319-49151-6_12
http://dx.doi.org/10.1007/978-3-319-22174-8_4
http://dx.doi.org/10.14722/ndss.2015.23241
http://dx.doi.org/10.1109/AINA.2017.85
http://dx.doi.org/10.1007/978-3-030-20074-9_8
https://github.com/shaih/HElib/
https://github.com/shaih/HElib/
http://dx.doi.org/10.1007/978-3-319-78381-9_14
https://git.njit.edu/palisade/PALISADE
https://www.microsoft.com/en-us/research/project/microsoftseal/
https://www.microsoft.com/en-us/research/project/microsoftseal/
http://dx.doi.org/10.1007/978-3-662-46800-5_24
http://dx.doi.org/10.1145/1060590.1060603
http://dx.doi.org/10.1007/978-3-662-46800-5_20
http://dx.doi.org/10.1145/2090236.2090262
http://dx.doi.org/10.1007/978-3-642-13190-5_1
https://tfhe.github.io/tfhe/
http://dx.doi.org/10.1007/978-3-030-40186-3_17
https://eprint.iacr.org/2015/1195
http://dx.doi.org/10.1007/978-3-030-62974-8_7

	Introduction
	Preliminaries
	Notation
	Background of TFHE
	Learning with Errors
	Bit-Wise LWEEncryption
	Torus LWE(TLWE)
	TGSW

	Overview of TFHE Bootstrapping
	Input
	Rounding
	BlindRotate
	Extract
	KeySwitch

	Integer-Wise LWE Encryption

	Integer-Wise General Functional Bootstrapping
	General Functional Bootstrapping
	Input
	Rounding (Line 1)
	BlindRotate (Line 3 to Line 4)
	Extract (Line 5)
	KeySwitch (Line 7)

	Security

	Applications
	Homomorphic Evaluation of the Sign Function: Sign()
	Homomorphic Equality Test: Eq() and ConstEq()
	Homomorphic Multiplication by a Binary Number: MultbyBin()
	Homomorphic Division by a Constant: DivbyConst
	Homomorphic Division: Div()

	Results of Homomorphic Division
	Conclusions
	References

