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Abstract: Class imbalance and high dimensionality are two major issues in several real-life applica-
tions, e.g., in the fields of bioinformatics, text mining and image classification. However, while both
issues have been extensively studied in the machine learning community, they have mostly been
treated separately, and little research has been thus far conducted on which approaches might be
best suited to deal with datasets that are class-imbalanced and high-dimensional at the same time
(i.e., with a large number of features). This work attempts to give a contribution to this challenging
research area by studying the effectiveness of hybrid learning strategies that involve the integration
of feature selection techniques, to reduce the data dimensionality, with proper methods that cope
with the adverse effects of class imbalance (in particular, data balancing and cost-sensitive meth-
ods are considered). Extensive experiments have been carried out across datasets from different
domains, leveraging a well-known classifier, the Random Forest, which has proven to be effective in
high-dimensional spaces and has also been successfully applied to imbalanced tasks. Our results give
evidence of the benefits of such a hybrid approach, when compared to using only feature selection or
imbalance learning methods alone.

Keywords: high-dimensional data; feature selection; class imbalance; random forest

1. Introduction

The class imbalance problem has been largely recognized as an important issue in
machine learning [1,2]. Indeed, in many real-world problems, the data distribution is highly
imbalanced, with instances of some classes appearing much more frequently than others.
This may compromise the predictive performance of machine learning algorithms, as they
tend to be biased towards the majority class. At the same time, the minority class is typically
the most important from a data mining perspective, as it may carry precious knowledge.

Despite more than two decades of continuous research, several open issues remain in
the field of imbalance learning [3] and recent trends increasingly focus on the interaction
between class imbalance and other difficulties embedded in the nature of the data [4].
Among such difficulties, the high dimensionality, i.e., the presence of a high number of
data attributes (features), is a critical concern that may negatively impact the generalization
ability of the induced models.

Although the problems of class imbalance and high dimensionality have both been
extensively studied in the machine learning community, they have mostly been treated
separately and their combined effects are yet to be fully understood. Indeed, few works
have thus far presented learning strategies specifically designed to handle both problems
simultaneously [5–10], and there is a lack of systematic studies that investigate the ex-
tent to which the existing methods for tackling class imbalance and reducing the data
dimensionality can be successfully integrated.

This paper aims to make a contribution in this field by exploring suitable method-
ological approaches for dealing with datasets that are both high-dimensional and class-
imbalanced. Specifically, we firstly investigate the extent to which the methods thus far
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devised in the field of imbalanced learning (both data-level approaches, based on resam-
pling, and algorithm-level approaches, such as cost-sensitive learning) are still effective in
high-dimensional scenarios. The impact of integrating a dimensionality reduction stage
into the learning process is then explored by applying hybrid learning strategies that
involve the use of feature selection techniques, to select a subset of meaningful features,
combined with proper methods to deal with class imbalance.

An experimental study has been conducted on six challenging benchmarks that come
from different application domains and present heterogenous characteristics, in terms of
the imbalance level and instances-to-features ratio, in order to gain insight on the best
strategies to use based on the specific properties of the data at hand. As a learning method
for model induction, we considered the Random Forest classifier [11], which has proven to be
a suitable choice across multiple domains [12,13], even in the presence of imbalanced data
distributions [14] and has also shown an efficient and robust behavior in high dimensional
spaces (e.g., [15]).

Although not conclusive, the results of our experiments give evidence of the benefits
of using a hybrid learning strategy that can address, in a joint manner, both the class
imbalance and the high dimensionality issues.

The rest of the paper is organized as follows. In Section 2, we provide background con-
cepts on imbalance learning and feature selection, discussing some related works. Section 3
describes the methodological framework of our study, presenting possible strategies for
dealing with high-dimensional and class-imbalanced data; the chosen classification method
and the evaluation metrics are also described in brief. An experimental study on six chal-
lenging benchmarks is presented in Section 4, with a summary and a discussion of the most
interesting results. Finally, Section 5 concludes the paper and outlines possible directions
for future research.

2. Background and Related Work

The imbalance learning field deals with the challenges that arise when inducing
predictive models from datasets with a skewed distribution of the target class. Traditional
classification algorithms may not perform well in this scenario, primarily because they are
designed to maximize the global prediction accuracy, regardless of the significance of the
different classes. As a result, they may exhibit poor performance on the minority class,
which is, however, the class of greatest interest in most applications.

The possible solutions discussed in the literature mainly focus on the following two
levels: the data level and the algorithmic level [1–4,16]. At the data level, a number of
resampling techniques have been proposed that aim at properly reducing the degree of
imbalance among the different classes. In particular, under-sampling approaches discard a
number of majority instances, either randomly or using some kind of informed strategy,
while over-sampling approaches create new instances of the minority class [2]. Among
the over-sampling approaches, the SMOTE technique (with its extensions) has proven
successful in a variety of applications [17], although its effectiveness in high-dimensional
scenarios is still to be investigated in depth. At the algorithmic level, the main lines of
research focus on cost-sensitive techniques, which assign different misclassification costs to
the different classes, and ensemble techniques, which leverage multiple models to globally
achieve a better classification performance [16]. Ensembles are often hybridized with
sampling and cost-sensitive learning [18], but several issues and challenges still need to be
addressed in this field [3].

As recognized by the recent literature, the interaction of class imbalance and high
dimensionality may further complicate the analysis and cause overlapping (i.e., non-
separability) among the classes [10]. In such a scenario, feature selection can be very
helpful, as it reduces the data representation space to a meaningful subset of features and
may lead to a higher separability between majority and minority instances [19,20].

Based on how they interact with the algorithm used to induce the classification model,
the available feature selection methods can be broadly categorized into the following three
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groups [21,22]: (i) filters, which perform the selection task as a pre-processing step, without
interacting with the classifier; (ii) wrappers, which involve the comparison of different
feature subsets and use the classifier itself to assess the merit of each candidate subset; and
(iii) embedded methods, which exploit the intrinsic capacity of some classification algorithms
to evaluate the degree of relevance of the features. Due to their computational efficiency,
filter approaches are by far the most employed in high-dimensional spaces [23], but there
is a growing tendency to incorporate them into more advanced selection strategies. Indeed,
hybrid methods that exploit different approaches at different stages of the selection process
are increasingly being proposed, e.g., by initially reducing the data dimensionality with
a filter and then further refining the search with a wrapper [24–26]; combining different
selectors in an ensemble way is also a promising line of research [27–29].

Although several studies have compared the behavior of the available selection meth-
ods from different points of view (e.g., [23,30–33]), discussing their strengths and weak-
nesses, little research has thus far investigated the effectiveness of feature selection methods
in connection with the class imbalance problem [16].

A few selection algorithms have been recently modified to incorporate some kind of
imbalance-sensitive correction, e.g., using an ad hoc loss function or a per-class feature
weighting mechanism [6,7], with a main emphasis on small sample size problems. Other
works (e.g., [8,9,34,35]) have recently experimented with hybrid learning strategies that
combine feature selection with methods previously devised in the field of imbalance
learning, such as data balancing or cost-sensitive techniques, suggesting that such a hybrid
approach may have a strong potential in some scenarios. However, the available results
are still limited, and partially conflicting, leaving unanswered important questions about
which methods to use, and how to combine them, based on the characteristics of the data
at hand (e.g., the number of the available instances, the number and type of the features,
the level of imbalance).

3. Methodological Framework

Our methodological framework relies on a binary classification setting, with a minority
class (denoted as positive) and a majority class (denoted as negative); however, this does not
imply a loss of generality, since a multiclass problem can be always decomposed into a set
of binary tasks.

To investigate suitable methodological solutions to deal with datasets that are both
high-dimensional and class-imbalanced, we begin by studying how the data dimension-
ality impacts the methods commonly used in the imbalance learning field. Specifically,
we consider both data balancing techniques, based on resampling, and cost-sensitive tech-
niques, which incorporate misclassification costs into the learning process. Next, as a core
step of our study, we consider hybrid learning strategies that integrate imbalance learning
methods and feature selection methods in order alleviate, in a joint manner, the adverse
effects of both class imbalance and high dimensionality.

3.1. Imbalance Learning Methods

In the context of resampling techniques, used to reduce the level of imbalance in the
original data, we focus on the following two approaches:

• RUS (Random Under-Sampling), where instances of the negative class are randomly
removed from the training data;

• SMOTE (Synthetic Minority Over-sampling TEchnique), where new synthetic instances
of the positive class are introduced by interpolating between positive instances that
are near to each other; indeed, this interpolation mechanism has turned out to be more
effective than simply duplicating a number of minority instances chosen at random,
as in the Random Over-Sampling approach [16,17].

Both RUS and SMOTE have been successfully employed in several application con-
texts, but the extent to which they may increase the risk of overfitting is yet to be extensively
explored in the presence of many features. In particular, as far as we know, there are no
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studies that investigate which post-sampling imbalance ratio may be the most appropriate
based on the data characteristics (original level of imbalance, number of training instances
and data dimensionality). To gain insight on such an important aspect, as shown later in
Section 4, we evaluated the performance of RUS and SMOTE for different class distribution
spreads, expressed as S:1, i.e., S instances of the negative class for each instance of the
positive class (e.g., S = 1 for a uniform class distribution).

While resampling methods act at the data level by directly modifying the training
set, cost-sensitive approaches rely on assigning a proper penalty term to the incorrect
classification of one class as another [2]. Specifically, in our binary scenario, a cost matrix
is defined as that which codifies the cost C(−,+) of misclassifying a negative instance
as a positive one, as well as the cost C(+,−) of misclassifying a positive instance as a
negative one, as shown in Table 1. To contrast the bias towards the majority class, the
cost matrix is typically set with C(+,−) > C(−,+), with no cost for the correct predictions
(i.e., C(+,+) = C(−,−) = 0).

Table 1. Cost matrix for a binary classification problem.

Predicted Class

+ −

actual class
+ C(+,+) C(+,−)

− C(−,+) C(−,−)

For our study, we consider the following two different implementations of cost-
sensitive learning [36,37]: (i) predicting the class with the minimum expected misclas-
sification cost, rather than the most likely class (hereafter the MinCost approach); and
(ii) assigning, at the learning stage, proper weights to the instances based on the misclassi-
fication costs (hereafter the Weighting approach). For both the approaches, different cost
settings have been explored, as discussed in Section 4.

3.2. Integrating Feature Selection with Imbalance Learning

The potential benefits of feature selection in high-dimensional classification tasks, e.g., in
terms of predictive performance and understandability of the induced models, have been
thoroughly discussed in the literature [21,22]. Indeed, feature selection can remove ir-
relevant and redundant information, as well as noisy factors, thus making the learning
algorithm focus on a reduced subset of highly discriminative attributes.

Some research has also suggested that feature selection may be useful to combat the
class imbalance problem [20], although the studies in this area are still limited. In this
regard, the contribution of this paper is to comparatively evaluate, across imbalanced and
high-dimensional datasets from different domains, the effectiveness of feature selection
when used alone and when combined with imbalanced learning methods (both data
balancing and cost-sensitive approaches).

Specifically, as depicted in Figure 1, we consider different learning strategies that
consist in the following:

• using feature selection (FS) before data balancing (RUS or SMOTE approach);
• using feature selection (FS) after data balancing (RUS or SMOTE approach);
• using feature selection (FS) in conjunction with cost-sensitive learning (MinCost or

Weighting approach).

As regards the feature selection method to use in the above learning strategies, dif-
ferent choices could be made in dependence of the data characteristics. For our study, we
considered two feature selection techniques falling in the category of filter methods, which
are the primary choice in high-dimensional domains [23], either for selecting the final
feature subsets or, if needed, for reducing the data dimensionality before applying more
sophisticated selection strategies (e.g., wrapper methods). Specifically, we employed a uni-
variate ranking-based approach [22], where each feature is evaluated independently of the
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others, and a multivariate correlation-based approach, which can also capture relationships
among the features [21].
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Figure 1. Hybrid learning strategies that combine feature selection with imbalance learning methods.

More in detail, the ranking-based approach leverages a proper evaluation criterion
to weight each single feature based on its relevance to the target class; then, according
to their weights, the features are ordered from the most important to the least important,
and only a predefined number of the top-ranked features are used for classification. As
an evaluation criterion for feature weighting, we chose the widely employed Information
Gain (IG), grounded on the information-theoretical concept of entropy, which has proven
to be both effective and stable across several domains [29,32].

On the other hand, correlation-based feature selection (CFS) still adopts an entropic
evaluation criterion but looks for subsets of features that are highly correlated with the
target class and uncorrelated with each other, in order to discard both irrelevant and
redundant features. Furthermore, this subset-oriented approach is able to automatically
find the optimal number of features for the problem at hand, while the ranking-based
approach requires choosing a proper threshold to cut the list of the ranked features, as
discussed in Section 4. However, the CFS method is computationally more expensive and
may be a good option when the data dimensionality is not excessively high.

3.3. Classification Method and Evaluation Metrics

Although the methodology adopted here is learner-independent, we conducted our
study with the Random Forest (RF) classifier [11], which is increasingly being employed
in several application scenarios, even in the context of high-dimensional or imbalanced
problems (e.g., [12–15,38,39]). In brief, the RF classifier can be considered as a special case
of bagging, an ensemble approach that combines predictions from multiple classifiers built
from different bootstrap samples of the training data. Each classifier in the ensemble is an
unpruned decision tree, where the splitting attribute at each node is selected from a set
of candidate attributes chosen at random. Specifically, we used a forest of 100 trees and
set the number of candidate attributes for splitting as log2(n) + 1, where n is the dataset
dimensionality. Indeed, these settings are widely employed and have proven to be suitable,
even for imbalanced tasks [14].

As the accuracy, i.e., the overall percentage of correct predictions, is not meaningful
in the presence of imbalanced class distributions, we evaluated the model performance
through proper measures that can capture the ability of the model to recognize each single
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class. Specifically, we considered the F-measure, i.e., the harmonic mean between sensitivity
and precision, and the G-mean, i.e., the geometric mean between sensitivity and specificity
as follows:

F − measure =
2·sensitivity·precision
sensitivity + precision

(1)

G − mean =
√

sensitivity·speci f icity (2)

where specificity and sensitivity express, respectively, the rate of true negatives and true
positives (i.e., the fraction of negative/positive instances that are classified correctly), while
the precision indicates the fraction of instances that are actually positive in the group the
model has classified as positive. Both the F-measure and the G-mean are trade-off metrics
that account for both false positive and false negative errors [4] and are widely employed
in imbalanced classification tasks.

4. Experimental Study

According to the methodological framework described in Section 3, we performed a
large experimental study to assess the effectiveness of imbalance learning methods, when
used alone, as well as when integrated with feature selection (see Figure 1). The focus
is to evaluate the extent to which the use of hybrid learning strategies may be beneficial
in dependence of the specific characteristics of the data at hand, as discussed in what
follows. Specifically, the datasets used for the experiments are described in Section 4.1,
while Section 4.2 presents and discusses the experimental results.

4.1. Datasets and Settings

We conducted our experimental study on the following three real-world domains:

(i) cancer classification from genomic data;
(ii) text categorization;
(iii) image classification.

As detailed in Table 2, the datasets chosen for the experiments encompass different
levels of class imbalance (expressed in terms of percentage of minority instances) as well as
different instances-to-features ratios.

Table 2. Datasets used in the experimental study.

Domain Dataset Number of Instances Number of Features Instances-to-Features Ratio % of Minority
Instances

Genomic data
Uterus 1545 10,935 0.14 8.0%

Omentum 1545 10,935 0.14 5.0%

Text categorization Trade 12,897 7599 1.70 3.8%
Interest 12,897 10,457 1.23 3.7%

Image classification Mountain 2407 294 8.19 22.1%
Urban 2407 294 8.19 17.9%

For the genomic domain, we considered two highly imbalanced benchmarks from the
GEMLeR collection [40]: the task is to discriminate uterus or omentum cancer from other
cancer types, based on the expression level of over ten thousand genes. Since the available
instances (i.e., the biological samples) are far fewer than the features (i.e., the genes), this
kind of classification task turns out to be especially challenging, as recognized by a vast
literature in the field [21,41].

In the context of text categorization, we considered the well-known Reuters-21578 col-
lection [42], which consists of more than twelve thousand documents manually classified
across multiple categories. For each category, a binary dataset can be obtained where the
documents related to that category are labelled as positive, and the others as negative. In
particular, the trade and interest categories, which have proven to be quite difficult to recog-
nize [43], have been included in this study. Note that, after a preliminary pre-processing



Information 2021, 12, 286 7 of 16

involving stop-words removal and n-gram extraction, a bag-of-words representation is
here adopted with a number of features not so different from the number of instances.

Finally, as a representative testbed in the image classification domain, we chose the
multi-label scene dataset [40,44], with a focus on the categories that turned out to be
most difficult to predict, i.e., mountain and urban. In this case, as shown in Table 2, the
dimensionality is far lower than in the previous benchmarks, with an instances-to-features
ratio of about 8.

All the experiments have been implemented using the WEKA machine learning work-
bench [45,46], which includes functionalities for data manipulation, feature selection and
classification. As an evaluation protocol, we chose an iterated 5-fold cross-validation
procedure, as in similar studies (e.g., [8,14]). Specifically, for each learning strategy, the
cross-validation was repeated 2 times (with a total of 10 training-testing runs) on the text
datasets, where the number of the available instances is larger, and 4 times (with a total
of 20 training-testing runs) on the other datasets. The values of the evaluation metrics, the
F-measure and the G-mean, were then averaged across the different runs.

4.2. Results and Discussion

As a first step of the analysis, we evaluated different imbalance learning methods
(detailed in Section 3.1), in conjunction with the RF classifier, comparing their effectiveness
with the performance of an RF model induced without any form of data balancing or
cost-sensitive correction (hereafter baseline).

Specifically, Table 3 shows the results of the experiments involving the RUS and
SMOTE resampling approaches, for different post-sampling class distribution spreads
(3:1, 2:1 and 1:1). As well, Table 4 shows the results obtained with the two considered
cost-sensitive approaches, MinCost(C) and Weighting(C), where C represents the cost of mis-
classifying a positive instance as a negative one (which is the costliest error in imbalanced
scenarios, while the cost of misclassifying a negative instance is set to 1 in our experiments).
For C, different values have been explored, but only the results for C = 2, C = 3 and C = 4
are shown here, as higher costs did not lead to significant improvements in performance.
For both the tables, we reported the average F-measure and G-mean values as well as, in
brackets, the corresponding standard deviation values.

To properly compare the performance of the imbalance learning methods with the
baseline classifier, we applied a corrected resampled paired t-test [47], with a significance
level of 5 percent, in order to address the criticism towards the standard t-test usually
employed in cross-validation experiments [45]. The performance values that were found
to be significantly better than the baseline are shown in bold. As we can see from the
tables, the usefulness of adequately addressing the class imbalance problem is undoubtful,
although the practical adoption of both balancing and cost-sensitive methods is still quite
limited in the domains here considered.

Regarding the data balancing methods (Table 3), RUS performs better than SMOTE
in the text categorization domain, where the percentage of minority instances is lower (as
shown in Table 2), thus making, in such a high-dimensional space, the SMOTE interpo-
lation mechanism less effective. RUS is also slightly better than SMOTE on the genomic
datasets, especially in terms of the G-mean, while the two resampling methods lead to
comparable results on the image datasets, where both the imbalance level and the data
dimensionality are lower. We can also observe that making the class distribution uniform
(with a post-sampling spread of 1:1) is not necessarily the best option. Indeed, RUS(1:1) is
less convenient in terms of the F-measure, due to the increase in the false positives (which
reduce the precision). On the other hand, the setting (1:1) is better for SMOTE in most cases.
Nonetheless, the SMOTE(2:1) approach, while performing slightly worse than SMOTE(1:1),
may still be a good option due to the lower computational cost (as fewer synthetic instances
are introduced in the training data).



Information 2021, 12, 286 8 of 16

Table 3. F-measure and G-mean performance of the RF classifier, with and without data balancing.

Dataset Performance Measure Baseline RUS
(3:1)

RUS
(2:1)

RUS
(1:1)

SMOTE
(3:1)

SMOTE
(2:1)

SMOTE
(1:1)

Uterus
F-measure 0.26

(0.09)
0.57

(0.06)
0.62

(0.07)
0.52

(0.05)
0.56

(0.07)
0.56

(0.07)
0.60

(0.07)

G-mean 0.38
(0.08)

0.73
(0.05)

0.84
(0.05)

0.86
(0.03)

0.69
(0.05)

0.71
(0.05)

0.77
(0.05)

Omentum
F-measure 0.00

(0.00)
0.48

(0.10)
0.48

(0.07)
0.38

(0.06)
0.41

(0.12)
0.46

(0.10)
0.52

(0.08)

G-mean 0.00
(0.00)

0.69
(0.09)

0.80
(0.08)

0.85
(0.05)

0.60
(0.10)

0.64
(0.10)

0.72
(0.08)

Trade
F-measure 0.31

(0.07)
0.71

(0.03)
0.61

(0.02)
0.41

(0.02)
0.41

(0.08)
0.41

(0.07)
0.40

(0.07)

G-mean 0.43
(0.06)

0.90
(0.03)

0.93
(0.02)

0.93
(0.01)

0.51
(0.06)

0.51
(0.05)

0.50
(0.05)

Interest
F-measure 0.53

(0.03)
0.72

(0.04)
0.69

(0.03)
0.50

(0.03)
0.58

(0.03)
0.58

(0.03)
0.59

(0.03)

G-mean 0.62
(0.02)

0.88
(0.03)

0.92
(0.02)

0.95
(0.01)

0.67
(0.03)

0.67
(0.02)

0.68
(0.02)

Mountain
F-measure 0.51

(0.04)
0.56

(0.06)
0.63

(0.04)
0.61

(0.02)
0.54

(0.04)
0.61

(0.04)
0.64

(0.04)

G-mean 0.60
(0.03)

0.64
(0.04)

0.74
(0.04)

0.79
(0.02)

0.63
(0.03)

0.71
(0.04)

0.77
(0.03)

Urban
F-measure 0.56

(0.05)
0.65

(0.05)
0.68

(0.04)
0.61

(0.02)
0.64

(0.04)
0.67

(0.04)
0.68

(0.03)

G-mean 0.64
(0.04)

0.75
(0.04)

0.81
(0.02)

0.83
(0.02)

0.72
(0.03)

0.77
(0.03)

0.81
(0.02)

Table 4. F-measure and G-mean performance of the RF classifier, with and without cost-sensitive corrections.

Dataset Performance Measure Baseline MinCost
(2)

MinCost
(3)

MinCost
(4)

Weighting
(2)

Weighting
(3)

Weighting
(4)

Uterus
F-measure 0.26

(0.09)
0.52

(0.08)
0.61

(0.06)
0.62

(0.06)
0.45

(0.08)
0.46

(0.09)
0.49

(0.08)

G-mean 0.38
(0.08)

0.65
(0.06)

0.79
(0.04)

0.85
(0.03)

0.56
(0.06)

0.58
(0.07)

0.61
(0.06)

Omentum
F-measure 0.00

(0.00)
0.14

(0.11)
0.42

(0.13)
0.50

(0.10)
0.05

(0.06)
0.09

(0.10)
0.11

(0.09)

G-mean 0.00
(0.00)

0.24
(0.17)

0.58
(0.12)

0.72
(0.09)

0.10
(0.13)

0.16
(0.16)

0.21
(0.15)

Trade
F-measure 0.31

(0.07)
0.57

(0.05)
0.74

(0.04)
0.78

(0.02)
0.39

(0.07)
0.43

(0.08)
0.45

(0.06)

G-mean 0.43
(0.06)

0.65
(0.03)

0.81
(0.03)

0.88
(0.02)

0.50
(0.06)

0.53
(0.06)

0.54
(0.05)

Interest
F-measure 0.53

(0.03)
0.65

(0.03)
0.72

(0.02)
0.75

(0.02)
0.59

(0.03)
0.60

(0.03)
0.61

(0.02)

G-mean 0.62
(0.02)

0.73
(0.02)

0.82
(0.02)

0.88
(0.01)

0.68
(0.02)

0.69
(0.02)

0.70
(0.02)

Mountain
F-measure 0.51

(0.04)
0.65

(0.03)
0.61

(0.03)
0.57

(0.02)
0.61

(0.04)
0.64

(0.04)
0.65

(0.03)

G-mean 0.60
(0.03)

0.78
(0.02)

0.79
(0.02)

0.76
(0.02)

0.70
(0.04)

0.74
(0.04)

0.77
(0.03)

Urban
F-measure 0.56

(0.05)
0.69

(0.04)
0.66

(0.02)
0.61

(0.03)
0.65

(0.04)
0.68

(0.04)
0.69

(0.03)

G-mean 0.64
(0.04)

0.81
(0.03)

0.85
(0.01)

0.83
(0.02)

0.74
(0.03)

0.78
(0.03)

0.79
(0.02)
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Regarding the two considered cost-sensitive approaches (Table 4), MinCost performs
significantly better than Weighting in the genomic and text categorization domains, where
the setting C = 4 seems to be a suitable option. On the other hand, MinCost and Weighting
lead to more similar results on the image datasets, which are less imbalanced and less
high-dimensional (with a slight superiority, if both metrics are taken into account, of
MinCost(2) and MinCost(3)). Overall, when comparing the results in Tables 3 and 4, there is
no imbalance learning approach that turns out to be consistently better across the different
datasets in terms of both the F-measure and the G-mean; indeed, both the metrics reward
the increase in the true positive rate (i.e., the model sensitivity) but penalize, to a different
extent, the number of false positives (which have a greater impact on the F-measure).

As a further and fundamental step of our study, the impact of integrating data balanc-
ing and cost-sensitive methods with feature selection has been explored across multiple set-
tings. Specifically, as discussed in Section 3.2, we have considered different learning strate-
gies, namely, applying feature selection before RUS/SMOTE (FS + Sampling approach),
applying feature selection after RUS/SMOTE (Sampling + FS approach) and applying
feature selection in conjunction with the MinCost and Weighting cost-sensitive approaches.

As a feature selection method, the IG ranker has been used in the genomic and text cat-
egorization domains, where the number of features is in the order of ten thousand. Indeed,
in such a scenario, using an efficient ranking-based approach is a common practice to select
a small percentage of top-ranked features. To choose the most appropriate percentages for
feature selection, we performed a series of preliminary experiments that led us to consider
the following:

(i) 0.25, 0.5 and 1% of the original dimensionality in the genomic domain;
(ii) 1, 5 and 10% of the original dimensionality in the text categorization domain.
(iii) On the other hand, the CFS filter has been used for the image datasets, as a subset-

oriented approach is more appropriate where the number of features is lower.

Given the large number of experiments, only a summary of the most significant results
is shown in Figures 2–4 (one for each of the domains here considered), but further results
are made available as supplementary material (Tables S1–S6). In particular, since the
FS + Sampling and Sampling + FS approaches have led to comparable results, with a slightly
higher performance, in most cases, when feature selection is applied before data balancing,
we only detail here the results obtained with the FS + Sampling approach.

When looking at Figures 2 and 3, we can observe that feature selection is able, alone,
to significantly improve the performance of the baseline classifier, in terms of both the
F-measure and the G-mean. This confirms that, when the original number of features is huge,
a drastic reduction in the data dimensionality can also help to combat the adverse effects of
class imbalance [20], besides improving efficiency and giving more understandable models.
On the other hand, data balancing and cost-sensitive methods can, in turn, improve the
baseline performance when used alone, as previously shown in Tables 3 and 4, but a hybrid
strategy involving the integrated use of feature selection and imbalance learning can be
further beneficial.

Indeed, in the genomic domain (Figure 2), the hybrid learning approach gives results
that are always superior to feature selection alone, as well as superior or comparable to
data balancing or cost-sensitive learning alone, but with significant advantages in terms
of computational cost and domain understanding, as only the most predictive features
are used for prediction. The importance of devising learning strategies that use a reduced
number of genes for cancer diagnosis, while ensuring at the same time a good predictive
performance, has been widely highlighted in this domain [41,48–50], and the hybrid
approaches here discussed seem to provide a viable solution in this respect.

A hybrid learning strategy turns out to also be convenient in the text categorization
domain (Figure 3), where the computational burden is even higher due to the higher
number of instances. In this case, if the values of both the F-measure and the G-mean are
considered, the best results are obtained using the RUS (with spread 3:1) and MinCost (with
C = 3 or C = 4) approaches, whose performance is still very good when the number of
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features is drastically reduced. Again, combining imbalance learning methods with feature
selection leads to predictive models that achieve a good classification performance using
far fewer attributes.
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Figure 2. Uterus dataset: F-measure and G-mean performance of the RF classifier in conjunc-
tion with feature selection (IG ranker) and imbalance learning methods (data sampling and cost-
sensitive learning), for different percentages of selected features (0.25, 0.5 and 1% of the original
data dimensionality).
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Figure 3. Trade dataset: F-measure and G-mean performance of the RF classifier in conjunction with
feature selection (IG ranker) and imbalance learning methods (data sampling and cost-sensitive learn-
ing), for different percentages of selected features (1, 5 and 10% of the original data dimensionality).
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As regards the most appropriate level of dimensionality reduction (in conjunction
with the IG ranker considered here), we can observe in Figure 2 that a very small percentage
of the selected features, i.e., 0.25% of the original dimensionality, is sufficient to obtain quite
good results on the genomic domain, both using data sampling and cost-sensitive methods,
although a slightly better performance can be achieved with a subset size of 1%. In the text
categorization benchmarks, on the other hand, the behavior of the performance metrics
is more dependent on the adopted learning strategy, as we can see in Figure 3. Indeed,
increasing the percentage of selected features (5–10%) may be somewhat beneficial, in terms
of the F-measure (more sensitive to the number of false positives than the G-mean), when
using the RUS and MinCost approaches; however, if the SMOTE and Weighting approaches
are applied, a smaller subset size turns out to be better in terms of both the F-measure
and the G-mean. This may be explained by considering the higher level of imbalance in
this domain (see Table 2), which can increase the risk of overfitting when over-sampling
methods, such as SMOTE, are applied in the presence of many features; the Weighting
approach, in turn, is conceptually similar to a form of over-sampling, as rare instances are
given higher weights. Thus, both the SMOTE and Weighting approaches can benefit from a
more pronounced dimensionality reduction when applied to highly skewed datasets.

Finally, despite the different characteristics in terms of the imbalance level and the
instances-to-features ratio, the adoption of a hybrid learning strategy may be a suitable
choice even in the image datasets (Figure 4), since it reduces the data dimensionality
without degrading the gain in performance obtained with data balancing or cost-sensitive
methods. Note that, in this domain, the CFS filter has allowed us to automatically determine
the optimal number of features, which is about 25% of the original dimensionality (lower
than in the genomic and text categorization datasets, where the effect of feature selection is
more pronounced).

Overall, the results shown in this paper (as well as those provided as supplemen-
tary material) suggest that properly combining imbalance learning methods and feature
selection can be an effective and efficient way to deal with datasets that are both high-
dimensional and class-imbalanced. Such a hybrid approach has only been partially ex-
plored in recent years, with most research focusing on the use of feature selection alone or
imbalance learning methods alone.

Compared to similar studies in the field (e.g., [8,9,34,35]), this work encompasses
different application domains as well as a wider range of approaches (FS + RUS, RUS + FS,
FS + SMOTE, SMOTE + FS, FS + MinCost, FS + Weighting) and learning settings (i.e., num-
bers of selected features, post-sampling class spreads and misclassification costs), providing
interesting insight on the extent to which the adoption of such approaches and settings
may impact the classification performance of the induced models.

Furthermore, this work may pave the way for wider and more exhaustive comparative
studies. Indeed, we rely on a general methodological framework that is not tied to a specific
induction algorithm or feature selection method. Although the adopted classifier (RF)
and selectors (IG/CFS) have proved to be effective across multiple classification tasks,
other implementation choices could be considered in order to evaluate the extent to which
different combinations of classifiers and selection methods may benefit from the adoption
of the hybrid learning strategies discussed here. Actually, limited to the biomedical domain,
our previous research [35] has given some evidence that a number of classifiers may take
advantage of the joint application of the feature selection and imbalance learning methods,
although with results somewhat inferior to those achieved using the RF classifier. The case
study presented here, encompassing heterogeneous datasets from multiple domains, as
well as multiple learning settings (e.g., different levels of data reduction) has confirmed that
RF is a suitable option when dealing with high-dimensional and class-imbalanced tasks, but
other options deserve to be explored, including regularization techniques [51–53] that have
an embedded capability of selecting the most relevant features. Given the high number of
real-world problems where the issues of class imbalance and high dimensionality coexist,
we think that larger comparative studies should, indeed, be conducted in this field.
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5. Concluding Remarks and Future Work

This work has emphasized the importance of jointly addressing, in a proper way, the
class imbalance and the high dimensionality issues that are increasingly being encountered
in several domains. Surprisingly, despite the research efforts in the imbalance learning
field, the practical adoption of data balancing and cost-sensitive methods is still limited in
several application areas. Furthermore, when the data imbalance problem is coupled with
a high number of features, the integration of a proper dimensionality reduction step into
the learning process is of paramount importance, but limited research has been thus far
conducted on the joint use of feature selection and imbalance learning methods.

The experiments we have performed across different domains, encompassing multiple
levels of imbalance and data dimensionality, have shown that the SMOTE over-sampling
approach and the Weighting cost-sensitive approach (which is conceptually similar to a
form of over-sampling as the minority instances are given higher weights) may suffer to a
greater extent in high-dimensional spaces. On the other hand, the RUS under-sampling
approach and the MinCost method seem to be more robust overall across high-dimensional
tasks from different domains.

In turn, feature selection, even without any data balancing or cost-sensitive correction,
can be useful to better discriminate majority and minority instances, especially if the
dataset is highly imbalanced. However, it is the integration of feature selection methods
and imbalance learning methods that leads to the greatest benefits, in terms of predictive
performance, savings of computational resources and, not least, the understandability of
the induced models.

As future work, we plan to strengthen the findings of this study along several direc-
tions. Firstly, more datasets from different domains will be considered to gain a deeper
insight into the best strategies to combine feature selection with data balancing and cost-
sensitive methods, based on the specific properties of the data at hand. Furthermore, the
effectiveness of the hybrid learning strategies discussed in this paper will be evaluated
in conjunction with different feature selection techniques, both univariate and multivari-
ate, as well as different classification techniques, representatives of different families of
learners. In addition, regularization approaches that have an embedded capability of
identifying relevant features will be considered for a larger and more comprehensive
comparative study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/info12080286/s1, Table S1: Uterus and Omentum datasets: F-measure and G-mean perfor-
mance of the RF classifier in conjunction with data balancing (RUS/SMOTE) and feature selection
(1% of the original features, as selected by the IG ranker), Table S2: Uterus and Omentum datasets:
F-measure and G-mean performance of the RF classifier in conjunction with cost-sensitive methods
(MinCost/Weighting) and feature selection (1% of the original features, as selected by the IG ranker),
Table S3: Trade and Interest datasets: F-measure and G-mean performance of the RF classifier in conjunc-
tion with data balancing (RUS/SMOTE) and feature selection (5% of the original features, as selected
by the IG ranker), Table S4: Trade and Interest datasets: F-measure and G-mean performance of the RF
classifier in conjunction with cost-sensitive methods (MinCost/Weighting) and feature selection (5% of
the original features, as selected by the IG ranker), Table S5: Mountain and Urban datasets: F-measure
and G-mean performance of the RF classifier in conjunction with data balancing (RUS/SMOTE)
and feature selection (CFS filter), Table S6: Mountain and Urban datasets: F-measure and G-mean
performance of the RF classifier in conjunction with cost-sensitive methods (MinCost/Weighting) and
feature selection (CFS filter).
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