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Abstract: Machine learning (ML) has the potential for significant impact on the modeling, operation,
and control of particle accelerators due to its ability to model nonlinear behavior, interpolate on
complicated surfaces, and adapt to system changes over time. Anomaly detection in particular
has been highlighted as an area where ML can significantly impact the operation of accelerators.
These algorithms work by identifying subtle behaviors of key variables prior to negative events.
Efforts to apply ML to anomaly detection have largely focused on subsystems such as RF cavities,
superconducting magnets, and losses in rings. However, dedicated efforts to understand how to
apply ML for anomaly detection in linear accelerators have been limited. In this paper the use
of autoencoders is explored to identify anomalous behavior in measured data from the Fermilab
low-energy linear accelerator.
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1. Introduction

In recent years machine learning (ML) has been identified as having the potential for
significant impact on the modeling, operation, and control of particle accelerators [1,2].
These techniques are attractive due to their ability to model nonlinear behavior, interpolate
on complicated surfaces, and adapt to system changes over time.

Neural networks have been applied to accelerator diagnostics to provide predictions
for destructive diagnostics when the diagnostic is not inserted into the beam-line [3,4].
Neural networks have also been used for a range of machine tuning problems through
the generation of inverse models [5,6]. When combined with optimization algorithms,
these inverse models have demonstrated improved switching times between operational
configurations in free-electron lasers [7]. Significant speed up has been demonstrated
in multi-objective optimization of accelerators by using neural networks as surrogate
models [8].

Anomaly detection has been highlighted as an area where ML can significantly impact
the operation of accelerators. Recent efforts have been aimed at understanding and pre-
dicting faulty behavior in superconducting RF cavities [9–11] and magnets [12]. This is of
interest due to the potentially catastrophic nature of a failure in these devices. Additionally,
ML has been used to identify and remove malfunctioning beam position monitors in the
LHC, prior to application of standard optics correction algorithms [13]. Other efforts
have sought to use ML for detection of errors in hardware installation [14]. More broadly,
machine learning for anomaly detection has been an active area of research for some time;
including the development of new frameworks for isolating anomalies in IoT scenarios [15]
and in wireless networks [16].

While many of these efforts have shown success, results of more global fault prediction
have been limited. A recent effort at J-PARC utilized the System Invariant Analysis
Technique to develop an operational fault prediction algorithm [17], however, results are
still preliminary and there is significant room for development in this area especially loss
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classification and fault prediction. Loss prediction has been studied at the LHC [18], but
efforts to use ML for loss classification in linear accelerators (linacs) have been limited.
Understanding loss mechanisms in linacs can be challenging as they often have limited
diagnostics. Thus, the relationship between tunable parameters and the beam transmission
can be difficult to untangle. Moreover, because the primary function of linacs is to deliver
as much current as possible to the subsequent acceleration stages, understanding the
root cause of performance degradations is critical to the experimental program of any
accelerator facility.

In this work autoencoders are used to better correlate changes in the RF cavities to the
changes in the transmission at the low energy proton linac at Fermi National Laboratory
(Fermilab). Our methodology is to train autoencoders on measurements of the amplitude
and phase signals in the RF cavities and correlate the output of the autoencoder with
changes in the amount of beam current transmitted by the linac. In the first section a brief
overview of autoencoders, followed by some background on the linac is given. Results
of principal component analysis, using an autoencoder, are shown and then compared
with traditional methods in the second section. Finally, the quantification of anomalous
machine states is demonstrated using the autoencoder reconstruction error. In each case
the autoencoder analysis displays a larger correlation between the beam current of the
linac and the amplitude and phase signals in the cavities than is evident by conventional
analysis. This result indicates that changes in the beam current can be attributed to a
change in state of the corresponding RF cavities.

2. Materials and Methods
2.1. Autoencoders

Autoencoders are a class of neural networks that effectively learn an identity transfor-
mation on a specified dataset while subsequently reducing its dimensionally. A schematic
of an autoencoder is shown in Figure 1. Here the number of nodes is steadily decreased in
the encoder section (Blue). The encoded dimension (Orange), also referred to as the latent
space, is the minimum number of nodes. The number of nodes per layer then increases in
the decoder section (Green) to reproduce the input data. The base dimensionality of the
dataset is determined by the number of nodes at the encoded dimension. Typically the
encode and decode sections of the network are symmetric.

Figure 1. Schematic diagram of an autoencoder. A properly trained autoencoder will correctly
reconstruct the input data while reducing the overall dimensionality.

Autoencoders are commonly used in two configurations. One configuration is the
direct analysis of the latent space. This is accomplished by removing the decoder section
from the network and analyzing the output of the latent space nodes directly, as shown in
Figure 2.
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Figure 2. Encoder with latent space output highlighted in orange. When applying autoencoders
for dimensionality reduction, the decoder section of the trained neural network is removed and the
output of the latent space is analyzed directly.

The second configuration, shown in Figure 3, is used to quantify the relationship
between a training dataset and a test dataset. Here one evaluates the ability for the
autoencoder to reconstruct a given input data set.

Figure 3. Schematic of autoencoder being used for anomaly detection. Once trained on x input data
the autoencoder can be used on new data x̄. The root mean squared error of this reconstruction
provides a metric for how similar the new data are to the training data.

While autoencoders have fairly broad applicability in ML, here they are employed
for nonlinear principal component analysis (PCA) [19], or for reconstruction analysis. Due
to the transformation being inherently nonlinear, the information encoded in the reduced
dimensionality space may contain more information, as compared with traditional PCA
methods. Additionally, when anomalous behavior is not well understood or not well
sampled, an autoencoder can be trained on so-called “good data”. The ability of the
autoencoder to reconstruct new data provides a quantitative metric for how similar the
new data are to the “good data”. In this work both latent space analysis and reconstruction
error—for identifying fundamental changes—were explored in data taken from diagnostics
in the Fermilab linac. It is shown that autoencoders could capture relationships that were
not easily detectable with other, more traditional, methods.

2.2. Overview of the Fermilab Linac

The Fermilab linac accelerates H− ions from the 35 keV ion source to 400 MeV for
injection into the Booster Synchrotron. From the Booster ions are stripped of their electrons
and accelerated to 8 GeV for use in experiments or accelerated further for high-energy
experiments. The linac consists of three accelerator sections. First, a Radio Frequency
Quadrupole (RFQ) transforms the pulsed DC beam generated in the ion source into a
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bunched beam while accelerating it to 750 keV. The so-called low-energy linac is an
Alvarez style Drift Tube linac (DTL) which consists of five accelerating tanks. Each tank
receives RF power from its own klystron which operate at 201.25 MHz. This portion of
the accelerator brings the beam to 116 MeV. The high-energy linac consists of 805 MHz
coupled cavity accelerating structures and brings the beam to the final energy of 400 MeV.
For the studies in this paper we are primarily concerned with the performance of the
low-energy DTL sections. A schematic of the linac with the associated diagnostics available
in the DTL section is shown in Figure 4.

Figure 4. Hierarchical schematic of the Fermilab linac.

The studies performed here utilized the diagnostic data available for the five DTL
sections. For each tank in the DTL RF amplitude and phase measurements were collated
from the control system, along with toroid measurements at the exit of each of the DTL
tanks. Here the term toroid refers to toroids in DC current transformers [20] used for taking
non-destructive measurement of the beam current. The RF control system was responsible
for generating a low level signal that was subsequently amplified and used to power the
DTL tanks [21]. Pickups inside the DTL tanks were used to measure the amplitude and
phase of RF power in each cavity. These signals were digitized and sent back to the control
system where they were logged for further analysis. These data were logged over a 22
week period ranging from October 2019 to February 2020 at 15 s intervals. Figure 5 shows
the raw RF amplitude and phase as a function of time during the whole operational period.
Figure 6 highlights the period of interest starting at week 5.
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Figure 5. Raw RF amplitude (top) and phase (bottom) for each of the five DTL tanks during the whole operational period.
Note phase measurements are not available when the RF is off.

Figure 6. RF amplitude (solid lines) and phase (dashed lines) for each of the five DTL tanks during the 15 week period of
interest. For each parameter the median has been subtracted to better illustrate the change in the parameters over time.

Figure 7 shows the toroid measurements at the exit of the DTL tanks over the whole
20 week period.
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(a)

(b)
Figure 7. (a) shows the current measurements from the low energy linac during the whole operational
period. (b) shows the current measurements from the low energy linac during the 15 week period of
interest focusing on the nominal beam current output.

It is clear from the toroid measurements that there was an abrupt change in the
machine state at week 13. A cursory analysis of the RF amplitude and phase signals
indicates that this was likely a result of changes in the RF parameters, however, a direct
comparison was difficult to make.

3. Results

The use of autoencoders was broken down into two primary areas of inquiry, dimen-
sionality reduction and reconstruction testing. For dimensionality reduction an autoen-
coder was trained on all amplitude and phase measurements during the 22 week period.
Once trained output from the latent space of the autoencoder was compared against the
toroid current measurements collected during that same period. As a baseline for compari-
son two other dimensionality reduction methods, singular value decomposition and vector
sum analysis, were also applied to the data and shown here. For the reconstruction analysis
portion, autoencoders were trained on amplitude and phase measurements taken from just
a portion 22 week data period. The trained autoencoders were then used on measurements
during the final weeks of the run. The reconstruction error was then correlated with the
toroid current measurements during those same time periods.
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3.1. Dimensionality Reduction
3.1.1. Conventional Approaches

Before developing the latent space analysis the amplitude and phase signals were
studied using vector sum and singular value decomposition (SVD) analyses. These con-
ventional approaches serve as a benchmark for the ML based approach and highlight
the advantage of an autoencoder based principal component analysis (PCA) technique.
Figure 8 shows the fractional change in the vector sum of the amplitude and phase mea-
surements as a function of time between weeks 5 and 20. Here the data from each of the
linac tanks are decomposed into their respective in-phase and quadrature components and
then added together for a net in-phase and quadrature signal.

Figure 8 shows that the variation in these signals between the beginning and end of
the study period are below 1 %.

Figure 8. Vector components of the five DTL tanks as a function of time during the study.

A running SVD was also performed on the amplitude and phase signals. The SVD
was computed in increments of 10 time samples along the period of interest. Because the
resulting singular values ranged widely in magnitude, they were scaled using a robust
scaler technique. The robust scaler removed the median and scaled the data according to
the interquartile range. Centering and scaling happened independently on each feature by
computing the relevant statistics on the samples in the data set. This ensured large changes
in small singular values would not be washed out by the small changes in large singular
values when aggregating. The scaled singular values were added and plotted as a function
of time, Figure 9.

Here the change in state of the RF cavities was even less clear than for the vector sum.
The quadrature component of the vector sum was suggestive of RF being the reason for
the change in beam current, however, the changes were small enough that the relationship
was unclear.
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Figure 9. Aggregate singular value decomposition of the amplitude and phase measurements plotted
as a function of time during the period of interest.

3.1.2. Latent Space Analysis

For the latent space analysis, the autoencoders were trained on the amplitude and
phase data from all five linac tanks. Prior to training the same robust scaler technique as
before was used. Once scaled, the time series data are split into disjoint training and vali-
dation sets. Approximately 140 × 103 samples were used for training with approximately
60 × 103 for validation. The batch size was 20 × 103 which yielded seven batches per epoch.
When training the networks an epoch was an iteration of the optimizer. Training was run
on one batch at a time. Therefore at any given time the weights were only updated using
the data in the batch. During each epoch the training iterated over all seven batches. The
autoencoders were constructed using Keras [22] and rectified linear units were used as the
activation functions. For regularization 30 % Gaussian noise was applied at each layer.

Different architectures using one, two, and three principal components were compared,
iterating over 10 trials for each.

Figure 10 shows the loss as a function of epoch for the training and validation sets for
the three different architectures. These results were averaged over the 10 trials.

Figure 10. Loss as a function of epoch for the training and validation sets averaged over 10 trials.
The training and validation sets are the same for all trials.
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From Figure 10 it is clear that more than one encoded dimension was required to
represent our dataset. The increase from two to three encoded nodes, however, showed
comparatively small improvements. For simplicity when comparing the results with
other methods two encoded nodes were used for the remainder of the analysis. Figure 11,
shows the fractional change in the encoded dimension as a function of time between
weeks 5 and 20. The fractional change was computed relative to the median value of each
encoded dimension.

Figure 11. Fractional change in the encoded dimensions as a function of time. Top and bottom are autoencoders with the
same architecture but with different random initial weights. The same training and validation set were used to train these
two networks.

There was a discrete change in the encoded dimensions for both studies around week
12.5. This aligned with the discrete change in the beam current seen in Figure 7. As the
amplitudes and phases are being changed leading up to week 18, the principal components
continued to vary in a way that was somewhat correlated with the changes seen in Figure 6.
However, at around week 17.5 the parameters settled on a new value that was significantly
different from the initial values. A direct comparison between the latent space analysis
and the vector sum analysis is shown in Figure 12. Here, a rolling average and standard
deviation of 100 points was computed for the normalized latent space parameters and the
normalized vector sum components.
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Figure 12. Top: rolling standard deviation of 100 points for the normalized latent space parameters and normalized vector
sum components. Bottom: rolling average of 100 points for the normalized latent space parameters and normalized vector
sum components. Top and bottom plots reference the same datasets. In-phase and quadrature components of the RF are the
same as Figure 8, and latent space parameters correspond to those in the bottom of Figure 11.

The latent space parameters varied lightly between weeks 5 and 11 at which point
there was an abrupt change. At the end of the operational period, from week 17.5 and on,
the latent space settled to a new state that changed by 50% from the period covering weeks
12.5 through 17.5. The change in the vector sum for the same operational period was less
than 1%. For copper RF structures such as the one studied in this paper, a change in the
vector sum of less than 1% would not raise concerns for operators or experts. However the
large change in the latent space provides experts and operators alike with an improved
diagnostic about the combined health of the linac section.

3.2. Reconstruction Analysis

Here autoencoders were used to quantify the similarity of amplitude and phase
measurements taken during two different periods of linac operation. This simulatedd a
scenerio where an autoencoder was trained on a period of known good operation and
tested on a new operational period. Two cases were considered: in the first case training
and validation data were taken only from weeks 5 to 10, and for the second case data from
weeks 5 to 15 were used for training and validation. The first 5 weeks of operation were
omitted as the machine was not yet in a stable configuration. For each case autoencoders
were trained to compress and reconstruct the amplitude and phase measurements over
the given period. The trained autoencoders were then used to process data taken from
later during operation. For the first case testing data were taken from weeks 10 to 20. In
the second case only data from weeks 15 to 20 were used. The error in the autoencoder
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reconstruction was then correlated to the observed changes in the beam current of the low
energy linac. Different loss functions, network architectures, and activation functions were
examined for the autoencoder. The results presented here utilize rectified linear units for
the activation function, Gaussian noise layers for regularization, mean squared error for
the loss function, and a symmetric network topology that stepped down from 30 nodes to
10 in increments of 10 then a six node layer and a variable encoded dimension depending
on the study in question.

Figure 13 shows validation loss for autoencoders trained on data from weeks 5 to 10.
While in all cases the loss curves showed a fast convergence, when there were more than
two latent space dimensions there was significant variability in the loss with time.

Figure 13. Loss as a function of epoch for the validation set when training on 5 weeks of data.

Figure 14 shows the reconstruction error as a function of time for the validation data
and the test data. The caption denotes how many weeks were used for training. Blue
denotes the validation data and orange indicates the test data. For each case the increase in
latent space dimension correlated with a decrease in the local spread of the reconstruction
error both within the validation data and within the test data up to four latent space
dimensions. With five latent space dimensions the spread increased again. In all cases,
there was an abrupt change in the reconstruction error around week 13 and an offset in the
reconstruction error from weeks 18 to 20. This offset correlated directly to the decrease in
beam current observed in the linac.
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Figure 14. Root Mean Squared (RMS) reconstruction error as a function of time for the autoencoder trained on data from
weeks 5 to 10 and tested on weeks 10 to 20.

Figure 15 shows the validation loss as a function of epoch for the second case where
the autoencoder was trained and validated on data from weeks 5 to 15 and tested on the
final 5 weeks. Here it is seen that there is a more direct relationship between the number of
latent space dimensions and validation loss. As the number of latent space dimensions
increased the validation loss improved until there were signs of over fitting with five latent
space dimensions.

Figure 16 shows the RMS reconstruction error as a function of time for the second case.
Here the validation data are depicted in green and the test data are shown in red. The
caption denotes the number of weeks used for training and validation. As with Figure 14 the
reconstruction error was low during the training period and the spread in the error decreased
as we increased the number of latent space dimensions. After week 15 there was a steady
increase in the reconstruction error which stabilized to an offset during weeks 18 to 20.
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Figure 15. Loss as a function of epoch for the validation set when training on 10 weeks of data.

Figure 16. Root Mean Squared (RMS) reconstruction error as a function of time for the autoencoder trained on data from
weeks 5 to 15 and tested on weeks 15 to 20.
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4. Discussion

When performing a direct analysis of the latent space it was seen that there are very
clear indicators of fundamental changes in the amplitudes and phases of the linac section.
These changes were not born out in either the vector sum or SVD analyses of the data.
The correlation coefficient between the beam current and the latent space parameters was
computed and compared with the direct correlation between the RF parameters and the
beam current. In this case the latent space was 10% more correlated with the change in
current than the raw amplitude and phase measurements. This indicates that the change in
cavity amplitude and phase is related to the change in the beam current in a way that is
not made obvious through conventional analysis.

This result is further supported by the reconstruction tests. Figure 17 shows an overlay
of the results presented in Figures 14 and 16. As expected the reconstruction error diverges
in the weeks where one is trained on more data than the other, the two cases converge in
week 17 to the same offset that is present from weeks 18 to 20. Not only do both cases have
the same steady state value, but the fine structure in the reconstruction error is borne out
in both cases.

Figure 17. Root Mean Squared (RMS) reconstruction error as a function of time for the two autoencoders. Orange/Blue was
trained and validated on the first 5 weeks of data while Red/Green was trained and validated on 10 weeks of data. Orange
is the Blue network tested on 10 weeks of data and Red is the Green network tested on the 5 weeks of data.
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Furthermore, the correlation coefficient between the beam current and the recon-
struction error were computed for each case and showed the same 10 % increase in the
correlation as compared to the raw correlation between the beam current and the cavity
amplitude and phase signals. This result further indicates that there are fundamental
differences in the state of the RF cavities between the end of the 20 week period and the
beginning of the 20 week period that are not captured by conventional analysis techniques.

Directly comparing the fractional change measurements from the vector sum analysis
in Figure 8 and autoencoder latent variables in Figure 11, the latent variable distribution
clearly shows a much higher degree of non-stationary behavior as compared to conven-
tional analysis methods. Comparing the shift in average value (see Figure 12) of the signal
from the period from around 12.5 to 17 shows that the autoencoder has a 10 fold greater
difference in fractional change as compared to the vector sum method.

5. Conclusions

In this paper autoencoders have been used as a means of anomaly detection and
root cause analysis in the Fermilab linac. Specifically, the use of autoencoders for latent
space analysis and as a tool to measure similarity of machine states were examined. When
comparing the autoencoder to a traditional SVD or vector sum based analysis the autoen-
coder outperformed these tools when it came to discriminating between different machine
states. Moreover, a 10% increase in the correlation between the latent space parameters
and the beam current supports the claim that a change in the RF system is the cause of
the drop in beam current. The RF system of the linac [23,24] relies on reference signals to
maintain phase stability between the accelerated proton beam and RF wave in each tank.
A sudden jump in the phase of a reference signal could be the cause of this anomaly. A
change in the reference signal might not show up in the vector sum signals but would
represent a fundamental change in the amplitude and phase measurements that result in
lower beam current out of the linac. A new relationship between the phase and amplitude
settings as indicated by the latent space analysis suggests the RF parameters are indeed in
different configuration.

Furthermore this work demonstrates that the latent space representation of the ampli-
tude and phase signals is inherently more sensitive to changes than conventional aggre-
gation methods. Thus providing operators with a clearer picture of when the machine is
operating normally or abnormally. Moreover, the reconstruction analysis shows similar
sensitivity and provides a concise picture of when the machine is operating normally versus
abnormally. In both the latent space analysis and the reconstruction analysis the sensitivity
to a change in state was 10 fold higher than conventional techniques. An autoencoder
trained on data collected during normal operations would be a valuable tool for quickly
diagnosing if the machine is in a normal state or which subsystems are experiencing anoma-
lies. In the Fermilab linac specifically, one could build autoencoder representations for each
of the three primary acceleration stages and evaluate the reconstruction error over time.
This reduces the number of observables for healthy operations from dozens to three. This
work has demonstrated that autoencoder representations of the machine are superior to
traditional dimensionality reduction techniques and can provide operators with a concise
picture about the overall health of the machine.
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ML machine learning
RF radio frequency
Fermilab Fermi National Laboratory
linac linear accelerator
IoT internet of things
LHC Large Hadron Collider
J-PARC Japan Proton Accelerator Research Complex
PCA principal component analysis
DC direct current
RFQ radio-frequency quadrupole
DTL drift tube linac
RMS root mean square
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