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Abstract: The cell cycle is an important process in cellular life. In recent years, some image processing
methods have been developed to determine the cell cycle stages of individual cells. However, in most
of these methods, cells have to be segmented, and their features need to be extracted. During feature
extraction, some important information may be lost, resulting in lower classification accuracy. Thus,
we used a deep learning method to retain all cell features. In order to solve the problems surrounding
insufficient numbers of original images and the imbalanced distribution of original images, we used
the Wasserstein generative adversarial network-gradient penalty (WGAN-GP) for data augmentation.
At the same time, a residual network (ResNet) was used for image classification. ResNet is one of
the most used deep learning classification networks. The classification accuracy of cell cycle images
was achieved more effectively with our method, reaching 83.88%. Compared with an accuracy of
79.40% in previous experiments, our accuracy increased by 4.48%. Another dataset was used to
verify the effect of our model and, compared with the accuracy from previous results, our accuracy
increased by 12.52%. The results showed that our new cell cycle image classification system based on
WGAN-GP and ResNet is useful for the classification of imbalanced images. Moreover, our method
could potentially solve the low classification accuracy in biomedical images caused by insufficient
numbers of original images and the imbalanced distribution of original images.

Keywords: cell cycle; image classification; imbalanced image datasets; deep learning; Wasserstein
generative adversarial network-gradient penalty; residual network

1. Introduction

The cell cycle is an important process in cellular life. The accurate classification of a
cell’s stage in its cycle is essential for determining cell changes and cellular behavior in
different cell stages, as well as for clarifying the principles and regulatory mechanisms of
a cell’s cycle. The stages of a cell cycle are determined by changes in DNA content and
levels of cell-cycle-specific proteins in different cell stages. At present, the most widely
used method in cell cycle analysis is flow cytometry [1]. However, flow cytometry only
determines the proportion of cells in a certain stage in a group of cells, and it is difficult to
track individual cells. Moreover, relevant information pertaining to cell morphology is not
obtained through this method.

According to Roukos et al. [2] and Damian et al. [3], the cell cycle stage of a single cell
can be determined by calculating its DNA content; however, these methods rely on accurate
results from the segmentation of the nucleus. Schönenberger et al. [4] studied the cell cycle
by labeling proliferating cell nuclear antigen (PCNA). The fluorescent ubiquitination-based
cell cycle indicator (FUCCI) technology proposed by Sakaue-Sawano et al. [5] enables
the accurate distinguishing of cells in the G1 phase or S/G2/M phase using two fusion
fluorescent proteins. Bajar et al. [6] proposed a method for analyzing the four different
cell cycle stages using four-color fluorescence channels based on FUCCI. However, by
labeling specific cyclins, it is usually possible to accurately classify a specific cell cycle
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stage. A complete analysis of all cell cycle stages requires a combination of multiple
staining methods. Ferro et al. [7] performed feature extraction on a fluorescence image
of a cell nucleus and then clustered the various cell forms using the K-means algorithm;
finally, they divided the cell cycle into G1, G2, and S phases. Blasi et al. [8] extracted
213 features from an acquired image of a single cell and used the Boosting algorithm for
machine learning; this predicted DNA content without a fluorescent label and determined
the mitotic cell cycle stages. Traditional image processing methods first need to extract
features, and the selection of features also affects the accuracy of subsequent classification
algorithms. Therefore, feature extraction is almost the most difficult and important part of
the entire algorithm.

In recent years, deep learning technology has been more widely used in the field of cell
biology. For instance, Khan et al. [9], Wang et al. [10], and Kurnianingsih et al. [11] all used
deep learning to segment and classify cell images. Dürr O et al. [12] used convolutional
neural networks to achieve the high-content screening-based phenotype classification of
single-cell images. The classification of cellular images has become more popular; however,
there are a number of applications that are related to the use of deep learning for the
classification of a cell cycle. Nagao et al. [13] obtained cell images by staining subcellular
structures such as the nucleus, the Golgi apparatus, and the microtubule cytoskeleton, and
then used convolutional neural networks to classify the cell cycle. Eulenberg et al. [14]
used deep learning to classify the cell cycle of single-cell images acquired by imaging flow
cytometry into seven different stages, including phases of interphase (G1, G2, and S) and
phases of mitosis (prophase, anaphase, metaphase, and telophase). They used deep neural
networks instead of traditional machine learning methods for classification, obtaining
an accuracy of 79.40%. The results of deep learning are better than those of traditional
machine learning methods. However, the accuracy of the classification of the seven stages
still needs to be improved. In addition, the number of images in some stages is too low,
the amount of data samples for different cell cycle stages varies, and the distribution of
images is particularly uneven. These shortcomings all affect the final result of classification,
at least to some degree.

Since the duration of each cell cycle phase is different, it is difficult to obtain a balanced
data set when collecting cell cycle data. Therefore, it is important to process these origi-
nal images and make them more balanced. The main problem pertaining to imbalanced
classification is that there are too few samples in the minority class, and the information
contained in the samples is limited. It is difficult for the neural network to fully learn the
characteristics of the samples through training, which will make it difficult to identify the
minority class. Sampling is the most popular method for the processing of imbalanced
data sets. There are several methods of over-sampling, under-sampling, and combined
sampling [15,16]. Over-sampling augments the categories with fewer images and increases
the number of images. Under-sampling reduces the number of images for those cate-
gories with more images. Combined sampling uses over-sampling and under-sampling
simultaneously. The generative adversarial network (GAN) is an oversampling method
that has seen a great deal of recent use in biomedical research. Frid-Adar et al. [17] used
GANs for data augmentation of a liver lesion image dataset. Saini et al. [18] used a deep
convolution generative adversarial network (DCGAN) for the data augmentation of the
minority class in a breast cancer dataset. Moran et al. [19] proposed a model called the
transferring of the pre-trained generative adversarial network (TOP-GAN) to solve the
problem of small training datasets and applied the model for the classification of cancer
cells. Zheng et al. [20] used CWGAN-GP for data augmentation and to solve the problem
of classification in relation to imbalanced datasets.

In order to solve the problems of an insufficient number of images and the extremely
imbalanced distribution of images, we proposed a new cell cycle classification system that
is based on a generative adversarial network-gradient penalty (WGAN-GP) [21] and a
residual network (ResNet) [22]. The new cell images generated by WGAN-GP and the
original cell images are processed by ResNet together in order to classify the cell cycle stage.
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The rest of the paper is organized as follows. The method of data augmentation and
the deep neural networks for cell cycle classification are introduced in Section 2. Then, the
dataset used for the experiment and the parameters are shown in Section 3. The results of
WGAN-GP for data augmentation and the experimental results of cell cycle classification
are shown in Section 4. The results are discussed in Section 5. The conclusion is in Section 6.

2. Method

The contribution of the cell cycle classification method proposed in this paper is as
follows: WGAN-GPs are used to solve the problems of an insufficient number of cell
images and the imbalanced distribution of images in order to reduce the impact caused
by the imbalance of images. A new cell cycle classification architecture using WGAN-GP
and ResNet is proposed, and better results are obtained compared with previous methods.
Figure 1 shows the overview structure of our system.
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Figure 1. Overview of the framework for our model. (a) The framework of four stages of classification;
(b) the framework of seven stages of classification.

2.1. WGAN-GP

The generative adversarial network (GAN) was proposed by Goodfellow et al. [23].
GAN contains two different networks, namely discriminator and generator. The discrimi-
nator is used to distinguish the original image from the generated image, and the role of
the generator is to try to make the discriminator unable to recognize the generated image.
The Wasserstein generative adversarial network (WGAN) is a new GAN-based network
structure that was proposed by Arjovsky et al. [21]. The Wasserstein distance was used to
calculate the distance between the original image distribution and the generated image
distribution in WGAN. The problem of the unstable training of GAN was basically solved
by WGAN. Gulrajani et al. [24] proposed a gradient penalty (WGAN-GP) to solve the
problems of vanishing and exploding gradients. WGAN-GP possesses a faster convergence
rate and more stable training compared to WGAN, leading to higher sample quality.

At present, WGAN has been successfully applied in the classification of imbalanced
biomedical images. For example, Ma et al. [25] used a deep convolutional generative ad-
versarial network (DC-GAN) for the data augmentation of white blood cells. Additionally,
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classification accuracy was improved by DC-GAN. Dimitrakopoulos et al. [26] proposed a
new GAN-based model for data augmentation that is suitable for the simultaneous pro-
duction of synthetic cell images with their segmentation maps. In addition, Chen et al. [27]
used WGAN to denoise cell images and obtained cell images with clear features, providing
a certain practical basis for generating cell cycle images with WGAN-GP.

2.2. ResNet

ResNet was proposed by He et al. [22]. By adding direct connections to the network to
skip certain layers, the problem of vanishing gradients caused by the increase in network
depth was resolved. Based on ResNet, the best results of the ImageNet Large Scale
Visual Recognition Challenge 2015 (ILSVRC 2015) and the breakthrough for improving
its performance in many fields were achieved; these included image recognition, image
detection, and image localization. ResNet has been widely applied in the field of biomedical
imaging, having been used for cell classification [28,29], cell detection [30,31], early cancer
detection [32,33], etc.

In this work, a 41-layer structure of ResNet was used to classify the cell cycle stage.
Our structure was based on the model created by He et al. [22] and the residual module
proposed by He et al. [34]. Figure 2 shows the model’s structure. In the residual module,
the first CONV had filters of 1 × 1, the second CONV had filters of 3 × 3, and the third
CONV had filters of 1 × 1.
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Figure 2. The structure of the residual module.

Our ResNets were fabricated by stacking residual modules on top of one another. The
numbers of residual modules were 3, 3, and 4. First, there were three residual modules,
and the three CONV layers learned 32, 32, and 128 filters. Second, there were three residual
modules, and the three CONV layers learned 64, 64, and 256 filters. Finally, there were
four residual modules and the three CONV layers learned 128, 128, and 512 filters. The
dimensions were reduced when the residual modules were stacked every time. Moreover,
one CONV layer was added to the model before the residual modules, and one FC layer
was added at the end of the model. As a result, the structure of our ResNet had a depth of
41 layers. The depth of our model could be changed by the number of residual modules.
The structure of our model is shown in Figure 3.
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3. Experiment

The whole experiment included two parts, namely, dataset generation and model training.

3.1. Dataset

A total of 32,266 original images of Jurkat cells were collected by imaging flow cytom-
etry [14] (Jurkat dataset). The dataset was divided into seven different stages, including
phases of interphase (G1, G2, and S) and phases of mitosis (prophase, anaphase, metaphase,
and telophase). Figure 4 shows the original images of different cell cycle stages.
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Figure 4. The original images of different cell cycle stages.

The study [14] showed the G1, G2, and S phases as the same stage. Then phases of in-
terphase (G1/G2/S) and phases of mitosis (prophase, anaphase, metaphase, and telophase)
were classified, and the accuracy of the five stages of classification was 98.73% ± 0.16%.
However, when the phases of interphase (G1/G2/S) stages were separated and regarded as
one stage (G1, G2, S), then seven stages of the image were classified, leading to an accuracy
of 79.40% ± 0.77%. Although the G1, G2, and S phases were combined into one stage and
higher classification accuracy of five stages was obtained, the accurate classification of cell
cycle stages was not achieved. For the classification of a cell cycle, it was necessary not
only to separate stages with excessively different morphological details, such as phases of
mitosis (prophase, anaphase, metaphase, and telophase), from the other stages, but also to
separate phases of interphase (G1, G2, and S) with similar morphological details.

In addition, it was clear from the original images that the number of images in the
anaphase, metaphase, prophase, and telophase stages was too low, and the amount of data
in different periods varied greatly, leading to inaccurate classification results. Therefore,
based on the distribution of the original images of each stage, WGAN-GPs were used
to increase the amounts of anaphase, metaphase, prophase, and telophase tenfold by us.
In order to achieve a relative balance for the number of images in each cell cycle stage,
random under-sampling was used for the G1 phase; 8610 images of the G1 stage were used
for classification. The number of generated images and the number of images used for
classification are shown in Table 1.
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Table 1. The number of images of different cell cycle stages and the number of images used for seven stages.

Cell Cycle
Stages

The Number of
Original Images

The Number of
Generated Images by

WGAN-GP

The Number of Images Used for Classification

Classification 1 Classification 2 Classification 3 Classification 4

Anaphase 15 150 15 15 150 150
G1 14,333 - 14,333 8610 14,333 8610
G2 8601 - 8601 8601 8601 8601

Metaphase 68 680 68 68 680 680
Prophase 606 6060 606 606 6060 6060

S 8616 - 8616 8616 8616 8616
Telophase 27 270 27 27 270 270

After the seven stages of cell cycle images were classified, these images were divided
into four stages—phases of interphase (G1, G2, S) and phases of mitosis (M). The images
of anaphase, metaphase, prophase, and telophase stages were combined into one stage,
namely M, and the dataset obtained is shown in Table 2. It can be seen from Table 2 that
the number of images of each stage reached a balance.

Table 2. The number of images of different cell cycle stages and the number of images used for four stages.

Cell Cycle
Stages

The Number of
Original Images

The Number of
Generated Images by

WGAN-GP

The Number of Images Used for Classification

Classification 1 Classification 2 Classification 3 Classification 4

G1 14,333 - 14,333 8610 14,333 8610
G2 8601 - 8601 8601 8601 8601
M 716 7160 716 716 7160 7160
S 8616 - 8616 8616 8616 8616

3.2. Model Training

The WGAN-GP was used to train the four stages of anaphase, metaphase, prophase,
and telophase, and the batch sizes were set to 4, 16, 16, and 4, respectively, according
to the number of original images. In all, 5000 epochs were set for each training process.
Subsequently, the WGAN-GP model was used to generate 150, 680, 6060, and 270 images
for the four stages of the cell cycle, meaning that the images for each stage were increased
tenfold. For the four-stage classification of the cell cycle, the WGAN-GP model was used
to generate 7,160 images of the M stage. During the process of training for WGAN-GP, the
batch size was 16, and the training epoch was 5000.

The parameters of the network for classification were randomly initialized. The
original size of the images was 66 × 66 × 1. All of the images were resized to 64 × 64 × 1
and divided into mini-batches for training. During the process of training for classification,
the batch size was 32, the initial learning rate was 0.01, and the momentum was 0.9.
The optimization strategy was the stochastic gradient descent method, and the default
activation function was ReLU in the entire network.

During the classification, 60% of the images were used as the training set, 20% of the
images were used as validation, and the rest of the images were used as the testing set.
For the four-stages classification, the number of original images used for classification
was 33,427. Moreover, 20,657 images were used for training, 6885 images were used for
validation, and 6885 images were used for testing.

The environment for the experiments was Python 3.6, and the operating system was
Linux with an Intel (R) Xeon (R) CPU E5-2682 v4 @ 2.50GHz processor, 32GB memory, and
a Tesla P100-PCIE-16GB graphics card. The experiments were based on the open-source
deep learning framework TensorFlow-gpu 2.0.0a0 and Keras 2.3.1.

4. Results
4.1. Results of Generated Images by WGAN-GP

According to the four stages of cell cycle images-anaphase, metaphase, prophase, and
telophase-generated by WGAN-GP, the generated images could be used for subsequent
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cell cycle classification, as they were almost the same as the original cell cycle images. As
such, Figure 5 shows the images generated by WGAN-GP.
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In order to verify the effectiveness of WGAN-GP, the following sets of classification
experiments were conducted. The compared results are shown in Tables 3 and 4. The
results for the original images, the images generated by WGAN-GP, the original images
after under-sampling, and the images generated by WGAN-GP after under-sampling were
compared with each other.

Table 3. Seven-stage classification results of the original images, the images generated by WGAN-GP, the original images
after under-sampling, and the images generated by WGAN-GP after under-sampling.

Cell Cycle Stages The Number of Original
Images

The Number of Images
Generated by WGAN-GP

The Number of Original
Images after

Under-Sampling

The Number of Images
Generated by WGAN-GP

after Under-Sampling

Anaphase 15 150 15 150
G1 14,333 14,333 8610 8610
G2 8601 8601 8601 8601

Metaphase 68 680 68 680
Prophase 606 6060 606 6060

S 8616 8616 8616 8616
Telophase 27 270 27 270

Weighted_Avg 0.7837 0.8225 0.7835 0.8210

Table 4. Four-stage classification results for the original images, the images generated by WGAN-GP, the original images
after under-sampling, and the images generated by WGAN-GP after under-sampling.

Cell Cycle Stages The Number of Original
Images

The Number of Images
Generated by WGAN-GP

The Number of Original
Images after

Under-Sampling

The Number of Images
Generated by WGAN-GP

after Under-Sampling

G1 14,333 14,333 8610 8610
G2 8601 8601 8601 8601
M 716 7160 716 7160
S 8616 8616 8616 8616

Weighted_Avg 0.7832 0.8360 0.7716 0.8388
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As shown in Tables 3 and 4, the seven-stage classification accuracy of the original
images and the four-stage classification accuracy of the original images were 78.37%
and 78.35%, respectively. The seven-stage classification accuracy of images generated by
WGAN-GP and the four-stage classification accuracy of images generated by WGAN-GP
were 82.25% and 82.10%, respectively. The seven-stage classification accuracy and the
four-stage classification accuracy improved by 3.88% and 3.75%, respectively.

In order to obtain balanced images, random under-sampling was used for the stage of
G1. The seven-stage classification accuracy of original images after under-sampling and
the four-stage classification accuracy of original images after under-sampling were 78.32%
and 77.16%, respectively. The seven-stage classification accuracy of images generated
by WGAN-GP after under-sampling and the four-stage classification accuracy of images
generated by WGAN-GP after under-sampling were 83.60% and 83.88%, respectively.
The seven-stage classification accuracy and the four-stage classification accuracy were
improved by 5.28% and 6.72%, respectively. From these results, it was clear that the seven-
stage classification accuracy and the four-stage classification accuracy were improved
by WGAN-GP.

Moreover, the four-stage classification accuracy was reduced by about 1.15% when the
images of the M stage were original, and the images of the G1 stage were under-sampled.
Additionally, when WGAN-GP was used to augment the images of the M stage, the G1
stage was under-sampled. In other words, the number of images for each stage was
basically balanced, and the four-stage classification accuracy was almost unaffected. When
compared, the result showed that the classification accuracy could be effectively improved
by using WGAN-GP for data augmentation.

4.2. Results of Classification

For imbalanced image classification, it was difficult to accurately reflect the perfor-
mance of the classifier by using accuracy alone. It was necessary to combine other evalua-
tion indicators, such as F-Score, G-means metric, and the receiver operating characteristic
(ROC) curve [35,36]. The F-Score is directly related to recall and precision. This method
was mainly to maximize recall and precision as much as possible so the classification
performance for majority categories and minority categories could be correctly evaluated.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

F-Score = Recall × Precision = TP/(TP + FN)× TP/(TP + FP) (2)

The ROC curve was drawn with the classification error rate of the majority class as
the abscissa and the classification accuracy rate of the minority class as the ordinate. The
ROC curve is currently one of the commonly used methods to evaluate the performance of
classifiers on imbalanced data sets.

Table 5 shows the seven-stage classification result for the original images. Additionally,
Table 6 shows the seven-stage classification result after using WGAN-GP. In Table 5, the
precision of anaphase, metaphase, and telophase was almost 0. One of the reasons was that
the number of original images for these stages was too low, and the number of images in
the test set was too low. Another reason might be the acquisition of original images. The
process by which we obtained the original images was dynamic and changed over time.
When the images of a certain stage were acquired, the cells might be dynamically changing,
which would not only cause images to have the characteristics of this stage, but they might
also contain the characteristics of other stages. This made the original images difficult to
classify correctly. The obtained results had large deviations, and the weighted average
accuracy of the classification was 78.35%. The accuracy of each stage was 0, 83.16%, 84.56%,
0, 85.21%, 67.65%, and 0. In Table 6, the images generated by WGAN-GP of anaphase,
metaphase, prophase, and telophase were used for classification, and the weighted average
accuracy of the classification was 82.10%. Compared with the accuracy of original images,
the average accuracy increased by 3.75%. Additionally, the accuracy of each stage was
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100%, 81.81%, 84.56%, 81.25%, 99.34%, 67.00%, and 100%. It could be seen from Tables 5
and 6 that the classification accuracies of the anaphase, the metaphase, the prophase, and
the telophase stages were significantly improved by WGAN-GP.

Table 5. The seven-stage classification results for the original images.

Cell Cycle Stages Precision Recall F1-Score Support

Anaphase 0.0000 0.0000 0.0000 3
G1 0.8316 0.8403 0.8359 1722
G2 0.8453 0.8012 0.8241 1720

Metaphase 0.0000 0.0000 0.0000 13
Prophase 0.8521 1.0000 0.9202 121

S 0.6765 0.7052 0.6905 1723
Telophase 0.0000 0.0000 0.0000 5

Weight_Avg 0.7835 0.7844 0.7835 5307

Table 6. The seven-stage classification results for images generated by WGAN-GP.

Cell Cycle Stages Precision Recall F1-Score Support

Anaphase 1.0000 0.0667 0.1250 30
G1 0.8181 0.8490 0.8333 1722
G2 0.8456 0.7895 0.8166 1720

Metaphase 0.8125 0.9559 0.8784 136
Prophase 0.9934 0.9909 0.9922 1212

S 0.6700 0.6918 0.6808 1723
Telophase 1.0000 1.0000 1.0000 54

Weight_Avg 0.8210 0.8184 0.8174 6597

In addition, the combined dataset (G1, G2, M, and S phase) was used for classification.
The classification results for the original images of the M stage and the classification results
for the generated images of the M stage are shown in Tables 7 and 8, respectively. In Table 7,
the weighted average accuracy of the classification was 77.16%, and the accuracy of each
stage was 82.47%, 82.05%, 64.83%, and 67.99%. In Table 8, the generated images of the M
stage were used for classification, and the weighted average accuracy of the classification
was 83.88%. Compared with the accuracy of the original images, the weighted average
accuracy has increased by 6.72%. Additionally, the accuracy of each stage was 82.44%,
84.92%, 99.94%, and 68.25%. It can be seen from Tables 7 and 8 that the classification
accuracy of the M stage was significantly improved by WGAN-GP. Figure 6 shows the
training and validation accuracy with training epochs. Figure 7 is the result represented by
a confusion matrix. Figure 8 shows the ROC curve for four-stage classification.

Table 7. The four-stage classification results for original images.

Cell Cycle Stages Precision Recall F1-Score Support

G1 0.8247 0.8444 0.8344 1722
G2 0.8205 0.7814 0.8005 1720
M 0.6483 0.6573 0.6528 143
S 0.6799 0.6953 0.6875 1723

Weighted_Avg 0.7716 0.7705 0.7708 5308
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Table 8. The four-stage classification results for images generated by WGAN-GP.

Cell Cycle Stages Precision Recall F1-Score Support

G1 0.8244 0.8641 0.8438 1722
G2 0.8492 0.7953 0.8214 1720
M 0.9994 1.0000 0.9997 1720
S 0.6825 0.6924 0.6874 1723

Weighted_Avg 0.8388 0.8379 0.8380 6885
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original images; (c) accuracy of four stages classification for generated images; (d) loss of four stages
classification for generated images.
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4.3. Verification of Results with New Dataset

In order to verify the effectiveness of our model, another cell cycle data set was used.
Nagao et al. [13] collected fluorescence microscope images of different cell cycles containing
subcellular structures, such as the nucleus, the Golgi apparatus, and the microtubule
cytoskeleton (HeLa dataset). The classification of different cycle stages could be carried
out by extracting the characteristics of these subcellular structures. The data set contained
only two categories, namely G2 and non-G2. The cell cycle images of the G2 phase were
regarded as one class, and the images of the G1 phase and the S phase were regarded as
one class. The images of the M phase were not in this data set. The numbers of images in
the G2 class and the non-G2 class were each 922. The original images of the G2 class and
the non-G2 class are shown in Figure 9. The WGAN-GP was used to generate images for
the G2 class and the non-G2 class, and the generated images are shown in Figure 9.
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Figure 9. The images of the G2 class and the non-G2 class. (a) Images of G2 class [13]; (b) images
of non-G2 class [13]; (c) images generated by WGAN-GP of G2 class; (d) images generated by
WGAN-GP of non-G2 class.

Although the original images of this data set were balanced, data augmentation was
carried out on this data set to verify the effects of WGAN-GP. Each class used WGAN-GP
to generate 10,000 images and used random under-sampling to obtain 9220 images. Then,
the 9220 images were used for classification. The results of the classification for the original
images and generated images are shown in Table 9.
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Table 9. The classification results for original images and generated images.

The Result of the Classification for Original Images The Result of the Classification for Generated Images

Class Precision Recall F1-Score Support Class Precision Recall F1-Score Support

G2 0.9497 0.8207 0.8805 184 G2 0.9903 1.0000 0.9951 1844
Not-G2 0.8421 0.9565 0.8957 184 Not-G2 1.0000 0.9902 0.9951 1844

Avg 0.8959 0.8886 0.8881 368 Avg 0.9952 0.9951 0.9951 3688

As shown in Table 9, the average accuracy of classification for original images was
87.63%, and the average accuracy of classification for generated images was 97.65%. Com-
pared with the accuracy of original images, the average accuracy increased by 10.02%. The
classification accuracy was significantly improved by WGAN-GP. Figure 10 shows the
training and validation accuracy with training epochs. Figure 11 is the result as represented
by a confusion matrix. Figure 12 shows the ROC curve for classification.
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Figure 10. The training and validation accuracy and loss versus the number of training epochs.
(a) Accuracy of two-class classification for original images; (b) loss of two-class classification for
original images; (c) accuracy of two-class classification for generated images; (d) loss of two-class
classification for generated images.
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class classification of generated images.

5. Discussion

To verify the effect of our method, the classification results for the same data set
were compared with those of the existing methods in the literature, and the results are
shown in Tables 10–12. In Table 10, the classification accuracy of anaphase, metaphase,
prophase, and telophase improved by 80%, 69.49%, 38.62%, and 3.71%, respectively. In
Table 11, the classification accuracy of the M phase improved by 55.9%. In Table 12,
the classification accuracy improved by 12.52%. In fact, the classification accuracy was
significantly improved by WGAN-GP. Therefore, WGAN-GP can be used to improve the
classification of imbalanced cell cycle phases.

Table 10. The seven-stage classification accuracy on the same dataset (Jurkat datasets).

Model Method Images
Accuracy

G1 G2 S Ana Meta Pro Telo Weighted_Avg

Eulenber [14] Deep learning
(ResNet) Dataset1 86.47% 64.86% 84.16% 20% 11.76% 60.72% 96.29% /

Model1 ResNet Dataset1 + WGAN-GP
(Ana, Meta, Pro, Telo) 81.81% 84.56% 67.00% 100% 81.25% 99.34% 100% 82.10%

Table 11. The four-stage classification accuracy on the same dataset (Jurkat datasets).

Model Method Images
Accuracy

G1 G2 M S Weighted_Avg

Blasi [8] feature extraction
Boosting algorithm

Dataset1
Random under-sampling 70.24% 96.78% 44.04% 90.13% /

Model2 ResNet
WGAN-GP Dataset1 82.47% 82.05% 64.83% 67.99% 77.16%

Model3 ResNet
WGAN-GP Dataset1 + WGAN-GP (M) 82.44% 84.92% 99.94% 68.25% 83.88%

Table 12. The two-class classification accuracy on the same dataset (Hela datasets).

Model Method Images
Accuracy

G2 NotG2 Weighted_Avg

Nagao [13] CNN Dataset2 / / 87%

Model2 ResNet
WGAN-GP

Dataset2 +
WGAN-GP 99.03% 100% 99.52%
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According to the original images of the Jurkat dataset, it was apparent from their
characteristics that, except for the phase of mitosis (M), the cell cycle images of the other
stages were difficult to distinguish, even for experts in the field of cell cycles. If the grayscale
images of different stages were placed in the order of a cell cycle phase and the experts
were informed, the stages might be classified by some morphological features. However, if
the grayscale images of different stages were randomly placed, it was difficult for experts
to classify the different stages. This was precise because the differences between images of
different cell cycle stages were not obvious. It was also difficult to use ResNet to further
enhance classification accuracy.

In general, determining the cell cycle phase requires the fluorescent labeling of cells,
and fluorescent staining is a very complicated process. In this study, we used a deep
learning framework to classify the brightfield images without fluorescent staining to easily
recognize the cells in the different stages; this was a process that was important for reducing
the difficulty of operations in cell cycle classification. Furthermore, different phases of
the cell cycle lasted for different durations, which inevitably led to an imbalance in the
number of acquired images at different stages. Therefore, the use of a WGAN-GP could
solve problems related to imbalanced cell cycle images. Additionally, from the perspective
of practical applications in the field, the use of a WGAN-GP was of great significance for
the classification of the cell cycle.

These problems also reflected the difficulty in obtaining biomedical images. In some
cases, time and money were required to obtain sufficient images; without high-quality
images, it might be difficult to perform subsequent experiments. Follow-up experiments
would certainly benefit if they were to use our method for data augmentation.

6. Conclusions

In this paper, deep learning technology was applied to the field of cell cycle classifi-
cation, and a cell cycle classification framework based on the combination of WGAN-GP
and ResNet was used. This combination yielded better classification results than the origi-
nal classification framework. The WGAN-GP was used for data augmentation, and the
ResNet was used for classification. The Jurkat dataset was used for the seven-stage and
four-stage classification of the cell cycle, and better classification results were obtained than
those found in previous papers. Additionally, another dataset (HeLa dataset) was used
to validate the results of our model. By introducing the WGAN-GP network to generate
additional cell cycle images, the problem of insufficient original images was solved. The
imbalance between different cell cycle stages was reduced, and classification accuracy
was improved.

In the future, we will continue to improve the structure of the network for classification,
and we will try to use a network other than WGAN-GP for data augmentation. We will
use other methods to obtain cell cycle images without a fluorescent label, and we will
classify them in this framework to further improve the classification accuracy of the cell
cycle, finally achieving the label-free classification of cell cycle images.

Author Contributions: Project administration, Y.Z.; software, X.J.; supervision, Y.Z.; writing—
original draft, X.J.; writing—review & editing, Y.Z. and Z.H. All authors have read and agreed
to the published version of the manuscript.

Funding: This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available at doi:10.1038/s41467-
017-00623-3, reference number [14]. This data can be found here: https://github.com/theislab/
deepflow (accessed on 11 June 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/theislab/deepflow
https://github.com/theislab/deepflow


Information 2021, 12, 249 15 of 16

References
1. Fang, H.-S.; Lang, M.-F.; Sun, J. New Methods for Cell Cycle Analysis. Chin. J. Anal. Chem. 2019, 47, 1293–1301. [CrossRef]
2. Roukos, V.; Pegoraro, G.; Voss, T.C.; Misteli, T. Cell cycle staging of individual cells by fluorescence microscopy. Nat. Protoc. 2015,

10, 334–348. [CrossRef] [PubMed]
3. Matuszewski, D.J.; Sintorn, I.-M.; Puigvert, J.C.; Wählby, C. Comparison of Flow Cytometry and Image-Based Screening for Cell

Cycle Analysis. Nat. Comput. Ser. 2016, 623–630. [CrossRef]
4. Schönenberger, F.; Deutzmann, A.; Ferrando-May, E.; Merhof, D. Discrimination of cell cycle phases in PCNA-immunolabeled

cells. BMC Bioinform. 2015, 16, 3262. [CrossRef] [PubMed]
5. Sakaue-Sawano, A.; Kurokawa, H.; Morimura, T.; Hanyu, A.; Hama, H.; Osawa, H.; Kashiwagi, S.; Fukami, K.; Miyata, T.; Miyoshi,

H.; et al. Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression. Cell 2008, 132, 487–498. [CrossRef]
6. Bajar, B.T.; Lam, A.J.; Badiee, R.; Oh, Y.-H.; Chu, J.; Zhou, X.X.; Kim, N.; Kim, B.B.; Chung, M.; Yablonovitch, A.L.; et al. Fluorescent

indicators for simultaneous reporting of all four cell cycle phases. Nat. Methods 2016, 13, 993–996. [CrossRef]
7. Ferro, A.; Mestre, T.; Carneiro, P.; Sahumbaiev, I.; Seruca, R.; Sanches, J.M. Blue intensity matters for cell cycle profiling in

fluorescence DAPI-stained images. Lab. Investig. 2017, 97, 615–625. [CrossRef]
8. Blasi, T.; Hennig, H.; Summers, H.D.; Theis, F.J.; Cerveira, J.; Patterson, J.O.; Davies, D.; Filby, A.; Carpenter, A.E.; Rees, P.

Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat. Commun. 2016, 7, 10256–10264. [CrossRef]
9. Khan, S.; Islam, N.; Jan, Z.; Din, I.U.; Rodrigues, J.J.P.C. A novel deep learning based framework for the detection and classification

of breast cancer using transfer learning. Pattern Recognit. Lett. 2019, 125, 1–6. [CrossRef]
10. Araújo, F.H.; Silva, R.R.; Ushizima, D.M.; Rezende, M.T.; Carneiro, C.M.; Bianchi, A.G.C.; Medeiros, F.N. Deep learning for cell

image segmentation and ranking. Comput. Med. Imaging Graph. 2019, 72, 13–21. [CrossRef]
11. Kurnianingsih; Allehaibi, K.H.S.; Nugroho, L.E.; Widyawan; Lazuardi, L.; Prabuwono, A.S.; Mantoro, T. Segmentation and

Classification of Cervical Cells Using Deep Learning. IEEE Access 2019, 7, 116925–116941. [CrossRef]
12. Dürr, O.; Sick, B. Single-Cell Phenotype Classification Using Deep Convolutional Neural Networks. J. Biomol. Screen. 2016, 21,

998–1003. [CrossRef] [PubMed]
13. Nagao, Y.; Sakamoto, M.; Chinen, T.; Okada, Y.; Takao, D. Robust classification of cell cycle phase and biological feature extraction

by image-based deep learning. Mol. Biol. Cell 2020, 31, 1346–1354. [CrossRef] [PubMed]
14. Eulenberg, P.; Köhler, N.; Blasi, T.; Filby, A.; Carpenter, A.E.; Rees, P.; Theis, F.J.; Wolf, F.A. Reconstructing cell cycle and disease

progression using deep learning. Nat. Commun. 2017, 8, 1–6. [CrossRef]
15. Susan, S.; Kumar, A. SSO Maj -SMOTE- SSO Min: Three-step intelligent pruning of majority and minority samples for learning

from imbalanced datasets. Appl. Soft Comput. 2019, 78, 141–149. [CrossRef]
16. Susan, S.; Kumar, A. Learning Data Space Transformation Matrix from Pruned Imbalanced Datasets for Nearest Neighbor

Classification. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Commu-
nications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Zhangjiajie, China, 10–12 August 2019; pp. 2831–2838.

17. Frid-Adar, M.; Diamant, I.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. GAN-based synthetic medical image augmentation
for increased CNN performance in liver lesion classification. Neurocomputing 2018, 321, 321–331. [CrossRef]

18. Saini, M.; Susan, S. Deep transfer with minority data augmentation for imbalanced breast cancer dataset. Appl. Soft Comput. 2020,
97, 106759. [CrossRef]

19. Rubin, M.; Stein, O.; Turko, N.A.; Nygate, Y.; Roitshtain, D.; Karako, L.; Barnea, I.; Giryes, R.; Shaked, N.T. TOP-GAN: Stain-free
cancer cell classification using deep learning with a small training set. Med. Image Anal. 2019, 57, 176–185. [CrossRef] [PubMed]

20. Zheng, M.; Li, T.; Zhu, R.; Tang, Y.; Tang, M.; Lin, L.; Ma, Z. Conditional Wasserstein generative adversarial network-gradient
penalty-based approach to alleviating imbalanced data classification. Inf. Sci. 2020, 512, 1009–1023. [CrossRef]

21. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the Thirty-fourth Interna-
tional Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August 2017; pp. 214–223.

22. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

23. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680.

24. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Generative Adversarial Nets. Adv. Neural Inf. Process. Syst.
2017, 31, 5767–5777.

25. Ma, L.; Shuai, R.; Ran, X.; Liu, W.; Ye, C. Combining DC-GAN with ResNet for blood cell image classification. Med. Biol. Eng.
Comput. 2020, 58, 1251–1264. [CrossRef] [PubMed]

26. Dimitrakopoulos, P.; Sfikas, G.; Nikou, C. ISING-GAN: Annotated Data Augmentation with a Spatially Constrained Generative
Adversarial Network. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City,
IA, USA, 3–7 April 2020; pp. 1600–1603.

27. Chen, S.; Shi, D.; Sadiq, M.; Cheng, X. Image Denoising With Generative Adversarial Networks and its Application to Cell Image
Enhancement. IEEE Access 2020, 8, 82819–82831. [CrossRef]

28. Lin, H.; Hu, Y.; Chen, S.; Yao, J.; Zhang, L. Fine-Grained Classification of Cervical Cells Using Morphological and Appearance
Based Convolutional Neural Networks. IEEE Access 2019, 7, 71541–71549. [CrossRef]

http://doi.org/10.1016/S1872-2040(19)61186-2
http://doi.org/10.1038/nprot.2015.016
http://www.ncbi.nlm.nih.gov/pubmed/25633629
http://doi.org/10.1007/978-3-319-41501-7_70
http://doi.org/10.1186/s12859-015-0618-9
http://www.ncbi.nlm.nih.gov/pubmed/26022740
http://doi.org/10.1016/j.cell.2007.12.033
http://doi.org/10.1038/nmeth.4045
http://doi.org/10.1038/labinvest.2017.13
http://doi.org/10.1038/ncomms10256
http://doi.org/10.1016/j.patrec.2019.03.022
http://doi.org/10.1016/j.compmedimag.2019.01.003
http://doi.org/10.1109/ACCESS.2019.2936017
http://doi.org/10.1177/1087057116631284
http://www.ncbi.nlm.nih.gov/pubmed/26950929
http://doi.org/10.1091/mbc.E20-03-0187
http://www.ncbi.nlm.nih.gov/pubmed/32320349
http://doi.org/10.1038/s41467-017-00623-3
http://doi.org/10.1016/j.asoc.2019.02.028
http://doi.org/10.1016/j.neucom.2018.09.013
http://doi.org/10.1016/j.asoc.2020.106759
http://doi.org/10.1016/j.media.2019.06.014
http://www.ncbi.nlm.nih.gov/pubmed/31325721
http://doi.org/10.1016/j.ins.2019.10.014
http://doi.org/10.1007/s11517-020-02163-3
http://www.ncbi.nlm.nih.gov/pubmed/32221797
http://doi.org/10.1109/ACCESS.2020.2988284
http://doi.org/10.1109/ACCESS.2019.2919390


Information 2021, 12, 249 16 of 16

29. Lei, H.; Han, T.; Zhou, F.; Yu, Z.; Qin, J.; Elazab, A.; Lei, B. A deeply supervised residual network for HEp-2 cell classification via
cross-modal transfer learning. Pattern Recognit. 2018, 79, 290–302. [CrossRef]

30. Baykal, E.; Dogan, H.; Ercin, M.E.; Ersoz, S.; Ekinci, M. Modern convolutional object detectors for nuclei detection on pleural
effusion cytology images. Multimed. Tools Appl. 2019, 1–20. [CrossRef]

31. Evangeline, I.K.; Precious, J.G.; Pazhanivel, N.; Kirubha, S.P.A. Automatic Detection and Counting of Lymphocytes from
Immunohistochemistry Cancer Images Using Deep Learning. J. Med. Biol. Eng. 2020, 40, 735–747. [CrossRef]

32. Gouda, N.; Amudha, J. Skin Cancer Classification using ResNet. In Proceedings of the 2020 IEEE 5th International Conference on
Computing Communication and Automation (ICCCA), Greater Noida, India, 30–31 October 2020; pp. 536–541.

33. Shemona, J.S.; Kumar, A. Novel segmentation techniques for early cancer detection in red blood cells with deep learning based
classifier-a comparative approach. IET Image Process. 2020, 14, 1726–1732. [CrossRef]

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In European Conference on Computer Vision;
Springer Science and Business Media LLC: Cham, Switzerland, 2016; pp. 630–645.

35. Ramos-López, D.; Maldonado, A.D. Cost-Sensitive Variable Selection for Multi-Class Imbalanced Datasets Using Bayesian
Networks. Mathematics 2021, 9, 156. [CrossRef]

36. Zhang, C.; Tan, K.C.; Li, H.; Hong, G.S. A Cost-Sensitive Deep Belief Network for Imbalanced Classification. IEEE Trans. Neural
Netw. Learn. Syst. 2018, 30, 109–122. [CrossRef] [PubMed]

http://doi.org/10.1016/j.patcog.2018.02.006
http://doi.org/10.1007/s11042-019-7461-3
http://doi.org/10.1007/s40846-020-00545-4
http://doi.org/10.1049/iet-ipr.2019.1067
http://doi.org/10.3390/math9020156
http://doi.org/10.1109/TNNLS.2018.2832648
http://www.ncbi.nlm.nih.gov/pubmed/29993587

	Introduction 
	Method 
	WGAN-GP 
	ResNet 

	Experiment 
	Dataset 
	Model Training 

	Results 
	Results of Generated Images by WGAN-GP 
	Results of Classification 
	Verification of Results with New Dataset 

	Discussion 
	Conclusions 
	References

