
 information

Article

Vectorization of Floor Plans Based on EdgeGAN

Shuai Dong 1, Wei Wang 1,2, Wensheng Li 1 and Kun Zou 1,*

����������
�������

Citation: Dong, S.; Wang, W.; Li, W.;

Zou, K. Vectorization of Floor Plans

Based on EdgeGAN. Information 2021,

12, 206. https://doi.org/10.3390/

info12050206

Academic Editor: Gianluca Valentino

Received: 3 April 2021

Accepted: 11 May 2021

Published: 12 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528400, China;
dongshuai@zsc.edu.cn (S.D.); 2112004214@mail2.gdut.edu.cn (W.W.); lws7166@126.com (W.L.)

2 School of Automation, Guangdong University of Technology, Guangzhou 510006, China
* Correspondence: cszoukun@zsc.edu.cn

Abstract: A 2D floor plan (FP) often contains structural, decorative, and functional elements and
annotations. Vectorization of floor plans (VFP) is an object detection task that involves the localization
and recognition of different structural primitives in 2D FPs. The detection results can be used to
generate 3D models directly. The conventional pipeline of VFP often consists of a series of carefully
designed complex algorithms with insufficient generalization ability and suffer from low computing
speed. Considering the VFP is not suitable for deep learning-based object detection frameworks,
this paper proposed a new VFP framework to solve this problem based on a generative adversarial
network (GAN). First, a private dataset called ZSCVFP is established. Unlike current public datasets
that only own not more than 5000 black and white samples, ZSCVFP contains 10,800 colorful samples
disturbed by decorative textures in different styles. Second, a new edge-extracting GAN (EdgeGAN)
is designed for the new task by formulating the VFP task as an image translation task innovatively
that involves the projection of the original 2D FPs into a primitive space. The output of EdgeGAN is a
primitive feature map, each channel of which only contains one category of the detected primitives in
the form of lines. A self-supervising term is introduced to the generative loss of EdgeGAN to ensure
the quality of generated images. EdgeGAN is faster than the conventional and object-detection-
framework-based pipeline with minimal performance loss. Lastly, two inspection modules that are
also suitable for conventional pipelines are proposed to check the connectivity and consistency of
PFM based on the subspace connective graph (SCG). The first module contains four criteria that
correspond to the sufficient conditions of a fully connected graph. The second module that classifies
the category of all subspaces via one single graph neural network (GNN) should be consistent with
the text annotations in the original FP (if available). The reason is that GNN treats the adjacent matrix
of SCG as weights directly. Thus, GNN can utilize the global layout information and achieve higher
accuracy than other common classifying methods. Experimental results are given to illustrate the
efficiency of the proposed EdgeGAN and inspection approaches.

Keywords: generative and adversarial networks; connective graph; graph neural networks

1. Introduction

A 2D floor plan (FP) often contains structural, decorative, and functional elements
and annotations. Figure 1 depicts that the vectorization of FP (VFP) aims to detect different
structural primitives in the FP and assemble them into one 2D floor vector graph (FVG) that
can be stretched into a 3D model. Manual methods often require meticulous measurements;
thus, VFP has attracted remarkable attention for the past 20 years [1]. VFP is always a
challenge because of the diversity of drawing styles and standards.

The conventional pipeline of VFP [2] (Figure 2) relies on a sequence of low-level image
processing heuristics. Many researchers have devoted themselves to designing complicated
algorithms to parse the local geometric constructions and retrieve structural elements based
on drawing features and pixel information. Lu et al. proposed a self-incremental axis-net-
based hierarchical recognition model to recognize dimensions, coordinate systems, and
structural components [3], and integrate architectural information dispersed in multiple

Information 2021, 12, 206. https://doi.org/10.3390/info12050206 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://www.mdpi.com/article/10.3390/info12050206?type=check_update&version=1
https://doi.org/10.3390/info12050206
https://doi.org/10.3390/info12050206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12050206
https://www.mdpi.com/journal/information

Information 2021, 12, 206 2 of 16

drawings and tables under the guidance of semantics and prior domain knowledge [4].
In their later work [5], the concept of primitive recognition and integration was proposed
for the first time. Zhu [6] proposed a shape-operation graph to recognize walls and parse
the topology of the entire layout based on structural primitives. Jiang [7] focused on the
recovery of distortion to obtain the exact size. Gimenez et al. [8] also discussed methods that
can be used to recognize walls, openings, and spaces. Special segmentation and recognition
methods for text annotations, which could obtain high-level semantic information about
scale [9], measurement [10], type of subspace [11], were proposed. The text annotations
can be recognized accurately with the development of optical character recognition [12],
especially those that are based on deep learning (DL) [13].

Information 2021, 12, 206 2 of 17

(a) floor plan (b) primitives feature map (c) 3D rendering

 Figure 1. Reconstructing the 3D model from a 2D floor plan.

The conventional pipeline of VFP [2] (Figure 2) relies on a sequence of low-level im-
age processing heuristics. Many researchers have devoted themselves to designing com-
plicated algorithms to parse the local geometric constructions and retrieve structural ele-
ments based on drawing features and pixel information. Lu et al. proposed a self-incre-
mental axis-net-based hierarchical recognition model to recognize dimensions, coordinate
systems, and structural components [3], and integrate architectural information dispersed
in multiple drawings and tables under the guidance of semantics and prior domain
knowledge [4]. In their later work [5], the concept of primitive recognition and integration
was proposed for the first time. Zhu [6] proposed a shape-operation graph to recognize
walls and parse the topology of the entire layout based on structural primitives. Jiang [7]
focused on the recovery of distortion to obtain the exact size. Gimenez et al. [8] also dis-
cussed methods that can be used to recognize walls, openings, and spaces. Special seg-
mentation and recognition methods for text annotations, which could obtain high-level
semantic information about scale [9], measurement [10], type of subspace [11], were pro-
posed. The text annotations can be recognized accurately with the development of optical
character recognition [12], especially those that are based on deep learning (DL) [13].

Figure 2. Conventional pipeline of VFP.

Artificial neural networks have been applied in VFP with the development of DL.
Dodge et al. [14] used a fully convolutional neural network (CNN) to detect structural
elements and achieve a mean intersection-over-union score of 89.9\% on R-FP and 94.4\%
on the public CVC-FP dataset. Chen et al. [15] applied CNNs in translating a rasterized
image to a set of junctions that represented low-level geometric and semantic information

Figure 1. Reconstructing the 3D model from a 2D floor plan.

Information 2021, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/information

Detection and

recognition of scale

Segmentation of walls

Thinning of walls

Aligning and merging

of walls

Segmentation of bay

windows

Recognition of pillars

Recognition of doors

Recognition of ordinary

windows

End

Generate vectoring

results

Points list

Elements list

Scale

Start

Input and preprocessing

original image

Figure 2. Conventional pipeline of VFP.

Artificial neural networks have been applied in VFP with the development of DL.
Dodge et al. [14] used a fully convolutional neural network (CNN) to detect structural
elements and achieve a mean intersection-over-union score of 89.9\% on R-FP and 94.4\%
on the public CVC-FP dataset. Chen et al. [15] applied CNNs in translating a rasterized
image to a set of junctions that represented low-level geometric and semantic information
(e.g., wall corners or door endpoints). Moreover, they formulated the integer programming
to aggregate junctions into a set of simple primitives (e.g., wall lines, door lines, or icon

Information 2021, 12, 206 3 of 16

boxes) to produce an FVG with consistent constraints between topology and geometry.
DL-based object detection framework can only detect doors and windows because there is
no suitable annotation to describe the complex geometrical characteristic of architectural
primitives. Thus, they can only replace some modules of the conventional pipeline. Faster
RCNN [16] and YOLO [17], as well as other anchor-based frameworks, propose numer-
ous boxes and combined them based on intersection over union (IoU). In a PFM, walls
are described in form of lines, and if we use inflated boxes as ground truth, sloping or
curved walls cannot be localized accurately. Anchor-free frameworks, CenterNet [18], and
CornerNet [19] for instance, cannot solve this problem either. Subspaces segmentation is a
typical semantic segmentation task, which can be achieved by a Unet [20] or a generative
adversarial network (GAN) [21] in an end-to-end manner. Due to the lack of a large-scale
segmentation dataset, only one literature has exploited this method on a mixed dataset
PYTH [22], most samples of which are not public. Therefore, this study develops a special
edge extraction GAN (EdgeGAN) to detect architectural primitives, which is a compromise
between the two approaches.

GAN, which is a new learning framework for a generative model, has drawn great
attention since it was proposed by Goodfellow et al. [21] in 2014. GAN has sprouted many
branches, including conditional GAN [23,24], Wasserstein GAN [25,26], pix2pix [27], and
has been used successfully in image translation, style migration, denoising, superresolution
and repair, image matting, semantic segmentation, and dataset expansion [28,29]. GAN
is a general-purpose solution for translating an input image into a corresponding output
image with the same setting, which is mapped pixels to pixels.

One important milestone of GAN for image translation is pix2pix introduced by
Isola et al. [27], which is developed from conditional GAN [24]. The most usual architecture
of the generator is the encoder–decoder or its improved version “U-Net” with skip con-
nections between mirrored layers in the encoder and decoder stacks [20]. Wang et al. [30]
expanded pix2pix to high-resolution image synthesis and semantic manipulation by intro-
ducing a new robust adversarial learning objective together with new multiscale generator
and discriminator architectures. In another work of Wang et al. [31], a video-to-video trans-
lation framework with spatial–temporal adversarial objective achieved high-resolution,
photorealistic, and temporally coherent video results on a diverse set of input formats
including segmentation masks, sketches, and poses.

CycleGAN is another important milestone for the unpaired image-to-image transla-
tion [32]. Two independent works also proposed the same method inspired by different mo-
tivations, namely, as DuelGAN [33] or DiscoNet [34]. Pix2pix learns the forward mapping
(i.e., y = G(x)), whereas CycleGAN learns two-cycle mappings (i.e., x = F(y′) = F(G(x))
and y = G(x′) = G(F(y))) with the input x and output y unpaired. Considering that pixel-
level annotation for most tasks is impossible, CycleGAN has a wider range of applications
while requiring the training of more samples.

In this work, a new VFP framework based is proposed based on pix2pix. The main
contributions of this work are presented as follows:

(1) A colorful and larger dataset called ZSCVFP is established. Unlike current public
datasets, which only contain black and white FPs without decorative disturbance
or style variation, such as CVC-FP [14] and CubiCasa5K [35], ZSCVFP’s FPs are
drawn with decorative disturbance in different styles, thereby causing difficulty in
the extraction of primitives. The ground truth annotations in the form of points and
lines, together with the corresponding images, are provided. Furthermore, ZSCVFP
has a total of 10,800 samples. This number is higher than the 121 and 5000 samples of
CVC-FP and CubiCasa5K, respectively.

(2) VFP is formulated as an image translation task innovatively, and EdgeGAN based on
pix2pix is designed for the new task. EdgeGAN projects the FPs into the primitive
space. Each channel of the primitive feature map (PFM) only contains some lines
that represent one category of primitives. A self-supervising term is added to the
generative loss of EdgeGAN to enhance the quality of PFM. Unlike conventional

Information 2021, 12, 206 4 of 16

pipelines (even if some modules are replaced with deep-learning methods) that consist
of a series of carefully designed algorithms, EdgeGAN obtains the FVG in an end-to-
end manner. EdgeGAN is about 15 times as fast as the conventional pipeline. To the
best knowledge of the authors, this study is the first to apply GAN in VFP.

(3) Four criteria, which are sufficient conditions for a fully connected graph, are given
to inspect the connectivity of subspaces segmented from the PFM. The connective
inspection can provide auxiliary information for the designers to adjust the FVG.

(4) The graph neural network (GNN) is used to predict the categories of subspaces
segmented from the PFM. Given that GNN treats the adjacent matrix of the connective
graph as weights directly, it can utilize global layout information and achieve higher
accuracy than other common classifying methods.

This work is organized as follows. Section 2 establishes the ZSCVFP dataset and
introduces the goal of the new VFP framework. Section 3 presents the main algorithms.
Section 4 provides the experimental results. At last, Section 5 draws some conclusions.

2. Problem Description

In this section, the ZSCVFP dataset and the goal of the new VFP framework are introduced.

Framework Based on EdgeGAN

As mentioned, current public datasets are all black and white without decorative
disturbance. However, the original FPs provided by customers in practical applications are
complex and diverse. Thus, the new dataset ZSCVFP is established for this reason. ZSCVFP
contains 8800 FPs in the training set and 2000 FPs in the test set. For a given FP X ∈ Rw×h×3

where w and h are the width and height, respectively, the pseudo-annotations of walls,
windows, and doors are given in the form of a point set P = {p1, p2, · · ·} and three line sets
Lwall = {w1, w2, · · ·}, Lwindow = {v1, v2, · · ·}, and Ldoor = {d1, d2, · · ·}, respectively. The
elements of Lwall , Lwindow, and Ldoor are paired points from P . The corresponding PFM
Z ∈ Rw×h×3 is also provided in the dataset, as shown in the center subfigure of Figure 1.

The walls’ annotations are obtained by a conventional pipeline that has been devel-
oped by ourselves in a previous work. The doors and windows are annotated manually
with a tool (Figure 3). When the annotations are inconsistent, the windows and doors will
be adjusted according to the walls to keep the geometrical constraints on the primitives.
This adjustment will reduce the accuracy of annotations more or less.

In the new framework based on EdgeGAN, the generated PFM is denoted as
Y = G1(X) ∈ Rw×h×nc where nc is the number of categories of primitives to be rec-
ognized. For the dataset ZSCVFP, nc = 3. Each channel of Y is a binary image that
corresponds to one primitive category. The final goal of the task, which is to extract
H = (P ,Lwall ,Lwindow,Ldoor) from Y, is very easy if the quality of Y is good enough.

The set of text annotations detected in X is denoted as T = {t1, t2, · · · }, and the set
of subspaces extracted from Y is denoted as S = {s1, s2, · · · , sn−1, sn}. For each subspace
si, the feature vector consists of the number of windows, number of doors, ratio of area,
etc. The feature matrix S is denoted as XG ∈ Rn×m, where m is the length of the feature,
n is the number of subspaces. The probability matrix predicted by a GNN G2 is denoted
C = G2

(
XG
)
∈ Rn×n, where ns is the number of classes.

The formal representation of the new task’s goal can be summarized as follows:

(1) Design a G1 to obtain the PFM that is robust with decorative disturbances in vari-
ant styles;

(2) Search for efficient criteria to inspect whether S is fully connected;
(3) Design a GNN G2 to predict the category of subspaces.

Information 2021, 12, 206 5 of 16Information 2021, 12, 206 5 of 17

Figure 3. The annotation tool for primitives.

In the new framework based on EdgeGAN, the generated PFM is denoted as
()1

cw h nG × ×= ∈Y X  where cn is the number of categories of primitives to be recognized.

For the dataset ZSCVFP, 3cn = . Each channel of Y is a binary image that corresponds to
one primitive category. The final goal of the task, which is to extract

(), , ,wall window door=     from Y , is very easy if the quality of Y is good enough.

The set of text annotations detected in X is denoted as { }1 2, ,t t=  , and the set
of subspaces extracted from Y is denoted as { }1 2 1, , , ,n ns s s s−=  . For each subspace

is , the feature vector consists of the number of windows, number of doors, ratio of area,
etc. The feature matrix  is denoted as n m×∈X   , where m is the length of the feature,
n is the number of subspaces. The probability matrix predicted by a GNN 2G is denoted

()2
sn nG ×= ∈C X   , where sn is the number of classes.

The formal representation of the new task’s goal can be summarized as follows:
(1) Design a 1G to obtain the PFM that is robust with decorative disturbances in variant

styles;
(2) Search for efficient criteria to inspect whether  is fully connected;
(3) Design a GNN 2G to predict the category of subspaces.

3. Methods
In this section, the EdgeGAN is designed first. Then, the SCG of VFP is defined, and

some connective criteria are given based on it. Lastly, a classifying GNN for subspaces is
presented.

3.1. EdgeGAN
EdgeGAN learns a map from the input FPs X to the output Z , and Y is the

ground truth. The architecture of EdgeGAN is depicted in Figure 4. Two convolution lay-
ers, six Resnet blocks, and two deconvolution layers are connected in series with skip con-
nect, which is a typical realization of U-Net [20] that has been used widely [27].

Figure 3. The annotation tool for primitives.

3. Methods

In this section, the EdgeGAN is designed first. Then, the SCG of VFP is defined, and
some connective criteria are given based on it. Lastly, a classifying GNN for subspaces
is presented.

3.1. EdgeGAN

EdgeGAN learns a map from the input FPs X to the output Z, and Y is the ground
truth. The architecture of EdgeGAN is depicted in Figure 4. Two convolution layers, six
Resnet blocks, and two deconvolution layers are connected in series with skip connect,
which is a typical realization of U-Net [20] that has been used widely [27].

Information 2021, 12, 206 6 of 17

Figure 4. Architecture of EdgeGAN.

Two special kernels are defined as

1

0 0 0

1 1 1

0 0 0

 
 


 
  

K

, and

2

0 1 0

0 1 0

0 1 0

 
 


 
  

K

.

The generative loss function of EdgeGAN is defined as

   1 2

1
_ 1__ _ _ _

1
log ,,

N

G

i
G L lossG BCE loss G filter loss

l D F
N

 


     Y YX Z Y Z (1)

and the discriminative loss function is defined as

_
1

_ __

1
log (,) log[1 (,)],

D fake loss loss

N

D

i
D real

l D D
N 

    X Z X Y (2)

where N is the batch size and  F Y is a filter function defined as

      1 2maxpooling2D , maxpooling2D , ,0,1F clip Y Y K Y K

In the loss functions, _ _G BCE loss , _ _D fake loss , and _ _D real loss are all bi-

nary cross-entropy (BCE) loss, _ 1_G L loss and _ _G filter loss are L1 loss, and 1 and

2 are the weights for them. Those 3 BCE terms, which constitute the standard GAN loss

and are designed for the maximin optimization problem

         ~ ~
min max log log 1 ()

P P
G D

E D E D G      Y Y X X
Y X ,

guide the generator G to generate better PFM Z and the discriminator to recognize the

difference between the distribution of Z and that of the ground truth Y . Additionally,

_ 1_G L loss provides pixel-level supervision information that is suitable for a pix2pix

task. _ _G filter loss is a new term that composes a self-supervised loss about Y . In

 F Y ,  maxpooling2D ,A K composes a max-pooling operation with a kernel K on the

input multichannel image A . With those two special kernels 1K and 2K , the

maxpooling2D can extract the horizontal and vertical lines, respectively, as illustrated in

Figure 5b,c. The horizontal and vertical maps are added then. As those elements of

   1 2maxpooling2D , maxpooling2D ,Y K Y K the intersections would be bigger 1 , we de-

signed a clip function to truncate it. With the clip function  , ,clip a bA , elements of A

smaller than a become a , and elements larger than b become b . The clip operation

makes the filtered PFM still be a probability map. The adding and clipping operations

combine those lines to a new PFM, in which many isolate points have been filtered, as

illustrated in Figure 5d.

Conv1

Conv2

ResnetBlock1 ~ ResnetBlock6

DeConv1

DeConv2

Skip Connection

Figure 4. Architecture of EdgeGAN.

Two special kernels are defined as

K1 =

 0 0 0
1 1 1
0 0 0

, and K2 =

 0 1 0
0 1 0
0 1 0

.

The generative loss function of EdgeGAN is defined as

lG =
1
N

N

∑
i=1
− log D(X, Z)︸ ︷︷ ︸

G_BCE_loss

+ λ1|Y− Z|︸ ︷︷ ︸
G_L1_loss

+ λ2|Y− F(Y)|︸ ︷︷ ︸
G_ f ilter_loss

, (1)

Information 2021, 12, 206 6 of 16

and the discriminative loss function is defined as

lD =
1
N

N

∑
i=1
− log D(X, Z)︸ ︷︷ ︸

D_ f ake_loss

− log[1− D(X, Y)]︸ ︷︷ ︸
D_real_loss

, (2)

where N is the batch size and F(Y) is a filter function defined as

F(Y) = clip(maxpooling2D(Y, K1) + maxpooling2D(Y, K2), 0, 1)

In the loss functions, G_BCE_loss, D_ f ake_loss, and D_real_loss are all binary cross-
entropy (BCE) loss, G_L1_loss and G_ f ilter_loss are L1 loss, and λ1 and λ2 are the weights
for them. Those 3 BCE terms, which constitute the standard GAN loss and are designed
for the maximin optimization problem

min
G

max
D

{
EY∼P(Y)[log D(Y)] + EX∼P(X)[log(1− D(G(X)))]

}
,

guide the generator G to generate better PFM Z and the discriminator to recognize
the difference between the distribution of Z and that of the ground truth Y. Addi-
tionally, G_L1_loss provides pixel-level supervision information that is suitable for a
pix2pix task. G_ f ilter_loss is a new term that composes a self-supervised loss about
Y. In F(Y), maxpooling2D(A, K) composes a max-pooling operation with a kernel K
on the input multichannel image A. With those two special kernels K1 and K2, the
maxpooling2D can extract the horizontal and vertical lines, respectively, as illustrated
in Figure 5b,c. The horizontal and vertical maps are added then. As those elements of
maxpooling2D(Y, K1) + maxpooling2D(Y, K2) the intersections would be bigger 1, we de-
signed a clip function to truncate it. With the clip function clip(A, a, b), elements of A
smaller than a become a, and elements larger than b become b. The clip operation makes
the filtered PFM still be a probability map. The adding and clipping operations combine
those lines to a new PFM, in which many isolate points have been filtered, as illustrated
in Figure 5d.

Information 2021, 12, 206 7 of 17

With the self-supervised loss, the generator will learn to generate PFMs of higher
quality. As 1K and 2K are designed for horizontal and vertical lines, it is not going to
work for irregular walls.

(a) Y (b) ()1maxpooling2D ,Y K

(c) ()2maxpooling2D ,Y K (d) ()F Y

Figure 5. The self-supervising filter of EdgeGAN.

In each training batch, the generator and discriminator are updated alternatively. 2λ
is set to 0 in the first several epochs to keep _ 1_G L loss playing a leading role in the
initial stage of training. When the PFM can be generated roughly, the self-supervising loss
starts to come into play gradually.

3.2. Criteria for Connective Inspection
The set of subspaces extracted from a vector graph is denoted as { }1 2 1, , , ,n ns s s s−= 

, where , 1, 2, , 1is i n= − are the internal subspaces, and ns is the subspace outside the
external contour, as shown in Figures 6 and 7. As the regions annotated with “AC” in
Figure 6 are the spaces for air conditioners out of the door, they are ignored in Figures 7
and 8. The undirected graph of  can be written as { }, ,=    , where

(){ }, : ~i j i j= ∈ ×   , and (){ }, : ~i j i j= ∈ ×   . (),i j ∈  and (),j i ∈  if sub-

space i and j are connected with a door; moreover, (),i j ∈  and (),j i ∈  if sub-
space i and j are connected with a window. Denote the adjacency matrix as

n nM ×∈  . The elements ijm , 0 ,i j n≤ ≤ , of M  has the following properties:

(1) 1ijm = if (),i j ∈  ; 0 .5ijm = if (),i j ∈  ; otherwise 0ijm = ;
(2) 1iim = ;

(3) =ij jim m  , that is, M  is symmetrical.

Figure 5. The self-supervising filter of EdgeGAN.

Information 2021, 12, 206 7 of 16

With the self-supervised loss, the generator will learn to generate PFMs of higher
quality. As K1 and K2 are designed for horizontal and vertical lines, it is not going to work
for irregular walls.

In each training batch, the generator and discriminator are updated alternatively. λ2
is set to 0 in the first several epochs to keep G_L1_loss playing a leading role in the initial
stage of training. When the PFM can be generated roughly, the self-supervising loss starts
to come into play gradually.

3.2. Criteria for Connective Inspection

The set of subspaces extracted from a vector graph is denoted asS = {s1, s2, · · · , sn−1, sn},
where si, i = 1, 2, · · · , n− 1 are the internal subspaces, and sn is the subspace outside the ex-
ternal contour, as shown in Figures 6 and 7. As the regions annotated with “AC” in Figure 6
are the spaces for air conditioners out of the door, they are ignored in Figures 7 and 8. The
undirected graph of S can be written asH = {S ,D,W}, whereD = {(i, j) ∈ S × S : i ∼ j},
andW = {(i, j) ∈ S × S : i ∼ j}. (i, j) ∈ D and (j, i) ∈ D if subspace i and j are connected
with a door; moreover, (i, j) ∈ W and (j, i) ∈ W if subspace i and j are connected with a
window. Denote the adjacency matrix as MH ∈ Rn×n. The elements mHij , 0 ≤ i, j ≤ n, of

MH has the following properties:

(1) mHij = 1 if (i, j) ∈ D; mHij = 0.5 if (i, j) ∈ W ; otherwise mij = 0;

(2) mHii = 1;
(3) mHij = mHji , that is, MH is symmetrical.

Information 2021, 12, 206 8 of 17

(a) FP (b) Segmentation

Figure 6. Segmentation of FP.

Figure 7. Subspace connective graph.

3

10

5

6

78

9

11

External region

3 subspace door
window

Figure 6. Segmentation of FP.

Information 2021, 12, 206 8 of 16

Information 2021, 12, 206 8 of 17

(a) FP (b) Segmentation

Figure 6. Segmentation of FP.

Figure 7. Subspace connective graph.

3

10

5

6

78

9

11

External region

3 subspace door
window

Figure 7. Subspace connective graph.

Information 2021, 12, 206 9 of 17

Figure 8. The curve of loss.

The subgraph of  without windows and its adjacency matrix are denoted as
{ },=   and n nM ×∈  respectively. The elements 1ijm = if 1ijm = , otherwise

0ijm = . The Laplacian matrix of  is defined as
1,

{ }n
ijj j i

L diag m M
= ≠

= −  , and its eigen-

values are denoted as 1 2() () ()nL L Lλ λ λ≤ ≤ ≤   . If 2 () 0Lλ > , then  is a connected
graph.

The degree of internal and external connectivity of each subspace are denoted as
1

1

ninner
i ijj
C m−

=
= and external

i inC m= respectively. The criteria for inspection of connectivity

include the following:

(1) There is a door on the external door at least, i.e., 1

1
1n external

ii
C−

=
≥ ;

(2) The number of doors on the external doors is often less than 2, i.e., 1

1
2n external

ii
C−

=
≤ ;

(3) Each subspace except those with special architectural functionality (for example, the
regions for air condition and pipe) has at least one door, that is, 1inner

iC ≥ and

{ }1,2, ,n 11,2, , 1
max { }min 1ijji n

m
= −= −

≥
, where , 1,2, , 1i j n= − ;

(4)  is a connected graph, that is, 2 () 0Lλ > .
All those four criteria are sufficient conditions for a fully connected graph. Further-

more, Criterion (4) is the sufficient condition of Criteria (1)–(3), but its computation is
much complicated than other criteria.

l G
G

_L
1_

lo
ss

G
_f

ilt
er

_l
os

s
D

_r
ea

l_
lo

ss
D

_f
ak

e_
lo

ss

Figure 8. The curve of loss.

The subgraph without windows and its adjacency matrix are denoted as G = {S ,D}
and MG ∈ Rn×n respectively. The elements mGij = 1 if mHij = 1, otherwise mGij = 0. The

Laplacian matrix of G is defined as LG = diag
{

∑n
j=1,j 6=i mij

}
−MG , and its eigenvalues are

denoted as λ1(LG) ≤ λ2(LG) ≤ · · · ≤ λn(LG). If λ2(LG) > 0, then G is a connected graph.

Information 2021, 12, 206 9 of 16

The degree of internal and external connectivity of each subspace are denoted as
Cinner

i = ∑n−1
j=1 mij and Cexternal

i = min respectively. The criteria for inspection of connectiv-
ity include the following:

(1) There is a door on the external door at least, i.e., ∑n−1
i=1 Cexternal

i ≥ 1;
(2) The number of doors on the external doors is often less than 2, i.e., ∑n−1

i=1 Cexternal
i ≤ 2;

(3) Each subspace except those with special architectural functionality (for example,
the regions for air condition and pipe) has at least one door, that is, Cinner

i ≥ 1 and

min
i=1,2,··· ,n−1

{
max

j=1,2,··· ,n−1

{
mij
}}
≥ 1, where i, j = 1, 2, · · · , n− 1;

(4) G is a connected graph, that is, λ2
(

Lg
)
> 0.

All those four criteria are sufficient conditions for a fully connected graph. Further-
more, Criterion (4) is the sufficient condition of Criteria (1)–(3), but its computation is much
complicated than other criteria.

3.3. Classifying of Subspaces Based on GNN

A GNN with K layers is defined as

H(k+1) = σ
(

MHH(k)W(k)
)

,

where k = 1, 2, · · · , K − 1 is the index of layer, Wk ∈ Rdk−1×dk is the weight parameters
to be learned, dk is the output dimension of the kth layer of the GNN, and σ(·) is the
activation function.

The input of GNN is the feature matrix Xg ∈ Rn×m of G and the output is the
classifying probability matrix Cg ∈ Nn×ns , where m is the length of the feature, n is the
number of subspaces, and ns is the number of categories. The input dimension of the first
layer is d0 = n, and the last output is Hk = CG with dK = ns.

The BCE loss function adopted to train the GNN is as follows:

lG =
1
N ∑N

i=1−
[
HK log CG +

(
1−HK

)
log
(

1− CG
)]

(3)

where CG is the one-hot labeled category. Considering that the number of subspaces in
each VFP varies, MG is expanded to MG ∈ R20×20 with MG = diag

{
XG , I(20−n)

}
, and XG is

expanded to XG ∈ R20×20 with XG = diag
{

XG , 0(20−n)

}
. The output dimension of the last

layer becomes dK + 1 and the label vector CG =

[
CG

dk·1(20−n)×1

]
. The labels of subspace

are coded from 0 to dk − 1. Thus, the new virtual subspace is labeled with dk.

4. Experimental Results and Discussion

In this section, three experiments are conducted to illustrate the proposed methods.
First, EdgeGAN is compared with the DL-based pipeline on the ZSCCSVFP dataset. Second,
the usage of connective criteria is demonstrated by presenting an example. Lastly, the GNN
is compared with four common classifying methods to validate its advantage in terms of
structural information.

4.1. EdgeGAN

In this experiment, all training sets are executed on the hardware platform “CPU
Intel Core i9-9900K, 64 GB memory, and GPU NVIDIA RTX2080TI×2,” and the software
is “Python 3.6, Pytorch 1.4.0 [36], Cuda 10.0, and Cudnn 7.4.2 [37].” The maximal training
epoch is 220, and the batch size is 128. λ1 is always set to 10, and λ2 is set to 0 in the first
10 epochs and 100 in the subsequent epochs. The learning rate is set to 0.0002 at the first
20 epochs and decreased to 0 linearly in subsequent epochs. The training is recorded in

Information 2021, 12, 206 10 of 16

Figure 8. G_ f ilter_loss is 0 in the first 10 epochs and decreases gradually. The G_L1_loss is
stable at approximately 1.38 since the 20th epoch. Thus, it is not a suitable measurement of
accuracy. The corresponding evolutionary process of Y is depicted in Figure 9.

Information 2021, 12, 206 10 of 17

3.3. Classifying of Subspaces Based on GNN
A GNN with K layers is defined as

() () ()()1k k kσ+ =H M H W ,

where 1,2, , 1k K= − is the index of layer, 1k kd dk − ×∈ W is the weight parameters to be
learned, kd is the output dimension of the thk layer of the GNN, and ()σ ⋅ is the acti-
vation function.

The input of GNN is the feature matrix n m×∈X   of  and the output is the clas-
sifying probability matrix sn n×∈C , where m is the length of the feature, n is the
number of subspaces, and sn is the number of categories. The input dimension of the
first layer is 0d n= , and the last output is K =H C with K sd n= .

The BCE loss function adopted to train the GNN is as follows:

() ()1

1 log 1 log 1N K K
i

l
N =

 = − + − −  H C H C 
 (3)

where C is the one-hot labeled category. Considering that the number of subspaces in
each VFP varies, M  is expanded to 20 20×∈M   with ()20{ , }ndiag I −=M M  , and X 

is expanded to 20 20×∈X   with ()20{ , }ndiag −=X X 0  . The output dimension of the last

layer becomes 1Kd + and the label vector
()20 1k nd − ×

 
=  ⋅  

C
C

1



 . The labels of subspace are

coded from 0 to 1kd − . Thus, the new virtual subspace is labeled with kd .

4. Experimental Results and Discussion
In this section, three experiments are conducted to illustrate the proposed methods.

First, EdgeGAN is compared with the DL-based pipeline on the ZSCCSVFP dataset. Sec-
ond, the usage of connective criteria is demonstrated by presenting an example. Lastly,
the GNN is compared with four common classifying methods to validate its advantage in
terms of structural information.

4.1. EdgeGAN
In this experiment, all training sets are executed on the hardware platform “CPU Intel

Core i9-9900K, 64 GB memory, and GPU NVIDIA RTX2080TI×2,” and the software is “Py-
thon 3.6, Pytorch 1.4.0 [36], Cuda 10.0, and Cudnn 7.4.2 [37].” The maximal training epoch
is 220, and the batch size is 128. 1λ is always set to 10, and 2λ is set to 0 in the first 10
epochs and 100 in the subsequent epochs. The learning rate is set to 0.0002 at the first 20
epochs and decreased to 0 linearly in subsequent epochs. The training is recorded in Fig-
ure 8. _ _G filter loss is 0 in the first 10 epochs and decreases gradually. The

_ 1_G L loss is stable at approximately 1.38 since the 20th epoch. Thus, it is not a suitable
measurement of accuracy. The corresponding evolutionary process of Y is depicted in
Figure 9.

Information 2021, 12, 206 11 of 17

Figure 9. Generated images in epoch 10, 60, 110, 160, 210.

The quality of generated images can be divided into three levels:
(1) Level 1: The generated images are free from noisy points and have high-quality lines,

and the recognition accuracy of primitives is close to the conventional pipeline. The
proportion of level 1 is approximately 40%. These images can be used to obtain vector
graphics with a few manual adjustments, similar to the conventional pipeline. Figure
10 compares the number of adjusting operations that are counted by a decoration
designer on 100 FPs with level 1 results. Although the results of EdgeGAN satisfy the
requirements of the application, its performance is still slightly weaker than that of
the DL-based pipeline. The mean value of operations of the DL-based pipeline (16.50)
is close to that of EdgeGAN (16.67). However, the standard deviation of EdgeGAN
(8.34) is much larger than that of the DL-based pipeline (4.4628), which means that
the latter is more stable. Moreover, 30 PFMs generated by the DL-based pipeline need
less than eight operations, while only 21 PFMs by EdgeGAN, which means that the
former has a higher rate of excellence. The results of EdgeGAN. Considering that the
pseudo-ground truth annotations themselves are obtained on the basis of the con-
ventional pipeline and suffer from inaccuracy, the results are reasonable. The perfor-
mance of EdgeGAN can be improved if it is training on a larger and higher quality
dataset.

(2) Level 2: In addition to inaccurate primitives, some noisy points, broken lines, redun-
dancy lines, or unaligned lines are presented in the generated images, as shown in
the lines in the main body of Figure 11. The proportion of level 2 is approximately
55%. The self-supervising loss can relieve but cannot eliminate this phenomenon.
Some postprocessing methods are necessary to address these problems. Solving this
problem by using the EdgeGAN itself is direct but still challenging.

(3) Level 3: Serious defects in quality or accuracy with a proportion of approximately 5%
are observed in the sloping walls in Figure 11. The reason is that the number of sam-
ples with sloping walls is less than 100, which is much less than horizontal and ver-
tical walls.
On one single RTX2080TI, the frame rate of EdgeGAN and its postprocessing is ap-

proximately 32 fps; and the frame of the DL-based pipeline on an Intel 9900 K CPU is
approximately 2 fps. Although EdgeGAN can obtain PFM at a much higher speed, a gap
still exists between the integral accuracy and quality of generated images and the require-
ments of applications.

Figure 9. Generated images in epoch 10, 60, 110, 160, 210.

The quality of generated images can be divided into three levels:

(1) Level 1: The generated images are free from noisy points and have high-quality lines,
and the recognition accuracy of primitives is close to the conventional pipeline. The
proportion of level 1 is approximately 40%. These images can be used to obtain
vector graphics with a few manual adjustments, similar to the conventional pipeline.
Figure 10 compares the number of adjusting operations that are counted by a decora-
tion designer on 100 FPs with level 1 results. Although the results of EdgeGAN satisfy
the requirements of the application, its performance is still slightly weaker than that of
the DL-based pipeline. The mean value of operations of the DL-based pipeline (16.50)
is close to that of EdgeGAN (16.67). However, the standard deviation of EdgeGAN
(8.34) is much larger than that of the DL-based pipeline (4.4628), which means that
the latter is more stable. Moreover, 30 PFMs generated by the DL-based pipeline
need less than eight operations, while only 21 PFMs by EdgeGAN, which means that
the former has a higher rate of excellence. The results of EdgeGAN. Considering
that the pseudo-ground truth annotations themselves are obtained on the basis of
the conventional pipeline and suffer from inaccuracy, the results are reasonable. The
performance of EdgeGAN can be improved if it is training on a larger and higher
quality dataset.

(2) Level 2: In addition to inaccurate primitives, some noisy points, broken lines, redun-
dancy lines, or unaligned lines are presented in the generated images, as shown in
the lines in the main body of Figure 11. The proportion of level 2 is approximately
55%. The self-supervising loss can relieve but cannot eliminate this phenomenon.
Some postprocessing methods are necessary to address these problems. Solving this
problem by using the EdgeGAN itself is direct but still challenging.

(3) Level 3: Serious defects in quality or accuracy with a proportion of approximately
5% are observed in the sloping walls in Figure 11. The reason is that the number of
samples with sloping walls is less than 100, which is much less than horizontal and
vertical walls.

Information 2021, 12, 206 11 of 16

Information 2021, 12, 206 12 of 17

Figure 10. Comparison between conventional pipeline and EdgeGAN.

(a) FP (b) PFM

Figure 11. The undetected sloping walls.

4.2. Connectivity of Subspaces
The adjacent matrix of the vector graph in Figure 6 is as follows. Notably, subspace

1, 2, and 4 are ignored.
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 1

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

M .

Thus, the Laplacian matrix is

Figure 10. Comparison between conventional pipeline and EdgeGAN.

Information 2021, 12, 206 12 of 17

Figure 10. Comparison between conventional pipeline and EdgeGAN.

(a) FP (b) PFM

Figure 11. The undetected sloping walls.

4.2. Connectivity of Subspaces
The adjacent matrix of the vector graph in Figure 6 is as follows. Notably, subspace

1, 2, and 4 are ignored.
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 1

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

M .

Thus, the Laplacian matrix is

Figure 11. The undetected sloping walls.

On one single RTX2080TI, the frame rate of EdgeGAN and its postprocessing is
approximately 32 fps; and the frame of the DL-based pipeline on an Intel 9900 K CPU
is approximately 2 fps. Although EdgeGAN can obtain PFM at a much higher speed, a
gap still exists between the integral accuracy and quality of generated images and the
requirements of applications.

4.2. Connectivity of Subspaces

The adjacent matrix of the vector graph in Figure 6 is as follows. Notably, subspace

Information 2021, 12, 206 12 of 16

1, 2, and 4 are ignored.

MG =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 1


.

Thus, the Laplacian matrix is

LG =



−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 1 −1 −1 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0 0


.

The graph is not connected because λ2(LG) > 0. MG shows that the presence of five
unconnected loops. Other criteria can also be calculated easily with MG .

4.3. Classifying of Subspaces Based on GNN

A new dataset that contains feature matrices annotated with subspace types is es-
tablished to validate the advantage of GNN. The distributions of instances in the dataset
are listed in Table 1. The features used here include window ratio, area ratio, number
of doors, number of windows, and number of edges. Four widely used methods [38],
namely, C4.5, iterative dichotomiser 3 (ID3), basic backpropagation (BP) neural network,
and classification and regression tree (CART), are compared with GNN. The input of these
four methods is the feature vector of one subspace, which means that they can only predict
the type of one subspace independently. The input dimension of the BP network with one
hidden layer is 5, the output dimension is 7, and the number of neurons in the hidden layer
is 20. Part of the decision tree obtained by CART is shown in Figure 12.

Table 1. Number of instances in the dataset.

Training Set Test Set

master bedroom 809 200
balcony 1242 315

bathroom 1143 287
study room 174 46
living room 809 200

second bedroom 2358 587
kitchen 805 200

Only GNN considers the connective graph and achieves higher accuracy than other
methods. The results are listed in Table 2. The confusion matrices of CART and EdgeGAN
are depicted in Figures 13 and 14, respectively. The accuracies of the study room and the
kitchen are enhanced dramatically.

Information 2021, 12, 206 13 of 16Information 2021, 12, 206 14 of 17

Windows ratio <= 21.75
gini = 0.807

samples = 7340
value=[809,2358,1242,1143,809,805,174]

class = second bedroom

Number of doors <= 1.5
gini = 0.765

samples = 6098
value=[761,2358,69,1143,788,805,174]

class = second bedroom

gini = 0.0
samples = 805

value=[0,0,0,0,0,805,0]
class = living room

Area ratio <= 9.545
gini = 0.765

samples = 6098
value=[761,2358,69,1143,788,805,174]

class = second bedroom

Area ratio <= 14.558
gini = 0.106

samples = 1242
value=[48,0,1173,0,21,0,0]

class = balcony

Window ratio <= 31.236
gini = 0.02

samples = 1184
value=[48,0,1172,0,12,0,0]

class = balcony

Area ratio <= 17.276
gini = 0.291

samples = 1184
value=[48,0,1,0,9,0,0]

class = master bedroom

gini = 0.0
samples = 988

value=[0,0,988,0,0,0,0]
class = balcony

gini = 0.18
samples = 10

value=[0,0,1,0,9,0,0]
class = kitchen

Window ratio <= 30.734
gini = 0.115

samples = 196
value=[0,0,184,0,12,0,0]

class = balcony

gini = 0.0
samples = 7

value=[0,0,0,0,7,0,0]
class = balcony

Window ratio <= 24.932
gini = 0.052

samples = 189
value=[0,0,184,0,5,0,0]

class = balcony

gini = 0.0
samples = 122

value=[0,0,122,0,0,0,0]
class = balcony

Window ratio <= 24.638
gini = 0.138

samples = 67
value=[0,0,62,0,5,0,0]

class = balcony

gini = 0.0
samples = 5

value=[0,0,0,0,5,0,0]
class = kitchen

gini = 0.0
samples = 62

value=[0,0,62,0,0,0,0]
class = balcony

gini = 0.0
samples = 48

value=[48,0,0,0,0,0,0]
class = master bedroommore branches

Figure 12. Decision tree of CART.

Only GNN considers the connective graph and achieves higher accuracy than other
methods. The results are listed in Table 2. The confusion matrices of CART and EdgeGAN
are depicted in Figures 13 and 14, respectively. The accuracies of the study room and the
kitchen are enhanced dramatically.

Table 2. Accuracy of subspace decision.

Method C4.5 ID3 BP CART GNN
Accuracy 74.82% 75.49% 79.13% 79.66% 84.35%

Figure 12. Decision tree of CART.

Table 2. Accuracy of subspace decision.

Method C4.5 ID3 BP CART GNN

Accuracy 74.82% 75.49% 79.13% 79.66% 84.35%
Information 2021, 12, 206 15 of 17

Figure 13. Confusion matrix of CART.

Figure 14. Confusion matrix of GNN.

5. Conclusions

EdgeGAN generates PFM in an end-to-end manner with a frame rate of 32 fps on an

RTX2080TI GPU, which is much faster than the DL-based pipeline’s 2 fps since many

modules of the pipeline can only run on a CPU. Although the accuracy of EdgeGAN is

slightly lower than that of the DL-based pipeline, especially on sloping walls, its potential

can be further exploited if given a larger and higher quality training set. Four connective

criteria are proposed to inspect the connectivity of subspaces segmented from one FP.

Those criteria are also suitable for postprocessing the results of traditional methods and

object detection frameworks. GNN utilizes the connective information to predict the cat-

egories of subspaces and achieves 4.69% higher accuracy than other classification ap-

proaches. The category information of subspaces can be used to check with the depictive

texts of FP.

In this study, since the PFM generation and subspace segmentation are fulfilled sep-

arately, the computing speed and performance can be improved further if they are real-

ized in an end-to-end manner based on a one-stage framework. Thus, we will develop a

one-stage multitask framework that finishes primitive detection, subspace segmentation,

optical character recognition, and consistency inspection, simultaneously, in a future

Figure 13. Confusion matrix of CART.

Information 2021, 12, 206 14 of 16

Information 2021, 12, 206 15 of 17

Figure 13. Confusion matrix of CART.

Figure 14. Confusion matrix of GNN.

5. Conclusions

EdgeGAN generates PFM in an end-to-end manner with a frame rate of 32 fps on an

RTX2080TI GPU, which is much faster than the DL-based pipeline’s 2 fps since many

modules of the pipeline can only run on a CPU. Although the accuracy of EdgeGAN is

slightly lower than that of the DL-based pipeline, especially on sloping walls, its potential

can be further exploited if given a larger and higher quality training set. Four connective

criteria are proposed to inspect the connectivity of subspaces segmented from one FP.

Those criteria are also suitable for postprocessing the results of traditional methods and

object detection frameworks. GNN utilizes the connective information to predict the cat-

egories of subspaces and achieves 4.69% higher accuracy than other classification ap-

proaches. The category information of subspaces can be used to check with the depictive

texts of FP.

In this study, since the PFM generation and subspace segmentation are fulfilled sep-

arately, the computing speed and performance can be improved further if they are real-

ized in an end-to-end manner based on a one-stage framework. Thus, we will develop a

one-stage multitask framework that finishes primitive detection, subspace segmentation,

optical character recognition, and consistency inspection, simultaneously, in a future

Figure 14. Confusion matrix of GNN.

5. Conclusions

EdgeGAN generates PFM in an end-to-end manner with a frame rate of 32 fps on
an RTX2080TI GPU, which is much faster than the DL-based pipeline’s 2 fps since many
modules of the pipeline can only run on a CPU. Although the accuracy of EdgeGAN is
slightly lower than that of the DL-based pipeline, especially on sloping walls, its potential
can be further exploited if given a larger and higher quality training set. Four connective
criteria are proposed to inspect the connectivity of subspaces segmented from one FP. Those
criteria are also suitable for postprocessing the results of traditional methods and object
detection frameworks. GNN utilizes the connective information to predict the categories
of subspaces and achieves 4.69% higher accuracy than other classification approaches. The
category information of subspaces can be used to check with the depictive texts of FP.

In this study, since the PFM generation and subspace segmentation are fulfilled
separately, the computing speed and performance can be improved further if they are
realized in an end-to-end manner based on a one-stage framework. Thus, we will develop
a one-stage multitask framework that finishes primitive detection, subspace segmentation,
optical character recognition, and consistency inspection, simultaneously, in a future study.
Furthermore, to improve the quality of PFM about irregular walls, some deep activate
contour methods, such as deep snake [39] and deep level set loss [40], will also be exploited.

Author Contributions: Conceptualization, data curation, K.Z.; methodology, S.D.; project admin-
istration, W.L.; software, W.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the Guangdong Basic and Applied Basic Research Projects
(2019A1515111082, 2020A1515110504), Fund for High-Level Talents Afforded by University of Elec-
tronic Science and Technology of China, Zhongshan Institute (417YKQ12, 419YKQN15), Social
Welfare Major Project of Zhongshan (2019B2010, 2019B2011), Achievement Cultivation Project of
Zhongshan Industrial Technology Research Institute (419N26), and Young Innovative Talents Project
of Education Department of Guangdong Province (419YIY04).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Information 2021, 12, 206 15 of 16

Abbreviations
All abbreviations notations used in this work are listed below.

FP floor plans
VFP vectorization of floor plans
FVG floor vector graph
PFM primitive feature map
SCG subspace connective graph
GAN generative adversarial network
GNN graph neural network
EdgeGAN edge extraction GAN
ZSCVFP private dataset established by us

References
1. Lewis, R.; Séquin, C. Generation of 3D building models from 2D architectural plans. Comput. Aided Des. 1998, 30, 765–779.

[CrossRef]
2. Gimenez, L.; Hippolyte, J.-L.; Robert, S.; Suard, F.; Zreik, K. Review: Reconstruction of 3D building information models from 2D

scanned plans. J. Build. Eng. 2015, 2, 24–35. [CrossRef]
3. Lu, T.; Tai, C.-L.; Su, F.; Cai, S. A new recognition model for electronic architectural drawings. Comput. Aided Des. 2005, 37,

1053–1069. [CrossRef]
4. Lu, T.; Tai, C.-L.; Bao, L.; Su, F.; Cai, S. 3D Reconstruction of Detailed Buildings from Architectural Drawings. Comput. Aided Des.

Appl. 2005, 2, 527–536. [CrossRef]
5. Lu, T.; Yang, H.; Yang, R.; Cai, S. Automatic analysis and integration of architectural drawings. Int. J. Doc. Anal. Recognit. 2006, 9,

31–47. [CrossRef]
6. Zhu, J. Research on 3D Building Reconstruction from 2D Vector Floor Plan Based on Structural Components Recognition. Master’s

Thesis, Tsinghua University, Beijing, China, 2013.
7. Jiang, Z. Research on Floorplan Image Recognition Based on Shape and Edge Features. Master’s Thesis, Harbin Institute of

Technology, Harbin, China, 2016.
8. Gimenez, L.; Robert, S.; Suard, F.; Zreik, K. Automatic reconstruction of 3D building models from scanned 2D floor plans. Autom.

Constr. 2016, 63, 48–56. [CrossRef]
9. Tombre, K.; Tabbone, S.; Pelissier, L.; Lamiroy, B.; Dosch, P. Text/Graphics Separation Revisited. In International Workshop on

Document Analysis Systems; Springer: Berlin/Heidelberg, Germany, 2002; pp. 200–211.
10. Ahmed, S.; Weber, M.; Liwicki, M.; Dengel, A. Text/Graphics Segmentation in Architectural Floor Plans. In Proceedings of the

2011 International Conference on Document Analysis and Recognition, Beijing, China, 18–21 September 2011; pp. 734–738.
11. Ahmed, S.; Liwicki, M.; Weber, M.; Dengel, A. Automatic Room Detection and Room Labeling from Architectural Floor Plans. In

Proceedings of the 10th IAPR International Workshop on Document Analysis Systems, Gold Coast, Australia, 27–29 March 2012;
pp. 339–343.

12. Smith, R. An overview of the Tesseract OCR engine. In Proceedings of the Ninth International Conference on Document Analysis
and Recognition (ICDAR 2007), Curitiba, Brazil, 23–26 September 2007; Volume 2, pp. 629–633.

13. Long, S.; He, X.; Yao, C. Scene Text Detection and Recognition: The Deep Learning Era. Int. J. Comput. Vis. 2021, 129, 161–184.
[CrossRef]

14. Dodge, S.; Xu, J.; Stenger, B. Parsing floor plan images. In Proceedings of the 2017 Fifteenth IAPR International Conference on
Machine Vision Applications (MVA), Nagoya, Japan, 8–12 May 2017; pp. 358–361.

15. Liu, C.; Wu, J.; Kohli, P.; Furukawa, Y. Raster-to-Vector: Revisiting Floorplan Transformation. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2214–2222.

16. Ren, S.; He, K.; Girshick, R.; Jian, S. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [CrossRef]

17. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arXiv:2004.10934v1.

18. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. CenterNet: Object Detection with Keypoint Triplets. arXiv 2019,
arXiv:1904.08189v1.

19. Law, H.; Deng, J. CornerNet: Detecting Objects as Paired Keypoints. arXiv 2019, arXiv:1808.01244v2.
20. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham, Switzerland, 5–9 October
2015; pp. 234–241.

21. Goodfellow, I.J.; Pouget-abadie, J.; Mirza, M.; Xu, B.; Warde-farley, D. Generative Adversarial Nets. arXiv 2014, arXiv:1406.2661v1.
22. Sandelin, F. Semantic and Instance Segmentation of Room Features in Floor Plans Using Mask R-CNN. Master’s Thesis, Uppsala

University, Uppsala, Sweden, 2019.
23. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784v1.

http://doi.org/10.1016/S0010-4485(98)00031-1
http://doi.org/10.1016/j.jobe.2015.04.002
http://doi.org/10.1016/j.cad.2004.11.004
http://doi.org/10.1080/16864360.2005.10738402
http://doi.org/10.1007/s10032-006-0029-6
http://doi.org/10.1016/j.autcon.2015.12.008
http://doi.org/10.1007/s11263-020-01369-0
http://doi.org/10.1109/TPAMI.2016.2577031

Information 2021, 12, 206 16 of 16

24. Odena, A.; Olah, C.; Shlens, J. Conditional Image Synthesis with Auxiliary Classifier GANs. In Proceedings of the International
Conference on Machine Learning, ICML 2017, Sydney, Australia, 6–11 August 2017; Volume 6, pp. 4043–4055.

25. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875v3.
26. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved Training of Wasserstein GANs. arXiv 2017,

arXiv:1704.00028v3.
27. Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976.
28. Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative Adversarial Networks: An

Overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [CrossRef]
29. Hong, Y.; Hwang, U.; Yoo, J.; Yoon, S. How Generative Adversarial Networks and Their Variants Work. ACM Comput. Surv. 2019,

52, 1–43. [CrossRef]
30. Wang, T.C.; Liu, M.Y.; Zhu, J.Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-Resolution Image Synthesis and Semantic Manipulation

with Conditional GANs. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29
October 2017; pp. 8798–8807.

31. Wang, T.; Liu, M.; Zhu, J.; Liu, G.; Tao, A.; Kautz, J.; Catanzaro, B. Video-to-Video Synthesis. arXiv 2018, arXiv:1808.06601v2.
32. Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks.

In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017;
pp. 2242–2251.

33. Yi, Z.; Zhang, H.; Tan, P.; Gong, M. DualGAN: Unsupervised Dual Learning for Image-to-Image Translation. In Proceedings of
the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2868–2876.

34. Kim, T.; Cha, M.; Kim, H.; Kwon, J.; Jiwon, L. Learning to Discover Cross-Domain Relations with Generative Adversarial
Networks. arXiv 2017, arXiv:1703.05192.

35. Kalervo, A.; Ylioinas, J.; Häikiö, M.; Karhu, A.; Kannala, J. CubiCasa5K: A Dataset and an Improved Multi-task Model for
Floorplan Image Analysis. arXiv 2019, arXiv:1904.01920.

36. Facebook. Available online: https://Pytorch.Org/ (accessed on 13 October 2020).
37. Nvidia. Available online: https://Developer.Nvidia.Com/Zh-Cn/Cuda-Toolkit (accessed on 25 June 2020).
38. Li, H. Statistical Learning Method; Tsinghua Press: Beijing, China, 2019.
39. Zambaldi, V.; Raposo, D.; Santoro, A.; Bapst, V. Relational Deep Reinforcement Learning. arXiv 2018, arXiv:1806.01830v2.
40. Kim, Y.; Kim, S.; Kim, T.; Kim, C. CNN-Based Semantic Segmentation Using Level Set Loss. In Proceedings of the 2019 IEEE

Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 8–10 January 2019; pp. 1752–1760.

http://doi.org/10.1109/MSP.2017.2765202
http://doi.org/10.1145/3301282
https://Pytorch.Org/
https://Developer.Nvidia.Com/Zh-Cn/Cuda-Toolkit

	Introduction
	Problem Description
	Methods
	EdgeGAN
	Criteria for Connective Inspection
	Classifying of Subspaces Based on GNN

	Experimental Results and Discussion
	EdgeGAN
	Connectivity of Subspaces
	Classifying of Subspaces Based on GNN

	Conclusions
	References

