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Abstract: Blockchain is an innovative distributed ledger technology that is widely used to build next-
generation applications without the support of a trusted third party. With the ceaseless evolution of
the service-oriented computing (SOC) paradigm, Blockchain-as-a-Service (BaaS) has emerged, which
facilitates development of blockchain-based applications. To develop a high-quality blockchain-based
system, users must select highly reliable blockchain services (peers) that offer excellent quality-of-
service (QoS). Since the vast number of blockchain services leading to sparse QoS data, selecting the
optimal personalized services is challenging. Hence, we improve neural collaborative filtering and
propose a QoS-based blockchain service reliability prediction algorithm under BaaS, named modified
neural collaborative filtering (MNCF). In this model, we combine a neural network with matrix
factorization to perform collaborative filtering for the latent feature vectors of users. Furthermore,
multi-task learning for sharing different parameters is introduced to improve the performance of
the model. Experiments based on a large-scale real-world dataset validate its superior performance
compared to baselines.

Keywords: blockchain; neural network; collaborative filtering; reliability prediction

1. Introduction

In recent years, the dispersion, irreversibility, and traceability of blockchain [1] have
been a growing concern. Consequently, numerous enterprises, governments, and scientific
institutions have leveraged blockchain-based applications in various fields, such as smart
contracts [2,3], Internet of Things [4,5] and security services [6,7]. As a component in
the software system development process, blockchain can offer communication, data
storage, data mining, and computation services. uBaaS (a unified blockchain as a service
platform) [8], proposed by Microsoft and IBM [8], emerged based on the idea of service-
oriented computing paradigms. Under the BaaS paradigms, blockchain-based applications
can be built by invoking numerous blockchain services (we use blockchain services and
peers alternatively in this paper) through the Internet. Developers (users) can quickly
validate their models and concepts under BaaS.

Offered by various application platforms, several candidate services have similar func-
tions, which different users on the internet can select. However, selecting the best blockchain
service among functionally similar blockchain services to build highly reliable blockchain-
based applications has been challenging. In this case, it applies nonfunctional properties
of services to rank the services and select the reliable ones. The QoS is regarded as the
essential nonfunctional feature for service selection [9]. With QoS, users can select an
optimal service from a large scale of candidate services. However, most QoS features may
be dynamic, and their values depend on various factors such as network infrastructure [10],
time of invocation [11], and user location [12]. Therefore, the values of these QoS features
should be determined for each personalized user [13,14] at runtime. However, we cannot
invoke each candidate service and observe the corresponding QoS value due to resource
restriction. Hence, the method to obtain the unknown QoS values of candidate blockchain
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services without invoking them remains a challenging issue. In previous studies, QoS
values of each service for each user were expressed in the form of a matrix, and the empty
entries were predicted using the existing values and similarities between the users and
services. To obtain accurate QoS predicted values, scholars have performed significant
research and proposed a series of new ideas. According to these studies, collaborative
filtering (CF)-based methods are popular and can be categorized into neighborhood- and
model-based CF. Among them, as a model-based method, matrix factorization (MF)-based
methods have been widely used for QoS prediction in web and cloud services [15]. They
have provided acceptable accuracy with a shorter computational time. Recently, machine
learning and deep learning have progressed rapidly and resulted in significant achieve-
ments in several fields, such as natural language processing [16], computer vision [17],
and recommendation systems [18]. Since deep neural networks can effectively learn com-
plex data representation, studies regarding neural networks can be applied to construct
complex relationships among users and services.

Inspired by the accomplishment of CF and the development of deep learning, we
herein propose a personalized QoS prediction model under BaaS, known as the modified
neural collaborative filtering (MNCF). The main contributions of our study are as follows:

1. Reliability Prediction. We herein propose a general framework for predicting the
reliability of blockchain peers. By predicting unknown QoS values, we can calculate
the reliability of each peer.

2. Global and Local Information Introduction. In the prediction part of the frame-
work, we propose a context-sensitive collaborative model that supports various side
information, including country, autonomous systems, IP address, and time zone.
Experimental result shows that the model implicitly identifies specific context from
inputs to improve the prediction accuracy.

3. Multi-Task Learning. We endow our model with a multi-task learning technique.
Since our predicted target (Success Rate, SR) is calculated using three other QoS
values, the model can enrich the training samples and average out the noise on the
main task by introducing three other tasks related to the main task. Furthermore,
the experimental result shows that multi-task learning can improve the performance
of our model.

4. Extensive experiments conducted on a public blockchain dataset shows that our
model performs better than the other methods, thereby proving the effectiveness of
our method.

The remainder of this paper is organized as follows: Section 2 discusses the related
studies. Section 3 presents our prediction model, i.e., MNCF. Section 4 provides the
experimental details and results. Finally, Section 5 concludes the paper and discusses our
future work.

2. Related Work

This section introduces studies related to blockchain reliability prediction, including
traditional reliability prediction and blockchain-related studies.

2.1. Traditional Reliability Prediction Research

In service selection [19], as the QoS values are affected by the network environment,
true and reliable published services cannot be guaranteed. For this reason, the reliability
evaluation of services based on user feedback is important. Generally, we calculate the
reliability of a service based on the consistency between the observed and predicted values
of the user’s rating to the service [20]. Among them, QoS is a critical factor for reliability
prediction. Hence, it is crucial to predict unknown QoS values accurately. QoS prediction
has been widely investigated in the past decade. As a typical technique, CF has been widely
applied in QoS prediction. CF-based QoS prediction models can be classified into two
categories, neighborhood- and model-based CF. Most neighborhood-based CF methods
utilize the historical call invocation information of similar neighbors for prediction [21].
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Neighborhood-based CF can be further classified into user- [22] and item-based CF [23].
Zheng et al. [24] presented a neighborhood-based hybrid model that integrates user- and
item-based CF approaches.

With the rapid increase in the number of services on the Internet, users can only obtain
a small number of QoS values [25]; therefore, it is crucial to address the sparsity of service
call records. Even though it is challenging to select similar neighbors with high-sparsity
data in neighborhood-based CF, this problem can be solved effectively using model-based
CF. As a model-based CF technology, MF is one of the most well-known technologies for
QoS prediction owing to its excellent scalability and high precision [25,26]. To acquire
accurate prediction results, scholars have studied MF extensively. Lo et al. [27] proposed
an extended MF model based on relational regularization for unknown QoS prediction
to avoid expensive and costly Web service invocations. Zheng et al. [25] proposed a
neighborhood-integrated MF model named NIMF, which combines neighborhood- and
model-based CF approaches to obtain a higher prediction accuracy. To achieve a higher
QoS prediction accuracy, scholars have focused on integrating MF with context informa-
tion, such as geographical location and time, which implies similar services or users in
the same network environment. Hence, researchers have combined context information
with historical QoS information to build a prediction model. Zhang et al. [28] suggested
collective matrix factorization, which enhances the performances of MF models based on
user-service quality pairs. Tang et al. [29] proposed location-aware CF for recommend-
ing Web services by incorporating the location information of both users and services.
He et al. [30] presented hierarchical MF, which categorizes users into multiple groups by
geographic information and combines local and global information for QoS value predic-
tion. Yu et al. [31] proposed BiasMF, in which an offset term was introduced as a bias
into the geographic location information to improve the prediction accuracy of the model.
The methods discussed above are conventional MF-based, but one of the disadvantages is
that they cannot learn more complex interactions between users and services.

In recent years, researchers have been performing QoS prediction through deep learn-
ing. Wu et al. [32] proposed a collaborative denoising autoencoder based on the feature
learning capabilities of deep learning. The model learns the potential representation of
missing user/service preferences and considers the interaction between context informa-
tion, i.e., an approach that can best reconstruct the complete input. He et al. [33] proposed
neural collaborative filtering, which combines a neural network and MF. In this model,
they use a neural network to replace the inner product of MF such that any function can be
learned from the data to improve the prediction accuracy.

2.2. Blockchain Reliability Research

Regarding blockchain reliability, Wang et al. [3] proposed an algorithm based on
smart contracts for constructing service-based systems through the composition of existing
services, thereby ensuring automatic and reliable transactions. Liang et al. [34] proposed a
homomorphic encryption-based blockchain for circuit copyright protection through the cor-
rect execution of the smart contract in the blockchain, thereby improving the security and
scalability of circuit copyright protection. Lei et al. [35] presented a reputation-based byzan-
tine fault tolerance (RBFT) algorithm that uses a reputation model to evaluate the operation
of each peer in a consensus process. Inspired by CF in QoS prediction, Zheng et al. [36]
proposed a hybrid blockchain reliability prediction (HBRP) model to extract blockchain
reliability factors and then generate personalized predictions for each user. In recent years,
BaaS has progressed rapidly. For example, Lu et al. [8] proposed a unified BaaS platform to
support both the design and deployment of blockchain-based applications. Zheng et al. [37]
presented a BaaS platform named NutBaaS for providing blockchain services in cloud com-
puting environments, such as smart contract analysis, data mining, and system monitoring.
IBM proposed IBM Hyperledger (https://www.ibm.com/blockchain/platform/) (accessed
on: 8 June 2021) for BaaS deployment solutions. However, the previous blockchain research
rarely provides reliability prediction methods for blockchain systems, and always focuses

https://www.ibm.com/blockchain/platform/
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on a few blockchain peers. Moreover, the previous reliability prediction research has not
achieved good performance in blockchain systems since merely a simple collaborative
filtering algorithm is used. Since CF and neural networks have achieved state-of-the-art
performance in many other fields, we investigate their applications in blockchain services.

3. The Model

In this section, the framework for blockchain service reliability prediction under BaaS
is introduced, including the overall architecture of the framework and the details of MNCF.

3.1. Reliability Prediction Framework for Blockchain Services

Herein, we propose a QoS-based blockchain service reliability prediction framework
for blockchain services under BaaS. As shown in Figure 1, our framework comprises three
components: QoS value collection, unknown value prediction based on MNCF, and service
selection. The framework includes the following main steps:

1. Users send requests to the peers; subsequently, the blockchain services (peers) respond
to the requests and return the feedback QoS data. The complete feedback data contain
seven items: the peer IP, user IP, request time cost, response time cost, bulk request
time cost, block height, and block hash.

2. In the prediction server, after feedback data are received, the success rate based on the
submitted data is calculated. The calculation results are used to form the user–service
matrix of the success rate for MNCF.

3. The matrix will be extremely sparse as users cannot request all services. With these
known values, we can predict the unknown values with the input context information
based on MNCF.

4. After MNCF is performed, the request success rates of all the users for all the services
are obtained, and the reliability of each blockchain service can be calculated using the
service selector.

Figure 1. Reliability Prediction Framework for Blockchain Services.
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3.2. QoS Values Calculation

We illustrate that blockchain services are blockchain peers composed of blockchain
applications, whereas blockchain users are blockchain application developers who invoke
the blockchain services. Each user in a group can send a request to each blockchain service
(peer), and the result of the request is considered as the success rate. Since many blockchain
peers exist in the real world, users cannot send requests to every peer. Therefore, the success
rate of users without requests should be predicted.

First, we set a parameter “MaxBlockBack” to indicate the extreme value for the block
backwardness of the peer in the blockchain. Subsequently, we set a parameter “MaxRTT”
to represent the maximum round-trip time of the peer [36]. The successful request rate can
be calculated as follows: For each user Ui and peer Pj, we set the counter for successful
requests as SuccessRequesti,j, and the failure counter as FailureRequesti,j. As per [36], each
batch of users sends requests to the peer, and the peer will respond successfully if and only
if the correct block and the recent block height are returned in time. Therefore, before we
calculate the success rate for the request, we obtain three QoS data. These data are the basis
for calculating the success rate and are described as follows:

1. RightBlock (RB): The block hash is at the corresponding block height on the blockchain.
2. RecentHeight (RH): The block height subtracted from the highest one in the batch.
3. RoundTripTime (RTT): The round trip time from the request to the peer.

If peer Pj responds successfully, then it is counted into SuccessRequesti,j, otherwise,
it is counted into FailureRequesti,j. The successful request rate of Ui and Pj are calculated
using Equation (1).

Ri,j =
SuccessRequesti,j

SuccessRequesti,j + FailureRequesti,j
(1)

where Ri,j denotes the SuccessRate of Useri to Peerj.

3.3. The Overall Architecture of MNCF

In this section, we introduce the MNCF model for blockchain QoS prediction, in-
cluding the overall architecture and the details of each layer. As shown in Figure 2, it
comprises three components: an input layer, an embedding layer, and task-specific lay-
ers. UserID, PeerID, and context information (country, autonomous systems, IP address,
and time zone) appear in vector form for the input layer. In the embedding layer, we set
the embedding for the users, peers, and context information to capture the implicated
semantics. The input and embedding layers synergistically form shared layers, sharing
users, services, and context information and preparing for task-specific layers in multi-task
learning. In the task-specific layers, we calculate the user bias term in the context and
predict the QoS values, such as the RB, RH, RTT, and SR. In particular, we accomplish
multi-task learning in different task-specific layers, which can share the parameters for
each layer to obtain better performances.

3.4. Input Layer

In the input layer, we used UserID and PeerID as identity features and then trans-
formed them to binarized sparse vectors with one-hot encoding. In addition, we presented
a context encoder network for the feature interaction of context information. As shown
in Figure 3, the feature interaction of our context information was realized through this
module. It is important to fully utilize all features for learning fusion to obtain the context
information vector, which can express all features. We stacked multiple fully connected
layers to enable different features to learn to fuse. However, merely a vector concatena-
tion cannot fully represent the potential features between users and peers. Therefore, we
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adopted a multilayer perceptron (MLP) [33] to learn the features. The MLP model under
this layer is defined as follows:

z1 = φ1(pi, pj) =

[
pi
pj

]
φ2(z1) = a2(WT

2 z1 + b2)

......

φn(zn − 1) = an(WT
n zn − 1 + bn)

(2)

where ax, Wx and bx denote the activation function, weight, and bias vector of the x-
th(x ∈[1,n]) layer perceptron, respectively. We selected the ReLU function [38] as the
activation function which is more biologically plausible and proven to be non-saturated [39].
Furthermore, it is well suited for sparse data and prevents the model from being overfitted.

Figure 2. The Overall Architecture of MNCF.

Figure 3. The Context Encoder Network.
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Using this context encoder network, we can reduce the dimension of multiple high-
dimensional sparse features, thereby reducing all the network parameters and accelerating
the entire network.

3.5. Embedding Layer

The layer above the input layer is the embedding layer; it is a fully connected layer
that transforms sparse vectors into a dense vector. The context information is hot coded
into a sparse vector and may require a large space for the large-scale data owing to its
sparsity; therefore, sparse vectors are mapped to dense representations in the embedding
layer. For example, in MF, matrix R ∈ RN×M can be calculated as R = UT P, where M and
N denote the numbers of users and peers, respectively. Both matrices U and P can be
considered as embeddings.

3.6. Task-Specific Layers

Task-specific layers contain neural fusion CF and bias interactions.

3.6.1. Neural Fusion Collaborative Filtering

The conventional matrix factorization associates each user and peer with a score vector
of latent features. Let Ui and Pj denote the latent vectors for user i and peer j, respectively.
MF predicts the values using the inner product as follows:

ŷu,p = UT
i Pj =

K

∑
k=1

UikPjk (3)

where K denotes the dimension of the latent space. MF can be regarded as a linear
model of latent factors, and it cannot learn more complex interactions between the user
and peer’s hidden vectors. Hence, He et al. [33] presented a method known as neural
fusion CF that uses a neural network instead of the inner product in MF. Furthermore,
the input of this neural network can be well utilized to directly target user, peer, and context
information vectors, thereby addressing the difficulty in constructing a CF model using
context information. In addition, to increase the diversity of input features, we adopted
addition operations on the user and peer vectors, as shown in Figure 4.

Figure 4. The Neural Fusion Collaborative Filtering.
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3.6.2. Bias Interaction Module

Figure 5 shows the structure of the bias interaction module in the task-specific layers.
First, we calculated the embeddings of the users and peers; subsequently, we interacted
with the corresponding context vectors. Finally, we obtained the bias values through the
MLP. Based on [31], similar users have inconsistent criteria for some items. For example,
a user may assign an extremely low or high rating to an item, but his ratings on other
items may be similar to similar users. In Web services, Usei may assign an extremely low
or high rating to Servicej, but users similar to him may not. This results in biases in the
model. Using these biases can improve the performance of the model. In conventional
MF, we typically disregard these biases, which will degrade the model performance.
Yu et al. [31] proposed a model named BiasedMF, which uses bias terms to improve the
model performance. The model calculates the observed value of MF as follows:

bij = µ + bi + bj (4)

R̂ij = pT
i qj + bij (5)

where R̂ij is the estimation of observed matrix R. pi indicates the latent vector of useri
and qj indicates the latent vector of peerj. bi and bj are the bias values of useri and peerj,
respectively. µ represents the overall average of R.

Figure 5. The Architecture of Bias Interaction Module.

We adopted a neural network instead of the inner product. Therefore, our estimation
of observed matrix R can be expressed as follows:

R̂ij = F(pi, qj, cij) + λ(bi + bj) + µ (6)

where F denotes the neural fusion CF function. cij represents the context information after
combining with useri and peerj. λ indicates the weight assigned to both biases that can
avoid overfitting problems. Subsequently, user bias bi and service bias bj can be calculated
using the context-sensitive neural network as follows:

bi = MLP(pi, ci,j) (7)

bj = MLP(pj, ci,j) (8)
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3.6.3. Multi-Task Learning

Owing to the similarity between prediction models of neural networks and the main
difference being the learning of neural networks by data distribution, for the prediction
model with different QoS data, the neural network structure need not be adjusted. There-
fore, we employed multi-task learning to share the parameters of each QoS prediction
model. By introducing other tasks related to the main task, the number of training examples
is increased, and the noise on the main task is averaged to the auxiliary tasks, thereby
improving the generalization ability of the network and enhancing the performance of the
main task.

In this study, we regarded SR as our main task and RB, RH, and RTT as the auxiliary
tasks. SR was calculated using RB, RH, and RTT. As reported in [36], mapping exists
between SR and the three factors mentioned above.

SR = f (RB, RH, RTT) (9)

Therefore, the main task SR can learn the characteristics of the auxiliary tasks effec-
tively to improve the prediction accuracy.

3.6.4. Batch Normalization

Generally, a neural network can effectively learn the distribution of training data and
obtain good results from the test data. However, the distribution of the inputs of each
layer changes during the training of a neural network. During this process, adapting
each layer to the input distribution complicates the learning process. This phenomenon is
known as the internal covariate shift [40]. Although the learning rates are reduced and the
parameters appropriately initialized, the problem cannot be resolved completely. However,
this problem can now be effectively owing to the emergence of batch normalization [40].
By normalizing activations throughout the network, it can be ensured that the network
input is at the maximum distance from the derivative saturation region, thereby accelerating
the training speed of the network. The formulae for batch normalization are defined
as follows:

µB =
1
m

m

∑
i=1

xi (10)

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2 (11)

x̂i =
xi − µB√

σ2
B + ε

(12)

ŵi = γx̂i + β (13)

where xi and wi denote the input and output of the batch normalization layer, respectively.
B denotes the mini-batch of size m. µB and σ2

B are the mean and variance of the mini-batch.
γ and β are two parameters in the network that can scale and shift the distribution. ε is a
small float number to avoid division by zero.

3.7. MNCF Algorithm

Algorithm 1 summarizes the whole process of model prediction based on MNCF.
First, we randomly remove users’ IDs and peers’ IDs to make the density of data reach the
target density and map the sparse context information vectors into dense vectors. Then,
in each training round, we calculate the predicted target values by NFCF and bias module.
In addition, We use the loss of each target value for the total loss. Finally, we adopt the
predicted target values and loss of each training round to update the model parameters Θ
of the new round so that the model can obtain better performance.
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Algorithm 1 MNCF Algorithm

Require: User ID, Peer ID, Context Information, model parameters Θ

Ensure: Prediction Result: ŜRij

1: Randomly remove entries to make the density reach the required density.

2: Loss← 0

3: while in the training round do

4: Ui = Embedding(UserID), Pj = Embedding(PeerID)

5: biasi = Embedding(UserID), biasj = Embedding(PeerID)

6: Cij = Embedding(ContextIn f ormation)

7: GeoIn f o = MLP(Cij)

8: R̂rh ← NFCF1(Ui, Pj, GeoIn f o), b̂iasrh ←MLP(biasi, biasj, GeoIn f o)

9: RHij ← R̂rh + b̂iasrh

10: Loss+ = L1Loss(RHij, R̂Hij)

11: R̂rb ← NFCF2(Ui, Pj, GeoIn f o), b̂iasrb ←MLP(biasi, biasj, GeoIn f o)

12: RBij ← R̂rb + b̂iasrb

13: Loss+ = L1Loss(RBij, R̂Bij)

14: R̂rtt ← NFCF3(Ui, Pj, GeoIn f o), b̂iasrtt ←MLP(biasi, biasj, GeoIn f o)

15: RTTij ← R̂rtt + b̂iasrtt

16: Loss+ = L1Loss(RTTij, R̂TTij)

17: R̂sr ← NFCF4(Ui, Pj, GeoIn f o), b̂iassr ←MLP(biasi, biasj, GeoIn f o)

18: SRij ← R̂sr + b̂iassr

19: Loss+ = L1Loss(SRij, ŜRij)

20: Update Θ by Θ← (R̂Bij, R̂Hij, R̂TTij, ŜRij)

21: Loss Back Propagation

22: end while

4. Experiment

In this section, we describe our experiments to answer the following questions:

• RQ1: Can deep learning improve blockchain reliability prediction performance?
• RQ2: What are the effects of the selected parameters on the blockchain reliability pre-

diction?
• RQ3: How important is selecting contextual information?
• RQ4: How important is the Bias Interaction Module?

4.1. Dataset

In our experiment, we used a real-world dataset that was proposed in [36]; this dataset
includes 100 blockchain users and 200 blockchain peers. This dataset is collected from
a framework [1], which contains a data collector from its log parser. In this framework,
the developers can store the data in their database rather than store it in Blockchain.
The blockchain peers were from 21 countries in this dataset, whereas the users are from
15 countries. This dataset comprises more than 2,000,000 test cases.
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4.2. Evaluation Metrics

We calculated the root mean square error (RMSE) to ascertain the difference between
the predicted and measured values. The RMSE represents the degree of dispersion of the
sample and is expressed as follows:

RMSE =

√
∑i,j(Ri,j − R̂i,j)2

N
(14)

where Ri,j and R̂i,j are the observed and the predicted values, respectively. N denotes the
size of the test values. The smaller the RMSE value, the higher the prediction accuracy is.

4.3. Data Preprocessing

By modifying the values of MaxBlockBack and MaxRTT, we can simulate the blockchain
system in a real-world scenario. We set MaxBlockBack = 12 and MaxRTT = 1000 to eval-
uate the accuracy for situations with high requirements for confirming blockchain data.
We set MaxBlockBack = 100 and MaxRTT = 5000 to evaluate the accuracy for daily usages
involving high tolerances for block backwardness and latency.

Before the context information is given as input to the embedding layer, it is encoded
into a one-hot representation. Notably, country, user autonomous system, IP address,
and time zone are selected as the context information.

4.4. Parameter Settings

To verify the effect of data sparsity, we randomly remove the entries in the matrix to
stimulate data sparsity in the real world. We treat removed entries as the test set. We set
the density from 30% to 50% with intervals of 5%. We also set the number of iterations
for each experiment with different parameters to thirty. For the model, the hidden size
(dimensionality) was set to 64. The optimizer used was Adam [41], the learning rate was
set to 0.001, and the weight decay was 0.001. For training, we adopted a batch size of 256
and used the L1 Loss as our loss function. All loss functions had the same weight.

The experiments were conducted on a PC with Intel(R) Core(TM) i7-4790 CPU @
3.40 GHz, with 4GB RAM, using CentOS 7 and Python 3.6.

4.5. Performance Comparison (RQ1)

This section mainly focuses on RQ1. To evaluate the performance of our proposed
method, we compared our method with other approaches, including the following:

• UPCC [42] is a memory-based CF approach which uses the similars users’ information.
• IPCC [43] is a memory-based CF approach which uses the similars peers’ information.
• UIPCC [44] is a memory-based CF approach which combines UPCC and IPCC.
• PMF [26] employs a user-item matrix for the service selecion based on probabilistic

matrix factorization method
• HBRP [36] employs the relationship between similar users and peers to do the collab-

orative prediction with hybrid linear regression.

As presented in Tables 1 and 2, MNCF yielded lower RMSE values than the other
methods under different matrix densities, regardless of the type of learning used, i.e., single-
or multi-task learning. This indicates that the deep-neural-network-based model offers
significant advantages over non-deep-learning models. The multi-task model performed
better than the single-task model, i.e., 7.52% vs. 9.30% (Table 1) and 3.17% vs. 5.52%
(Table 2). Therefore, it was concluded that by introducing multi-task learning, the model
generally achieves superior performances. The operating time increases with the increase
in density for different densities, which is about 52, 55, 57, 58, and 60 s.
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Table 1. Performance Comparison of RMSE of Prediction Models (MaxBlockBack = 12, MaxRTT = 1000).

Method Density = 30% Density = 35% Density = 40% Density = 45% Density = 50%

UPCC 0.3646 0.3613 0.3601 0.3618 0.3623
IPCC 0.1022 0.1014 0.1001 0.0961 0.0963

UIPCC 0.1069 0.1059 0.1045 0.1011 0.1011
PMF 0.0946 0.0914 0.0894 0.0870 0.0867

HBRP 0.1017 0.0985 0.0954 0.0945 0.0908
MNCF (Single-Task) 0.0585 0.0576 0.0570 0.0564 0.0543
MNCF (Muti-Task) 0.0537 0.0527 0.0526 0.0515 0.0505

Improve (Multi-Task vs. single-task) 8.93% 9.30% 8.37% 9.51% 7.52%

Table 2. Performance Comparison of RMSE of Prediction Models (MaxBlockBack = 100, MaxRTT = 5000).

Method Density = 30% Density = 35% Density = 40% Density = 45% Density = 50%

UPCC 0.4597 0.4576 0.4566 0.4586 0.4591
IPCC 0.0898 0.0877 0.0858 0.0857 0.0861

UIPCC 0.1003 0.0983 0.0967 0.0966 0.0969
PMF 0.0890 0.0880 0.0857 0.0847 0.0852

HBRP 0.0635 0.0624 0.0599 0.0587 0.0565
MNCF (Single-Task) 0.0618 0.0612 0.0593 0.0572 0.0558
MNCF (Multi-Task) 0.0599 0.0580 0.0567 0.0551 0.0536

Improve (Multi-Task vs. single-task) 3.17% 5.52% 4.59% 3.81% 4.10%

4.6. Impact of Dimensionality and Density (RQ2)

Dimensionality refers to the number of latent factors in the embedding layer used
to represent the context features. Matrix Density (MD) is the percentage of unknown
entries in the matrix and indicates the amount of information available for performing
predictions. To investigate the effect of dimensionality and density, we varied the value of
dimensionality from 8 to 64 multiplied by 2 and let the density range from 30% to 50% at
intervals of 5% in each round. Figure 6 shows the prediction performance of MNCF with
different dimensionalities and densities.

(a) MaxBlockBack = 12, MaxRTT = 1000 (b) MaxBlockBack = 100, MaxRTT = 5000

Figure 6. Performance of Different Dimensionality and Matrix Density.

As shown in Figure 6a, when we set MaxBlockBack = 12 and MaxRTT = 1000, the ef-
fects differed when dimensionality was increased with different densities. Notably, the per-
formance improved in most cases when the dimensionality increased. As the dimensional-
ity approached 64, the values of RMSE began to increase when the MD ranged from 30% to
45%, whereas the values were the smallest when the MD was set to 50%.
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As shown in Figure 6b, when MaxBlockBack = 100 and MaxRTT = 5000, the prediction
error reduced with the increment in dimensionality. When MD ranged from 30% to
50%, increasing the dimensionality was beneficial to obtain a better prediction accuracy.
According to Figure 6, we have the following summary:

• Generally, model performance increases with dimensionality and density rise.
• When dimensionality is set to 32 or 64, model get optimum performance with

MaxBlockBack set to 12 and MaxRTT set to 1000 while when Max
• When the number of training samples is insufficient, increasing the dimensionality will

reduce the prediction accuracy in some cases. This phenomenon is primarily caused by
overfitting. Compared with the number of training samples, MNCF has a significantly
high number of parameters [45], which will overreact to small fluctuations in the
training data.

4.7. Impact of Context Information (RQ3)

We explored the influence of different context information on the model to determine
their contribution to accuracy. The context information investigates in this section are
country (CT), autonomous system (AS), IP address (IP), and timezone (TZ). For each factor,
we delete others, and the results are presented in Tables 3 and 4.

As shown in Tables 3 and 4, the model’s performance drops dramatically without
introducing any context information(MNCF-Without Context). It is worth noting that
different factors are of varied importance. Among them, AS brings highest performance
improvement. For instance, the performance is improved by 8.0% in Table 3 and 13.6%
in Table 4 at 50% density. This indicates that the blockchain peers in the same AS have a
higher similarity. In addition, TZ also plays a good part because the same TZ has a higher
similarity in geographical location.

Table 3. Performance of RMSE with Different Contexts (MaxBlockBack = 12, MaxRTT = 1000).

Method Density = 30% Density = 40% Density = 50%

MNCF-ALL 0.0537 0.0526 0.0505
MNCF-Without Context 0.0597 0.0572 0.0563

MNCF-CT 0.0569 0.0543 0.0523
MNCF-AS 0.0543 0.0530 0.0518
MNCF-IP 0.0566 0.0559 0.0529
MNCF-TZ 0.0542 0.0535 0.0524

Table 4. Performance of RMSE with Different Contexts (MaxBlockBack = 100, MaxRTT = 5000).

Method Density = 30% Density = 40% Density = 50%

MNCF-ALL 0.0599 0.0567 0.0536
MNCF-Without Context 0.0671 0.0656 0.0624

MNCF-CT 0.0613 0.0592 0.0563
MNCF-AS 0.0604 0.0589 0.0539
MNCF-IP 0.0650 0.0606 0.0545
MNCF-TZ 0.0655 0.0587 0.0558

4.8. Impact of the Bias Interaction Module (RQ4)

In this section, we focus on the impact of the Bias Interaction Module. The output
of this module enables personalized and context-sensitive prediction. We investigate
its influence on prediction accuracy via an ablation study. The results are shown in
Tables 5 and 6.
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Table 5. Performance of RMSE with Different Contexts (MaxBlockBack = 12, MaxRTT = 1000).

Method Density = 30% Density = 40% Density = 50%

MNCF-ALL 0.0537 0.0526 0.0505
MNCF-With user’s bias 0.0567 0.0554 0.0524
MNCF-With peer’s bias 0.0571 0.0559 0.0532

MNCF-Without user’s and peer’s biases 0.0591 0.0586 0.0564

Table 6. Performance of RMSE with Different Context (MaxBlockBack = 100, MaxRTT = 5000).

Method Density = 30% Density = 40% Density = 50%

MNCF-ALL 0.0599 0.0567 0.0536
MNCF-With user’s bias 0.0611 0.0582 0.0553
MNCF-With peer’s bias 0.0618 0.0591 0.0567

MNCF-Without user’s and peer’s biases 0.0635 0.0621 0.0615

As shown in Tables 5 and 6, the model’s performance decreases without the Bias
Interaction Module. After introducing the Bias Interaction Module, performance improved
to different degrees. It is worth mentioning that the model’s performance gains better
improvement when introducing only the peers’ bias compared with the users’ bias.

5. Conclusions

In the BaaS environment, selecting reliable blockchain services is critical for develop-
ing blockchain-based applications. We herein presented MNCF that can perform blockchain
service reliability prediction to obtain highly reliable blockchain services. The proposed
model employs a neural network to extract cross features while performing collabora-
tive prediction. Additionally, we proposed a bias interaction module that can introduce
personalized biases to improve prediction accuracy. Finally, we introduced multi-task
learning to improve our model performance. Our model is able to effectively achieve
more accurate results compared with those of other methods. In future work, we plan to
investigate blockchain reliability prediction further and explore other methods that can
yield better accuracy.
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