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Abstract: Manufacturers today compete to offer not only products, but products accompanied by
services, which are referred to as product-service systems (PSSs). PSS mass customization is defined
as the production of products and services to meet the needs of individual customers with near-
mass-production efficiency. In the context of the PSS mass customization environment, customers are
overwhelmed by a plethora of previously customized PSS variants. As a result, finding a PSS variant
that is precisely aligned with the customer’s needs is a cognitive task that customers will be unable
to manage effectively. In this paper, we propose a hybrid knowledge-based recommender system
that assists customers in selecting previously customized PSS variants from a wide range of available
ones. The recommender system (RS) utilizes ontologies for capturing customer requirements, as well
as product-service and production-related knowledge. The RS follows a hybrid recommendation
approach, in which the problem of selecting previously customized PSS variants is encoded as a
constraint satisfaction problem (CSP), to filter out PSS variants that do not satisfy customer needs,
and then uses a weighted utility function to rank the remaining PSS variants. Finally, the RS offers
a list of ranked PSS variants that can be scrutinized by the customer. In this study, the proposed
recommendation approach was applied to a real-life large-scale case study in the domain of laser
machines. To ensure the applicability of the proposed RS, a web-based prototype system has been
developed, realizing all the modules of the proposed RS.

Keywords: constraint satisfaction problem; ontology; product-service systems; product-service
system customization; recommender systems

1. Introduction

Today, manufacturers are seeking to meet their orders on demand via short-term
networks, in which they are negotiating value-added processes. In addition, they try to
take into account customer requirements, quality, price, sustainability, and other dimen-
sions [1–3]. To gain a competitive advantage, manufacturers are not only offering a product,
but also offering products supplemented by services, called “product-service systems”
(PSSs) [4].

However, PSSs suffer from a variety of drawbacks [3]. The most significant drawback
is that PSSs remain at a conceptual level and lack IT implementation. Moreover, they do
not fulfill the increasing user expectations or product diversity features to enable successful
customization. They are unable to capture the views of different stakeholders to adapt
product design to the customer’s demands in real-time. PSSs do not provide a holistic view
of products and services, connecting the product structure to product quality, services, and
production processes.

This creates a demand for the use of novel lifecycles, techniques, and technologies
to help manufacturers link their data, processes, systems, personnel to assist customers
with the assistance of product designers, and engineers in designing personalized products
and services. In [3], the authors introduced a novel PSS customization lifecycle with
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supporting IT tools that ensures continuous collaboration between customers and product
designers and guarantees that customers’ preferences are taken into consideration during
the PSS customization process. The PSS customization lifecycle was established based on
tried and tested knowledge-intensive structures called manufacturing blueprints. These
blueprints semantically capture product-service and production-related knowledge [5,6].
Manufacturing blueprints integrate distributed manufacturing data from different locations
and sources to gain full visibility and control over manufacturing data and act as a guide for
the production of actionable intelligence. The PSS customization lifecycle incorporates five
core processes [3], i.e., smart product ideation, PSS customization, production planning,
production execution, and production monitoring.

During the PSS customization lifecycle, a massive amount of product-service-related
data can be collected. However, PSSs do not support the analysis of these collected data to
enhance data-driven decision making. Therefore, this massive data overload issue hinders
the various stakeholders (e.g., the customer, production engineer, and shop floor operator)
involved in the PSS customization lifecycle from making informed decisions.

This necessitates the use of novel techniques/approaches to assist the various involved
stakeholders in making informed decisions and to accelerate the different PSS customiza-
tion lifecycle processes. Accordingly, this study aims to address the following research
question: “How can data analytics techniques be used to support the various stakeholders
involved in making informed decisions throughout the PSS customization lifecycle?”

To provide answer to this research question, data analytics techniques can be utilized
to analyze this massive amount of data collected during the PSS customization lifecycle.
The analysis of these data can improve data-driven decision making and identify new
opportunities. This leads to smarter business moves, more satisfied stakeholders, and more
efficient operations. Prescriptive analytics is the most sophisticated data analytics branch as
it answers the question of “what should we do?”, which adds high value to organizations.
It includes optimization and simulation techniques to provide advice, explore several
possible actions, and suggest a course of action, through the use of statistics and data
mining techniques.

Recommender systems (RSs) belong to the class of prescriptive analytics, which
represent software tools that offer customers with useful suggestions, taking into account
their preferences/requirements [7]. There are several types of recommender systems. Some
examples of these types are: content-based RSs [8], collaborative filtering RSs [7], hybrid
RSs [8], knowledge-based RSs [9], knowledge graph-based RSs [10], and cognitive-based
RSs [11]. Recommender systems have gained a prominent role due to their applicability
in a variety of domains (e.g., tourism, e-commerce, e-learning, health, etc.) and the large
number of applications that offer personalized services [7,12,13].

We envision that RSs could play a pivotal role throughout the different processes of
the smart PSS customization lifecycle [3], that is, (i) assisting various involved stakeholders
with different views throughout the smart manufacturing process in making informed
decisions, and (ii) enabling the re-usability of previous successful customized PSS variants.
Accordingly, in [14], we have analyzed and developed a recommendation framework that
supports the different processes of the PSS customization lifecycle introduced in [3]. In
this framework, a set of recommendation capabilities are identified for each process, while
accommodating different stakeholders’ perspectives.

The work presented in this paper focuses on the realization of the recommenda-
tion facility identified for the “smart product ideation” process of the PSS customization
lifecycle [3], which we identified in [14] as “recommending previously customized product-
service systems (PSSs)”. During the smart product ideation process, customers may start
their customization process by selecting a PSS variant from the wide range of available
previously customized PSS variants maintained in the manufacturing blueprints knowl-
edge base. Consequently, finding a PSS variant that is precisely aligned to the customers’
requirements is a cognitive task that the customers are unable to manage easily.
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Despite the fact that personalized recommendations have received a lot of attention
in a variety of domains, such as e-commerce, tourism, telecommunications, and financial
services, few previous research efforts have been directed toward PSS customization
recommendations. Moreover, when generating PSS recommendations, these studies only
take into account the features of the services that accompany the product. Accordingly, we
propose a hybrid knowledge-based recommender for PSS customization recommendations.
Our proposed approach distinguishes itself from other previous studies reported in the
literature due to its capability to generate PSS recommendations while taking into account
customers’ requirements (e.g., functional, structural, environmental, cost, and quality) for
the product and its associated services.

The backbone of the proposed recommendation approach is a knowledge base that
utilizes a set of integrated ontologies called manufacturing blueprints [6], which capture
rich product-service and production-related knowledge. Manufacturing blueprints turn
conventional products into smart self-describing products by storing, linking, combining,
and analyzing the raw data collected by the product throughout its lifecycle. In this manner,
smart actionable data is created, from which knowledge can be generated and production
processes can be triggered.

The proposed recommender system is a hybrid ontology-based system in the sense
that it integrates and combines two techniques: (i) constraint modeling, where the problem
of selecting previously customized PSS variants is formulated as a constraint satisfaction
problem (CSP) [15], to deduce a subset of potential customized PSS variants from the wide
range of available ones maintained in the manufacturing blueprints KB. (ii) A weighted
utility function is used to rank the remaining PSS variants based on their utility to the
customer. The utility, efficacy, and applicability of the proposed approach is demonstrated
herein through its implementation in a real-life large-scale case study from the H2020
ICP4Life project ICP4Life: http://www.icp4life.eu/ (accessed on 22 July 2021).

The main contributions of this paper are:

• We propose a hybrid knowledge-based recommender for PSS customization recom-
mendations.

• The manufacturing blueprints models proposed in [5,6] are extended to support the
PSS customization recommendation process.

• The utility, efficacy, and applicability of the proposed approach is carried out through
its implementation in a real-life case study in the domain of laser machines.

• To ensure the applicability of the proposed recommendation approach, a web-based
prototype system has been developed, realizing all the modules of the proposed RS.

The rest of this paper is organized as follows. Related work is analyzed in Section 2. In
Section 3, the case study is demonstrated, whereas in Section 4, manufacturing blueprints
models are discussed with extensions to support the recommendation process. Section 5
presents the hybrid knowledge-based recommendation approach, as well as its imple-
mentation and evaluation details. Finally, conclusions and future work are highlighted in
Section 6.

2. Related Work

The related works focus on two directions: (i) the role of ontologies in manufacturing,
and (ii) recommendation approaches in manufacturing.

2.1. Using Ontologies in Manufacturing

Ontologies are formal explicit representations of the concepts (classes) and the rela-
tionships between domain concepts [16,17]. For the manufacturing domain, ontologies
are used to share knowledge between different manufacturing systems, stakeholders, and
applications.

The authors in [18] proposed the Product ONTOlogy (PRONTO) approach for mod-
elling products for the purpose of sharing product information across organizations. This
method addresses concepts primarily related to the product structure, but it has no refer-

http://www.icp4life.eu/
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ence to any existing standards developed for the modeling of product structure, processes,
and features. To overcome the lack of modeling standards in [18], the authors in [19]
proposed a product ontological model based on ISO and IEC standards.

Influential work related to the conceptualization of product-centered services is re-
ported in [20,21]. A service architecture was presented in [20], introducing an ontology
model that focuses on the adaptation of services to the PSS context, but the product per-
spective and product-service interface are not addressed. Based on findings from industrial
cases, the authors in [21] developed a knowledge structure, as well as an ontology, focusing
on product-related service and service concepts, without any specific discussion about the
product itself.

Some authors have utilized ontologies for modelling PSS concepts. In [22], the authors
conducted extensive interviews with experts to elicit PSS root concepts in order to propose
a suitable PSS ontology. The proposed ontology focuses on the top-level concepts of the
PSS from a design perspective. In [23], the authors proposed a PSS ontology to manage
the exchange of information among stakeholders throughout the different phases of the
PSS lifecycle.

Another stream of research has utilized ontologies to represent product and/or service
configuration knowledge for the purpose of configuration. In [24], the authors proposed an
ontology-based configuration system for configuring product extension services (PESs) in
servitization. They proposed three meta-ontologies, namely, product, service, and customer
ontologies. In [25], the authors presented an ontology-based approach for the modeling
of product configuration knowledge. Concepts within the product configuration domain,
such as product, component, part, attribute, etc., were only considered; moreover, classes
related to the configuration of product-related services were not considered.

From a methodological perspective, the authors in [3] proposed a novel product-
service customization lifecycle that included technological solutions aiming to enable
PSS customization. The PSS customization lifecycle relies on the tried and tested man-
ufacturing blueprints proposed in [5,6], which provide a basis for actionable PSS and
production intelligence.

A summary of the related work and ontological models used in manufacturing is
provided in Table 1. Based on this summary, it was found that the proposed models
were utilized for modeling product and/or service knowledge for the purposes of design,
planning, or configuration. The issue of extending those models for other applications (PSS
customization recommendations) addressed by this paper is an open research topic.

Table 1. Related work and ontological models used in manufacturing.

Paper Modelling Scope Application Domain Evaluation
Mechanism Limitations

[3]

Product, service,
partner,

production-process,
quality assurance

Customization of
product-service

systems (PSS) in the
laser cutting machines

domain

Laser cutting machines
case study No customer profile modeling

[18] Product Material requirements
planning

Food industry case
study Lack of modeling standards

[19] Product, process,
resources

Solving interoperability
problems between

different enterprises
and applications

Simulation of
distributed activities
for manufacturing

simple product
prototypes

Consideration of only two
modeling standards (ICE, and

ISO)

[20] Service Service planning No evaluation
provided

Product perspective and
product-service interface are

not considered
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Table 1. Cont.

Paper Modelling Scope Application Domain Evaluation
Mechanism Limitations

[21] Service Product design

Semi-conductor pump
and lubricant-free

small vacuum pump
designing

Product-related service and
service concepts are considered
without any specific discussion

about the product itself

[22]
Product, service,
stakeholder, PSS

design, PSS outcome
PSS design Extensive interviews

with domain experts

Focus on the top-level concepts
of the PSS from a design

perspective

[23] Product portfolio,
service portfolio

Enhancing information
interoperability among

stakeholders
throughout the

different phases of the
PSS lifecycle

Bike rental case study No evaluation was conducted
with industrial experts

[24] Product, service,
customer

Configuring product
extension services (PES)

in servitization

Example of
configurable

product-extension
services called

“building solution”

Only feasible configuration
solutions are considered,

whereas optimal ones have not
yet been considered

[25] Product Product configuration Ranger drilling
machine case study

Only feasible configuration
solutions are considered,

whereas optimal ones have not
yet been considered

2.2. Recommendation Approaches in Manufacturing

Recommender systems (RSs) are software tools and techniques, utilized to assist
customers in making the right decisions [7]. RSs have been successfully applied in various
domains, such as tourism, health, e-commerce, e-learning, etc. There are several types of
recommendation techniques; the foremost common techniques are:

• The collaborative filtering technique: predicts what would be of interest to a person
based on the taste of many other users [7];

• The content-based technique: The content-based technique relies on the features of
products and the user preferences. This technique recommends products with similar
features to those enjoyed by customers in the past [8];

• The knowledge-based technique: generates suggestions based on the domain knowl-
edge and user explicit requirements. This approach does not consider the behavior of
other users [9]. Knowledge-based techniques are divided into the constraint-based
technique [26] and the case-based reasoning (CBR) technique [27]. The constraint-
based technique exploits a predefined recommender knowledge base, which contains
explicit constraints about how to relate customer requirements with product features.
The CBR technique generates recommendations based on similarity metrics;

• Hybrid techniques: based on combining two or more recommendation techniques
into one hybrid technique to gain better performance [7].

Content-based and collaborative filtering approaches are suitable for domains where
a massive amount of data and individual interactions exist. In the context of the PSS
customization domain, these approaches are not the leading choice, as there is insufficient
data available on actual user selections for preferred customized PSS variants.

Knowledge-based techniques help to tackle the cold start problem [28], which deals
with the absence of data about past user choices. This problem is tackled through combin-
ing customers’ explicit requirements, as stated during the recommendation session, and
supported in our solution by the manufacturing blueprints and the related knowledge base.
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Therefore, our proposed approach (cf. Section 5 exploits knowledge-based techniques and
more specifically the constraint-based technique for recommending previously customized
PSSs in the mass customization domain.

Recommender systems have been successfully applied in the manufacturing domain.
In the domain of additive manufacturing (AM), the authors in [29] proposed a hybrid
machine learning approach for recommending additive manufacturing design features for
target components in the conceptual design phase. The proposed approach combines both
clustering and support vector machine (SVM) algorithms for the generation of recommen-
dations. A case study of designing R/C racing car components was used to validate the
proposed recommendation approach.

Another stream of research has utilized RSs in the domain of cloud manufacturing
(CMfg) to assist customers in identifying the best manufacturing services (i.e., resources
and capabilities) to accomplish the required manufacturing task [30–33].

In [30], a hybrid approach that integrates social network and collaborative filtering
(CF) techniques was proposed to predict the missing quality of service (QoS) values of
manufacturing services. Based on this prediction, top-k optimal manufacturing services
with higher QoS values are recommended to service consumers. Similarly, in [31], a novel
clustering-based and trust-aware RS was developed for reliable cloud manufacturing
service recommendations. The purpose of this system is to predict the QoS values of the
cloud manufacturing services and allow users to retrieve the most relevant services.

In [32], the authors proposed a novel manufacturing service recommendation algo-
rithm based on a time-aware targeted reconstructing service descriptions (T-TRSD) model.
The purpose of T-TRSD is to reconstruct the single manufacturing service descriptions for
specific requirements, taking into account the evolving characteristics and service composi-
tion descriptions of cloud manufacturing services. The recommendation of manufacturing
services is eventually carried out by mining the valuable information contained in the
reconstructed manufacturing service descriptions.

In [33], the authors proposed an intelligent RS for the recommendation of cloud
manufacturing services. The proposed RS adopts a deep neural network (DNN) paradigm,
which allows the automatic learning of an optimal manufacturing services list based on
customers’ past experiences and new choices.

Although personalized recommendations have received a great deal of attention
in a variety of domains, such as telecommunications [34], tourism [35,36], financial ser-
vices [37,38], and e-commerce [39–41], few applications of RSs for personalized PSS rec-
ommendations have been reported in the very recent literature. In [42,43], the authors
proposed a multi-criteria recommendation method based on a rough collaborative filter-
ing (CF) approach to provide customers with customized PSS solutions. However, the
recommendation of these customized PSS solutions depends on product-service features
only, such as service response time, service cost, service reliability, etc. The authors do
not take into considerations the structural and quality characteristics of the product as a
PSS component.

Table 2 summarizes the related work pertaining to recommendation approaches in
manufacturing. Based on this summary, it was found that: (i) the majority of previous
studies concentrate on recommending the best manufacturing services for accomplishing a
manufacturing task in the domain of cloud manufacturing, (ii) few previous researches are
targeted for PSS customization recommendations; moreover, the recommendation of PSS
solutions in these studies has been carried out based on product-service features only.
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Table 2. Related work pertaining to recommendation approaches in manufacturing.

Paper Applied Techniques Application
Domain

Recommendation
Capabilities

Evaluation
Mechanism

[29]

Clustering algorithm,
support vector
machine (SVM)

classification
algorithm

Additive
manufacturing

Additive
manufacturing
design features

R/C car racing
components case

study

[30]
Social network,

collaborative filtering
(CF)

Cloud
manufacturing

Cloud
manufacturing

services

Experimental
evaluation

[31] Clustering algorithm,
CF approach

Cloud
manufacturing

Cloud
manufacturing

services

Experimental
evaluation

[32]

Time-aware targeted
reconstructing service
descriptions (T-TRSD)

model

Cloud
manufacturing

Cloud
manufacturing

services

Experimental
evaluation on a
real-world data

set

[33] Deep neural network
(DNN) approach

Cloud
manufacturing

Cloud
manufacturing

services

Simulated case
study

[42,43]

Decision-making and
trial evaluation

laboratory (DMATEL)
method, collaborative

filtering (CF)

PSS
customization

Customized PSS
solutions

Elevator case
study

Unlike previously proposed approaches for PSS customization recommendations in
the literature, which consider only product-service features for recommending PSS solu-
tions, our proposed approach in this article takes into consideration customer requirements
(functional, structural, environmental, cost, and quality requirements) for the product and
its associated services when calculating PSS recommendations.

3. Case Study

In this section, we present a case study that is conducted in the context of the EU H2020
ICP4Life [3]. This case study was carried out for a turbine engine manufacturer (customer)
who was interested in a multi-axis laser machine. In a previous work [3], the goals were
concerned with co-designing and identifying the laser machine components based on the
customer requirements using the novel product-oriented configuration language (PoCL) [1].
PoCL is a model-based graphical user-friendly domain-specific language (DSL) which aims
to ease the task of collaborative product design by using the same jargon that is familiar
to customers and other stakeholders. By using this user-friendly language, the customer
collaborates with the product designer to elicit and validate the desired characteristics
of the product and its associated services. The output of this customization process is a
set of customization requirements and design parameters concerning the multi-axis laser
machine and its associated services, which are validated, transformed, and eventually
stored as a new customized PSS in the blueprint knowledge base for further re-usability,
using the previously developed tool-suite [1].

From a recommendation perspective, which is the primary goal of our paper, pre-
viously customized PSS variants maintained in the blueprint knowledge base could be
re-used as a starting point for a new customization request. In this case, the customer
uses a web application to specify the laser machine requirements, parts, and preferences.
Furthermore, the customer determines her business environment properties (i.e., business
type, environment temperature).

For example, the customer may specify that her business environment temperature
is high, that the laser machine features should include a CO2 laser generator, with a high
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power and speed, and that the work piece should be fixed. The customer may also request
to include services such as maintenance, repair, delivery, and installation, etc. In addition,
the customer may indicate her budget constraints with respect to the product and its
associated services.

Moreover, the customer may specify her preferences in a set of laser machine utility
dimensions, such as reliability, performance, etc. She can specify her preferences in terms of
the importance (weight) of each utility dimension. For example, the customer may specify
that she is highly interested in reliability with an importance weight of 0.5.

By utilizing the proposed recommendation approach, a set of previously customized
PSS variants are recommended to the customer based on her requirements and preferences.
The incorporation of this recommendation approach assists customers in accurately finding
the required PSS variant with lower search costs.

4. Manufacturing Blueprints

Manufacturing Blueprints [5,6] are knowledge templates that capture rich product-
service and production-related knowledge. This enables automated reasoning and infer-
ence to validate the consistency of the customized PSS, verify customer constraints and
preferences, and generate a preliminary production plan. Manufacturing blueprints, which
rely on model-based design techniques to manage and inter-link product data, information
(both its content and context), product portfolios and product families, manufacturing
assets (personnel, plant machinery and facilities, production line equipment), production
processing requirements, and workflows. Manufacturing blueprints help meet the require-
ments (functional, performance, quality, cost, physical factors, interoperability, time, etc.)
of an entire manufacturing network. This information can be collated and put within a
broader operational context, providing the basis for production actionable “intelligence”
and a move toward more fact-based manufacturing decisions.

Manufacturing knowledge is encapsulated in the five inter-connected knowledge-
based templates:

• Supplier blueprint: containing knowledge about the supplier’s firm, its capabilities,
and details.

• Product blueprint: includes information about the product, its components, quality
attributes, and product families.

• Product-service blueprint: defines the characteristics of all services that are coupled
with the physical product, such as service quality attributes.

• Production process blueprint: describes the workflow of the process, the activities
involved, and the resources required for actual production.

• Quality assurance blueprint: defines the KPIs needed to monitor the production
processes and to solve production problems.

To meet the recommendation of PSS customization during the smart product ideation
process, we have extended the manufacturing blueprints models, as will be discussed
further below.

The product blueprint proposed in [6] is extended to integrate appropriate classes
that are needed to meet customers’ requirements and facilitate the recommendation of
PSS customization. Examples of the classes involved in this blueprint are: (i) product: a
general class used to describe a product made up of parts and sub-assemblies; (ii) product
component: this class describes the components that make up the product; (iii) operational
environment: is a new added class to the product blueprint that describes the properties of
the environment in which a product can operate (e.g., environment temperature, environ-
ment humidity). With the addition of this class, we are now able to recommend products
that meet the customers’ environmental constraints.

Moreover, we need to model the customer profile before recommending a previously
customized PSS, so a new knowledge structure/template is added, which is called the
customer blueprint. The customer profile consists of two parts: (i) the customer’s ba-
sic information (e.g., location, business environment, business type, business size, etc.)
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and (ii) the customer’s requirements. Figure 1 illustrates the main classes involved in
the customer blueprint and the relationships between them. The customer has a set of
requirements specifying her request. The requirements class is classified into four types of
requirements:

• The ComponentRequirements class: represents the components that the customer may
request. This class is further sub-divided into two classes: (i) the ServiceComponentRe-
quirements class, representing the service components that the customer may request
(e.g., maintenance); and (ii) the ProductComponentRequirements class, representing the
product’s components that may be required by the customer (e.g., laser head).

• The AttributeRequirements class: represents the features of the product/service/component
that may be required by the customer. This class is sub-divided into four classes: (i) the
ProductAttributeRequirements class, describing the attributes associated with the product
(e.g., product reliability) that may be required by the customer; (ii) the ProductComponentAt-
tributeRequirements class, representing the attributes of the product’s components that may
be required by the customer (e.g., component speed, power); (iii) the ServiceAttributeRequire-
ments class, describing the attributes related to the services that may be required by the
customer (e.g., service response time, service performance); (iv) the ProductFunctionAt-
tributeRequirements class, describing the attributes related to a certain product function. In
the context of the laser machine domain, the product may have a certain function, such as
drilling, cutting, or welding. These functions have a set of attributes, such as speed and
productivity, which are described by this class.

• The FunctionalRequirements class: describes the function required by the customer
from the product or its associated services. This class is sub-divided into two sub-
classes: (i) the ProductFunctionRequirements class, describing the product function
required by the customer; (ii) the ServiceFunctionRequirements class, describing the
service function required by the customer (e.g., maintaining the laser head).

• The CostRequirements class: this class specifies the customer’s acceptable cost for the
product and its associated services.
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In addition to the previously described classes, some other classes are used to demon-
strate the basic information about the customer, such as:

• Customer class: represents the customer who requests the product and its associated
services.
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• Business profile class: contains information about the customer’s business profile (e.g.,
business size, business type, etc.).

• Business environment class: contains information about the customer’s business
environment properties (e.g., temperature, humidity).

• Location class: represents information about the customer’s location.

5. Proposed Recommendation Approach

In this section, we focus on the realization of the recommendation facility identified for
the “smart product ideation” process as part of the PSS customization lifecycle [3], which
we referred to in [14] as “recommending previously customized product-service systems
(PSSs)”. In the context of PSS customization, customers are overwhelmed by a multitude of
previously customized PSS variants with varying characteristics. Consequently, finding a
PSS variant that is aligned with customer requirements quickly and accurately is a cognitive
task that customers will not be able to manage easily. Accordingly, we propose a hybrid
knowledge-based recommender system for recommending previously customized PSS
variants. This recommender is hybrid in nature as it encodes the problem of selecting
previously customized PSSs as a constraint satisfaction problem (CSP) [15] and uses explicit
feedback from customers to generate a ranked list of customized PSS variants using a
utility function.

Our proposed approach tackles the cold start problem [28] as it can generate rec-
ommendations for new users for whom the system has no information about their last
choices/preferences. This is achieved through combining users’ explicit requirements
during the recommendation session. However, our approach suffers from the knowledge
acquisition bottleneck, which means that it depends on knowledge engineers, who are re-
quired to transform the domain knowledge provided by domain experts (items’ properties
and the corresponding constraints) into formal representations. Knowledge engineers may
not always be available, and when many constraints must be defined, the knowledge ac-
quisition process can become more complicated. To address the aforementioned limitations
in the future, we plan to rely on human computation concepts to integrate domain experts
more deeply into the development and maintenance of knowledge bases. This can be done
by replacing the complex tasks of knowledge engineers with simple micro-tasks [44,45]
that can be performed easily, even by domain experts without technical expertise.

Figure 2 provides an overview of the proposed recommendation approach. Assume
that we have a great deal of previously customized PSS variants to be offered. Our
knowledge-based approach exploits the recommender knowledge base that contains a
set of integrated manufacturing blueprints (as discussed in Section 4) and a set of explicit
domain constraints. These constraints are defined by knowledge engineers who have
knowledge about the field and are used to relate customer requirements (customer variables
VC) with PSS variables (product variables (VPROD) and the associated service variables
(VSER)). Meanwhile, the customer requirements are acquired during the recommendation
session and are maintained in the knowledge base by using the customer blueprint as
discussed in Section 4.
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The proposed recommendation approach integrates two techniques: (i) the CSP is
integrated into the recommender engine to filter out PSSs that do not satisfy the constraints
(i.e., the customer requirements). (ii) A weighted utility function is used to rank the
remaining PSS variants and these are finally presented to the customer. The previous two
techniques are discussed in detail in the following two sub-sections.

5.1. Constraint Satisfaction Problem (CSP)-Based PSS Variant Filtering

The knowledge base of any constraint-based recommender system can be defined as
a set of variables and a set of constraints [26]. These variables and constraints constitute
the main elements of a constraint satisfaction problem (CSP) [15]. CSP can be defined as a
triple (V, D, C) where V is a set of finite domain variables {v1, v2, v3 . . . vn}, D represents
a set of domains from which variables in V take values {dom (v1), dom (v2), . . . , dom (vn)},
and C represents a set of constraints that define restrictions on the possible combinations
of variable values {c1, c2, . . . , cm} [46]. The solution of a CSP can be defined as a concrete
instantiation of the variables in V such that all the specified constraints in C are fulfilled.

By following the CSP formalism, the task of recommending previously customized
PSS variants is defined as a CSP, consisting of three sets of variables (VC, VPROD, VSER)
and four sets of constraints (CR, CO, CPSS, CF). These variables and constraints are defined
as follows:

• Customer variables VC: in the context of the laser machine domain discussed in
Section 3, customer variables are subdivided into two sets of variables (VI, VP); where
VI is a set of variables used in capturing customer requirements and VP is a set of
variables used in capturing customers’ business environmental properties. Examples
of (VI) and (VP) are shown in Tables 3 and 4, respectively.

• Product Variables, VPROD, describe the attributes of the offered products. VPROD are
divided into five sets of variables (VS, VF, VNF, VE, VM); where VS describes the struc-
tural properties of products, VF describes the functional properties of products, VNF
refers to products’ non-functional properties, VE describes products’ environmental
characteristics, and VM describes the economical properties of products, such as price.
Examples of product variables are shown in Table 5.
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• Product-Service Variables, VSER, describes the attributes of the product’s associated
services. These variables are divided into structural (VSS), functional (VSF), non-
functional (VNF), and economic variables (VSE). Examples of product-service variables
are shown in Table 6.

• Filtering constraints CF: a set of constraints used to define the relationship between
customer and PSS variables. The values of PSS variables are constrained by customer
variables. A set of filtering constraints are declared, using an object annotation lan-
guage (cf. Table 7). This declaration is carried out to differentiate between customer
and PSS variables using (user model) for customer variables and (PC product) for
previously customized PSS variables.

• CO Constraints: these constraints restrict the possible requirements of the customer.
These constraints are divided into require constraints (Creq) and (in) compatibility
constraints (Ccomp), as shown in Table 8.

• Previously Customized PSS, (CPSS), refers to the allowed instantiations of both product
variables (VPROD) and product-associated service variables (VSER), which define the
set of available previously customized PSSs (cf. Table 9).

• Customer Requirements, (CR), constraints are a set of customer requirements. These
requirements are captured through a user interface.

Table 3. Examples of customer requirement variables.

Customer Interests (VI) Domain Values of VI

Laser generator CO2 laser/YAG laser
Laser power low/medium/high
Focus lens Text indicating the type of the focus lens

Product service Maintenance/delivery and
installation/recycling

Max. product price Integer indicating the price of the product
Max. service cost Integer indicating the cost of the service

Table 4. Examples of customer’s business environment variables.

Customer Properties (VP) Domain Values of VP

Business type Drilling/welding/cutting/engraving
Customer’s environmental temperature Low/medium/high

Table 5. Examples of product variables.

Product Variables (VPROD) Values of VPROD
Structural Properties (VS)

ID Integer (1–20)

Laser generator Co2 laser/YAG laser
Functional Properties (VF)

Product function String indicating the product’s function
(cutting/drilling/welding/engraving)

Non-Functional Properties (VNF)
Product reliability Float indicating the product’s reliability

Environmental Properties (VE)

Product environment temperature Integer indicating the operational temperature
of the product’s environment

Economic properties (VM)
Product price Integer (e.g., 2,000,000)
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Table 6. Examples of product-service variables.

Product-Service Variables (VSER) Values of VSER
Structural Properties (VSS)

ID Integer

Product service String indicating the attached product’s service
(maintenance, spare part replacement, recycling)

Functional Properties (VSF)

Service function String indicating the product’s service function
(i.e., maintaining laser head)

Non-Functional Properties (VNF)
Service response rate Float indicating the response rate of the service

Service performance Float indicating the performance rate of the service
Economic properties (VSE)

Service cost Integer indicating the cost of the service

Table 7. Examples of domain filtering constraints.

Id Constraint

CF1
If user model. Business type = ‘Cutting Wood’ then PC product.

Capability = ‘Cutting Wood’

CF2
If user model. Laser generator = ‘CO2 laser’ then PC product. Product component.

Name = ‘CO2 laser’

CF3 If user model. Laser power = ‘High’ then PC product. Laser power ≥ 3000

CF4 If user model. Laser speed = ‘Low’ then PC product. laser speed < 100

CF5 If user model. Service = ‘Maintenance’ then PC product. Service = ‘Maintenance’

CF6
If user model. Environment. Temperature = ‘low’ then PC product. Operational

environment. Temperature < 40

CF7
If user model. Max. Product price = (specific price) then PC product.

Price ≤ (specific price)

CF8
If user model. Max. Product service cost = (specific price) then PC product service.

Cost ≤ specific price
Examples of domain constraints are defined in Table 7. For example, CF1 means that when the business type of
the customer is “Cutting Wood”, then the laser machine function should support this business type.

Table 8. Examples of require and compatibility constraints.

ID Require Constraints
Creq1 YAG laser generator requires YAG beam delivery system

Creq2 YAG laser generator requires maintenance

Creq3 Fixed work piece requires fixed workpiece positioning system

Creq4 High laser speed requires high laser power

Creq5 CO2 laser generator requires CO2 beam delivery system
Compatibility Constraints

Ccomp1 YAG laser generator is incompatible with motor 1

Based on the previously provided definition of the recommendation task as a CSP, we
can generate recommendations for the customer, given their requirements. The solution
of this task is defined as a concrete instantiation of the variables (VC, VPROD, VSER) such
that this instantiation does not violate any of the constraints in (CR, CO, CPSS, CF). The CSP
solver can result in more than one solution or none.
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5.2. Utility-Based PSS Ranking

As mentioned before, the solutions for a CSP may be more than one solution or none.
In cases where there are more than one solution, our recommendation approach utilizes
a weighted utility function that is based on the multi-attribute utility theory (MAUT)
approach [47]. This function is used to rank the retrieved previously customized PSS
variants that satisfy the constraints (i.e., the output of the CSP-based PSS filtering process)
based on their utility to the customer.

In order to calculate the utility of these retrieved PSS variants, it is crucial to have
knowledge about: (i) PSS variants’ contributions in utility dimensions/attributes. PSS
quality attributes (e.g., product performance, product reliability, service response time) that
are captured using the product and product-service blueprints are utilized for this pur-
pose. (ii) The customer’s interest in terms of the importance/weight of each utility at-
tribute. Based on this information, we adopt the following weighted utility function [47]
(cf. Equation (1)) for calculating the utility of PSS variants.

utility(PSS) =
n

∑
i=1

wisi(PSS) (1)

where n represents the number of utility attributes, utility(PSS), represents the utility of
a customized PSS variant, wi represents the customer’s interest in terms of weight in an
attribute i , and si(PSS) is the contribution of the PSS variant to the attribute i. The values
of wi are acquired directly from customers during the recommendation session.

In cases where there is no matching PSS variant, we propose an algorithm that handles
this case (Algorithm 1). This algorithm is based on dividing the customer requirements’
constraints into weak constraints (Cw) and hard constraints (Ch). Hard constraints rep-
resent the customer’s business environment (i.e., business type, business environment
temperature); these constraints cannot be changed when no solution is found. Weak con-
straints act as the customer requirements from PSS components and their features (e.g.,
laser generator type, laser speed). Algorithm 1 shows how to deal with the no solution found
case that is returned by the CSP solver.

Algorithm 1 Handling cases in which no solution is found.

Input: A set of customer requirements Creqs = {req1, req2 . . . reqn} = {Ch ` Cw}, customer interest
in each requirement (weights), customer interest in each utility attribute (weights)
Output: Top-k PSS variants
1, Begin:
2, SolutionList SL= GetSolutions (Creqs.Ch); /* Using CSP solver*/
3, if (SL is not empty) then
4, return SL;
5, else:
6, return ‘no solution found’;
7, for each PSS variant (P) in SL do:
8, Get PSS feature vector (P features);
9, Calculate Similarity (Creqs, P features) using Equation (2);
10, end for;
11, Sort PSS variants in SL w.r.t Similarity descendingly;
12, Get top-N similar PSS variants to customer’s requirements
13, for each PSS variant in top-N similar list do:
14, Calculate the utility of PSS variant using Equation (1);
15, end for;
16, Sort PSS variants w.r.t utility descendingly;
17, return Top-K PSS variants based on the utility;
18, End;
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The input to the algorithm is a set of customer requirements (Creqs). First, the algo-
rithm starts by searching for PSS variants that satisfy the customer’s hard requirements (Ch)
(line 2). If there exist PSS variants that satisfy the hard requirements, then the similarity
between all features of these PSS variants and customer’s requirements is calculated using
a weighted similarity function (cf. Equation (2)). This similarity function is based on
the weighted Euclidean distance [48], to measure the similarity between the customer’s
requirements vector and the PSS variant vector after normalizing all vectors.

similarity (C, P) =

√√√√ f

∑
i=1

wi(Ci − Pi)
2 (2)

where C and P are the two input vectors (customer’s requirements feature vector and PSS
variant feature vector), wi defines the weight of the feature i, and f defines the number of
features. Each feature is given a different weight in the customer-PSS variant similarity
calculation, and this is determined by each customer’s willingness to include this feature
in her PSS variant. After calculating the similarity between all PSS variants and the
customer’s requirements, PSS variants are sorted in a descending order based on the
similarity. Then, the top-N similar PSS variants to the customer’s requirements are retrieved
(line 7 to line 12). This is followed by the calculation of the utility of each PSS variant in
the top-N similar list, using Equation (1) (line 13 to line 15). Finally, PSS variants are sorted
based on their utility to the customer and top-K PSS variants are returned if a solution
is found.

Reverting to the case study in Section 3, assume that there exists a set of previously
customized PSS variants maintained in the manufacturing blueprint KB. Examples of
previously customized PSS variants are shown in Table 9. Moreover, assume that the
turbine engine manufacturer (customer) indicates her requirements as shown in Table 10.

Table 9. Examples of previously customized PSSs (CPSS).

Id Laser
Generator Workpiece Focus

Lens
Laser
Power

Laser
Speed Service Service

Price

Product
Environ-
mental
Temp.

Product-
Price

P1 CO2 controllable FL 7.5 3000 200 Maintenance 10,000 40 150,000

P2 YAG fixed FL 7 3000 200 Maintenance 9000 50 100,000

P3 CO2 fixed FL 7.5 4000 250 Maintenance 10,000 60 100,000

P4 CO2 fixed FL 7.5 3000 200 Maintenance 10,000 65 100,000

P5 CO2 fixed FL 6 2000 100
Delivery

and
Installation

9000 40 75,000

Table 10. Examples of customer’s requirements.

Laser
Generator Workpiece Focus Lens Laser

Power
Laser
Speed Service Service

Max. Price

Customer
Environment
Temperature

Product
Max. Price

CO2 laser Fixed FL 7.5 High High Maintenance 10,000 High 100,000

The customer’s requirements, along with the domain filtering constraints (cf. Table 7)
and previously customized PSSs, are used by the CSP solver to identify PSS variants that
satisfy the customer’s requirements. Based on our example scenario, the CSP solver returns
two solutions (P3 and P4), (cf. Table 9), that satisfy the constraints and are aligned to the
customer’s requirements.
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Therefore, we utilize a utility function (cf. Equation (1)) to rank the PSS variants
retrieved from the CSP solver based on their utility to the customer. Assume that the
contribution of P3 and P4 to domain-specific utility dimensions/attributes is as shown in
Table 11.

Table 11. PSS variants’ contributions to domain utility dimensions.

Id Reliability Performance

P3 0.6 0.8

P4 0.8 0.8

In addition, assume that the interest (importance weight) of the customer in each
dimension is as follows: Reliability weight = 0.5, Performance weight = 0.5; the utility of PSS
variants P3 and P4 is calculated using Equation (1). Then, these variants are ranked and
presented in a tabular form in descending order based on their utility to the customer, as
shown in Table 12.

Table 12. Ranked list of PSS variants based on their utility to the customer.

Id Utility to the Customer

P4 0.8

P3 0.7

5.3. Implementation

In order to ensure the applicability of the proposed approach, a web-based prototype
system has been developed as a proof-of-concept. The prototype implements all the
modules introduced in the proposed recommender system architecture (cf. Figure 3).
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The architecture consists of a set of integrated manufacturing blueprints, a set of
domain constraints, and the PSS recommender. We reused the manufacturing blueprint
knowledge base implementations provided in our previous work [6] and extended it with
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the manufacturing blueprint extensions presented in Section 4. The extended manufactur-
ing blueprints are implemented using the Ontology Web Language (OWL) standard and
protégé tool-suite [49]. The list of domain constraints was generated and stored as a data
file with the mzn extension, corresponding to MiniZinc model files.

The recommendation scenario proceeds as follows: the customer interacts with the
recommender system through a web application to specify her requirements regarding the
PSS variant, as shown in Figure 4. Then, the customer’s requirements are maintained in
the manufacturing blueprints, using the customer blueprint. Moreover, a list of previously
customized PSS variants is also maintained in the manufacturing blueprints, using the
product and service blueprints. Both customer requirements and the list of previously
customized PSSs are fetched by the PSS recommender. This is enabled by Jena, a java
library that allows reading and writing from and into ontology files. The PSS recommender
integrates a CSP library, which is based on the MiniZinc https://minizinc.org/ (accessed
on 22 July 2021) open-source constraint problem solving software and modular utility
calculator component. The CSP library component is used to filter out PSS variants that do
not satisfy the customer’s requirements. The remaining PSS variants are processed through
the modular utility calculator component to be ranked based on their utility. Finally, the
customer is presented with a list of ranked PSS variants to choose from.

Information 2021, 12, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure 4. Recommender system knowledge acquisition user interface. 

The recommender system prototype is implemented as a Maven web application, 
using Eclipse version (4.10.0). Tomcat server version 8.0 was used. Java, HTML, and JSP 
were used to handle the front-end and back-end synchronization. 

5.4. Discussion 
In this paper, we proposed a hybrid knowledge-based recommendation approach for 

PSS customization recommendations. The majority of previous research studies have fo-
cused on providing personalized recommendations in a variety of domains, such as e-
commerce, tourism, financial services, etc. However, only a few studies have considered 
exploring approaches for PSS recommendations. In this sub-section, we compare our pro-
posed recommendation approach to the work presented in [42], due to its high similarity 
to our proposed approach. The comparison’s main criteria are: (i) the ability to deal with 
data sparsity problems, (ii) the ability to deal with the cold start problem, and (iii) PSS 
recommendation criteria (i.e., aspects that were taken into account when recommending 
PSS solutions). 

The comparison results show that our approach is free of the cold start and data spar-
sity issues as it generates recommendations based on the domain knowledge and explicit 
customer requirements. The approach proposed in [42] does not address the data sparsity 
and the cold start problems. The approach proposed in [42] only considers the features of 
the product’s associated services, such as service response time, service cost, etc., when 
recommending PSS solutions. However, our proposed approach takes into account the 
functional, structural, environmental, quality, and cost aspects of both the product and its 

Figure 4. Recommender system knowledge acquisition user interface.

The recommender system prototype is implemented as a Maven web application,
using Eclipse version (4.10.0). Tomcat server version 8.0 was used. Java, HTML, and JSP
were used to handle the front-end and back-end synchronization.

https://minizinc.org/
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5.4. Discussion

In this paper, we proposed a hybrid knowledge-based recommendation approach
for PSS customization recommendations. The majority of previous research studies have
focused on providing personalized recommendations in a variety of domains, such as
e-commerce, tourism, financial services, etc. However, only a few studies have considered
exploring approaches for PSS recommendations. In this sub-section, we compare our
proposed recommendation approach to the work presented in [42], due to its high similarity
to our proposed approach. The comparison’s main criteria are: (i) the ability to deal with
data sparsity problems, (ii) the ability to deal with the cold start problem, and (iii) PSS
recommendation criteria (i.e., aspects that were taken into account when recommending
PSS solutions).

The comparison results show that our approach is free of the cold start and data
sparsity issues as it generates recommendations based on the domain knowledge and
explicit customer requirements. The approach proposed in [42] does not address the data
sparsity and the cold start problems. The approach proposed in [42] only considers the
features of the product’s associated services, such as service response time, service cost, etc.,
when recommending PSS solutions. However, our proposed approach takes into account
the functional, structural, environmental, quality, and cost aspects of both the product
and its associated services when generating PSS recommendations. A summary of the
comparison results is provided in Table 13.

Table 13. Comparison between our proposed approach and the approach presented in [42].

Point of Comparison Our Proposed Approach Approach in [42]

Dealing with cold start
problem Yes No

Deal with data sparsity
problem Yes No

PSS recommendation criteria

Functional, structural,
environmental, quality, and

cost aspects of both the
product and its associated

services

Only quality and cost aspects
of the product’s associated

services

To the best of our knowledge, our proposed approach is the first attempt to generate
customized PSS recommendations, while taking into account the functional, structural,
environmental, cost, and quality aspects of both the product and its associated services.

6. Conclusions

Product-service system (PSS) customization is the ability to offer customized PSSs to
satisfy individual customer needs with near-mass-production efficiency. In the context of
the PSS customization environment, there can be a multitude of previously customized
PSS variants with varying characteristics in order to meet the various needs of different
customers. In this paper, we proposed a hybrid knowledge-based recommender system that
assists in customers’ decisions related to the selection of previously customized PSS variants
from a wide range of available ones. This is accomplished by modelling the problem of
selecting previously customized PSS variants as a constraint satisfaction problem (CSP) to
filter out PSS variants that do not satisfy customers’ needs, and then applying a weighted
utility function to rank the remaining list of previously customized PSSs based on their
utility to the customer.

To the best of our knowledge, our proposed approach constitutes the first attempt
to generate personalized PSS recommendations, while taking into account the functional,
structural, environmental, cost, and quality aspects of both the product and its associated
services. Moreover, the proposed knowledge-based recommendation approach tackles the
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cold start problem, as it generates recommendations based on the domain knowledge and
explicit customer requirements elicited during the recommendation process. In addition,
the generated recommendations are more trustworthy as the domain knowledge is free
of noise.

However, our proposed approach suffers from the knowledge acquisition bottleneck
as it depends on knowledge engineers, who are required to transform the domain knowl-
edge (item properties and their corresponding constraints) into formal representations.
Those knowledge engineers may not always be available, and the knowledge acquisition
process may become more complicated when many constraints need to be defined. To
overcome the above limitations, we plan to rely on human computation concepts to engage
domain experts in the development of knowledge bases. This can be achieved by replacing
the complex tasks of knowledge engineers with simple micro-tasks [44,45] that can be
completed easily, even by domain experts without technical expertise.

Future research efforts are continuing in parallel and complementary directions. Pos-
sible future directions for the consequent work related to the proposals of this paper are
(i) visualizing PSS recommendations in a user-friendly manner, which may include the
use of domain-specific languages and 3D visualization; (ii) explaining why each of the
recommended PSS variants are recommended, allowing the customer to make a more
informed decision; (iii) evaluating the proposed RS using a set of evaluation metrics, such
as effectiveness (i.e., whether the recommendations reflect what the customers want), utility
(i.e., whether the recommendations brought value to the customer), and persuasiveness (i.e.,
whether the recommendations can change the behavior of customers). Another possible re-
search direction will be focused on realizing the other recommendation facilities identified
for the other processes in the PSS customization lifecycle introduced in [14].
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