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Abstract: A 2D floor plan (FP) often contains structural, decorative, and functional elements and
annotations. Vectorization of floor plans (VFP) is an object detection task that involves the localization
and recognition of different structural primitives in 2D FPs. The detection results can be used to
generate 3D models directly. The conventional pipeline of VFP often consists of a series of carefully
designed complex algorithms with insufficient generalization ability and suffer from low computing
speed. Considering the VFP is not suitable for deep learning-based object detection frameworks,
this paper proposed a new VFP framework to solve this problem based on a generative adversarial
network (GAN). First, a private dataset called ZSCVFP is established. Unlike current public datasets
that only own not more than 5000 black and white samples, ZSCVFP contains 10,800 colorful samples
disturbed by decorative textures in different styles. Second, a new edge-extracting GAN (EdgeGAN)
is designed for the new task by formulating the VFP task as an image translation task innovatively
that involves the projection of the original 2D FPs into a primitive space. The output of EdgeGAN is a
primitive feature map, each channel of which only contains one category of the detected primitives in
the form of lines. A self-supervising term is introduced to the generative loss of EdgeGAN to ensure
the quality of generated images. EdgeGAN is faster than the conventional and object-detection-
framework-based pipeline with minimal performance loss. Lastly, two inspection modules that are
also suitable for conventional pipelines are proposed to check the connectivity and consistency of
PFM based on the subspace connective graph (SCG). The first module contains four criteria that
correspond to the sufficient conditions of a fully connected graph. The second module that classifies
the category of all subspaces via one single graph neural network (GNN) should be consistent with
the text annotations in the original FP (if available). The reason is that GNN treats the adjacent matrix
of SCG as weights directly. Thus, GNN can utilize the global layout information and achieve higher
accuracy than other common classifying methods. Experimental results are given to illustrate the
efficiency of the proposed EdgeGAN and inspection approaches.

Keywords: generative and adversarial networks; connective graph; graph neural networks

1. Introduction

A 2D floor plan (FP) often contains structural, decorative, and functional elements
and annotations. Figure 1 depicts that the vectorization of FP (VFP) aims to detect different
structural primitives in the FP and assemble them into one 2D floor vector graph (FVG) that
can be stretched into a 3D model. Manual methods often require meticulous measurements;
thus, VFP has attracted remarkable attention for the past 20 years [1]. VFP is always a
challenge because of the diversity of drawing styles and standards.

The conventional pipeline of VFP [2] (Figure 2) relies on a sequence of low-level image
processing heuristics. Many researchers have devoted themselves to designing complicated
algorithms to parse the local geometric constructions and retrieve structural elements based
on drawing features and pixel information. Lu et al. proposed a self-incremental axis-net-
based hierarchical recognition model to recognize dimensions, coordinate systems, and
structural components [3], and integrate architectural information dispersed in multiple
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drawings and tables under the guidance of semantics and prior domain knowledge [4].
In their later work [5], the concept of primitive recognition and integration was proposed
for the first time. Zhu [6] proposed a shape-operation graph to recognize walls and parse
the topology of the entire layout based on structural primitives. Jiang [7] focused on the
recovery of distortion to obtain the exact size. Gimenez et al. [8] also discussed methods that
can be used to recognize walls, openings, and spaces. Special segmentation and recognition
methods for text annotations, which could obtain high-level semantic information about
scale [9], measurement [10], type of subspace [11], were proposed. The text annotations
can be recognized accurately with the development of optical character recognition [12],
especially those that are based on deep learning (DL) [13].
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Figure 2. Conventional pipeline of VFP.

Artificial neural networks have been applied in VFP with the development of DL.
Dodge et al. [14] used a fully convolutional neural network (CNN) to detect structural
elements and achieve a mean intersection-over-union score of 89.9\% on R-FP and 94.4\%
on the public CVC-FP dataset. Chen et al. [15] applied CNNs in translating a rasterized
image to a set of junctions that represented low-level geometric and semantic information
(e.g., wall corners or door endpoints). Moreover, they formulated the integer programming
to aggregate junctions into a set of simple primitives (e.g., wall lines, door lines, or icon
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boxes) to produce an FVG with consistent constraints between topology and geometry.
DL-based object detection framework can only detect doors and windows because there is
no suitable annotation to describe the complex geometrical characteristic of architectural
primitives. Thus, they can only replace some modules of the conventional pipeline. Faster
RCNN [16] and YOLO [17], as well as other anchor-based frameworks, propose numer-
ous boxes and combined them based on intersection over union (IoU). In a PFM, walls
are described in form of lines, and if we use inflated boxes as ground truth, sloping or
curved walls cannot be localized accurately. Anchor-free frameworks, CenterNet [18], and
CornerNet [19] for instance, cannot solve this problem either. Subspaces segmentation is a
typical semantic segmentation task, which can be achieved by a Unet [20] or a generative
adversarial network (GAN) [21] in an end-to-end manner. Due to the lack of a large-scale
segmentation dataset, only one literature has exploited this method on a mixed dataset
PYTH [22], most samples of which are not public. Therefore, this study develops a special
edge extraction GAN (EdgeGAN) to detect architectural primitives, which is a compromise
between the two approaches.

GAN, which is a new learning framework for a generative model, has drawn great
attention since it was proposed by Goodfellow et al. [21] in 2014. GAN has sprouted many
branches, including conditional GAN [23,24], Wasserstein GAN [25,26], pix2pix [27], and
has been used successfully in image translation, style migration, denoising, superresolution
and repair, image matting, semantic segmentation, and dataset expansion [28,29]. GAN
is a general-purpose solution for translating an input image into a corresponding output
image with the same setting, which is mapped pixels to pixels.

One important milestone of GAN for image translation is pix2pix introduced by
Isola et al. [27], which is developed from conditional GAN [24]. The most usual architecture
of the generator is the encoder–decoder or its improved version “U-Net” with skip con-
nections between mirrored layers in the encoder and decoder stacks [20]. Wang et al. [30]
expanded pix2pix to high-resolution image synthesis and semantic manipulation by intro-
ducing a new robust adversarial learning objective together with new multiscale generator
and discriminator architectures. In another work of Wang et al. [31], a video-to-video trans-
lation framework with spatial–temporal adversarial objective achieved high-resolution,
photorealistic, and temporally coherent video results on a diverse set of input formats
including segmentation masks, sketches, and poses.

CycleGAN is another important milestone for the unpaired image-to-image transla-
tion [32]. Two independent works also proposed the same method inspired by different mo-
tivations, namely, as DuelGAN [33] or DiscoNet [34]. Pix2pix learns the forward mapping
(i.e., y = G(x)), whereas CycleGAN learns two-cycle mappings (i.e., x = F(y′) = F(G(x))
and y = G(x′) = G(F(y))) with the input x and output y unpaired. Considering that pixel-
level annotation for most tasks is impossible, CycleGAN has a wider range of applications
while requiring the training of more samples.

In this work, a new VFP framework based is proposed based on pix2pix. The main
contributions of this work are presented as follows:

(1) A colorful and larger dataset called ZSCVFP is established. Unlike current public
datasets, which only contain black and white FPs without decorative disturbance
or style variation, such as CVC-FP [14] and CubiCasa5K [35], ZSCVFP’s FPs are
drawn with decorative disturbance in different styles, thereby causing difficulty in
the extraction of primitives. The ground truth annotations in the form of points and
lines, together with the corresponding images, are provided. Furthermore, ZSCVFP
has a total of 10,800 samples. This number is higher than the 121 and 5000 samples of
CVC-FP and CubiCasa5K, respectively.

(2) VFP is formulated as an image translation task innovatively, and EdgeGAN based on
pix2pix is designed for the new task. EdgeGAN projects the FPs into the primitive
space. Each channel of the primitive feature map (PFM) only contains some lines
that represent one category of primitives. A self-supervising term is added to the
generative loss of EdgeGAN to enhance the quality of PFM. Unlike conventional
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pipelines (even if some modules are replaced with deep-learning methods) that consist
of a series of carefully designed algorithms, EdgeGAN obtains the FVG in an end-to-
end manner. EdgeGAN is about 15 times as fast as the conventional pipeline. To the
best knowledge of the authors, this study is the first to apply GAN in VFP.

(3) Four criteria, which are sufficient conditions for a fully connected graph, are given
to inspect the connectivity of subspaces segmented from the PFM. The connective
inspection can provide auxiliary information for the designers to adjust the FVG.

(4) The graph neural network (GNN) is used to predict the categories of subspaces
segmented from the PFM. Given that GNN treats the adjacent matrix of the connective
graph as weights directly, it can utilize global layout information and achieve higher
accuracy than other common classifying methods.

This work is organized as follows. Section 2 establishes the ZSCVFP dataset and
introduces the goal of the new VFP framework. Section 3 presents the main algorithms.
Section 4 provides the experimental results. At last, Section 5 draws some conclusions.

2. Problem Description

In this section, the ZSCVFP dataset and the goal of the new VFP framework are introduced.

Framework Based on EdgeGAN

As mentioned, current public datasets are all black and white without decorative
disturbance. However, the original FPs provided by customers in practical applications are
complex and diverse. Thus, the new dataset ZSCVFP is established for this reason. ZSCVFP
contains 8800 FPs in the training set and 2000 FPs in the test set. For a given FP X ∈ Rw×h×3

where w and h are the width and height, respectively, the pseudo-annotations of walls,
windows, and doors are given in the form of a point set P = {p1, p2, · · ·} and three line sets
Lwall = {w1, w2, · · ·}, Lwindow = {v1, v2, · · ·}, and Ldoor = {d1, d2, · · ·}, respectively. The
elements of Lwall , Lwindow, and Ldoor are paired points from P . The corresponding PFM
Z ∈ Rw×h×3 is also provided in the dataset, as shown in the center subfigure of Figure 1.

The walls’ annotations are obtained by a conventional pipeline that has been devel-
oped by ourselves in a previous work. The doors and windows are annotated manually
with a tool (Figure 3). When the annotations are inconsistent, the windows and doors will
be adjusted according to the walls to keep the geometrical constraints on the primitives.
This adjustment will reduce the accuracy of annotations more or less.

In the new framework based on EdgeGAN, the generated PFM is denoted as
Y = G1(X) ∈ Rw×h×nc where nc is the number of categories of primitives to be rec-
ognized. For the dataset ZSCVFP, nc = 3. Each channel of Y is a binary image that
corresponds to one primitive category. The final goal of the task, which is to extract
H = (P ,Lwall ,Lwindow,Ldoor) from Y, is very easy if the quality of Y is good enough.

The set of text annotations detected in X is denoted as T = {t1, t2, · · · }, and the set
of subspaces extracted from Y is denoted as S = {s1, s2, · · · , sn−1, sn}. For each subspace
si, the feature vector consists of the number of windows, number of doors, ratio of area,
etc. The feature matrix S is denoted as XG ∈ Rn×m, where m is the length of the feature,
n is the number of subspaces. The probability matrix predicted by a GNN G2 is denoted
C = G2

(
XG
)
∈ Rn×n, where ns is the number of classes.

The formal representation of the new task’s goal can be summarized as follows:

(1) Design a G1 to obtain the PFM that is robust with decorative disturbances in vari-
ant styles;

(2) Search for efficient criteria to inspect whether S is fully connected;
(3) Design a GNN G2 to predict the category of subspaces.
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3. Methods

In this section, the EdgeGAN is designed first. Then, the SCG of VFP is defined, and
some connective criteria are given based on it. Lastly, a classifying GNN for subspaces
is presented.

3.1. EdgeGAN

EdgeGAN learns a map from the input FPs X to the output Z, and Y is the ground
truth. The architecture of EdgeGAN is depicted in Figure 4. Two convolution layers, six
Resnet blocks, and two deconvolution layers are connected in series with skip connect,
which is a typical realization of U-Net [20] that has been used widely [27].
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Two special kernels are defined as

K1 =

 0 0 0
1 1 1
0 0 0

, and K2 =

 0 1 0
0 1 0
0 1 0

.

The generative loss function of EdgeGAN is defined as

lG =
1
N

N

∑
i=1
− log D(X, Z)︸ ︷︷ ︸

G_BCE_loss

+ λ1|Y− Z|︸ ︷︷ ︸
G_L1_loss

+ λ2|Y− F(Y)|︸ ︷︷ ︸
G_ f ilter_loss

, (1)
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and the discriminative loss function is defined as

lD =
1
N

N

∑
i=1
− log D(X, Z)︸ ︷︷ ︸

D_ f ake_loss

− log[1− D(X, Y)]︸ ︷︷ ︸
D_real_loss

, (2)

where N is the batch size and F(Y) is a filter function defined as

F(Y) = clip(maxpooling2D(Y, K1) + maxpooling2D(Y, K2), 0, 1)

In the loss functions, G_BCE_loss, D_ f ake_loss, and D_real_loss are all binary cross-
entropy (BCE) loss, G_L1_loss and G_ f ilter_loss are L1 loss, and λ1 and λ2 are the weights
for them. Those 3 BCE terms, which constitute the standard GAN loss and are designed
for the maximin optimization problem

min
G

max
D

{
EY∼P(Y)[log D(Y)] + EX∼P(X)[log(1− D(G(X)))]

}
,

guide the generator G to generate better PFM Z and the discriminator to recognize
the difference between the distribution of Z and that of the ground truth Y. Addi-
tionally, G_L1_loss provides pixel-level supervision information that is suitable for a
pix2pix task. G_ f ilter_loss is a new term that composes a self-supervised loss about
Y. In F(Y), maxpooling2D(A, K) composes a max-pooling operation with a kernel K
on the input multichannel image A. With those two special kernels K1 and K2, the
maxpooling2D can extract the horizontal and vertical lines, respectively, as illustrated
in Figure 5b,c. The horizontal and vertical maps are added then. As those elements of
maxpooling2D(Y, K1) + maxpooling2D(Y, K2) the intersections would be bigger 1, we de-
signed a clip function to truncate it. With the clip function clip(A, a, b), elements of A
smaller than a become a, and elements larger than b become b. The clip operation makes
the filtered PFM still be a probability map. The adding and clipping operations combine
those lines to a new PFM, in which many isolate points have been filtered, as illustrated
in Figure 5d.
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With the self-supervised loss, the generator will learn to generate PFMs of higher
quality. As K1 and K2 are designed for horizontal and vertical lines, it is not going to work
for irregular walls.

In each training batch, the generator and discriminator are updated alternatively. λ2
is set to 0 in the first several epochs to keep G_L1_loss playing a leading role in the initial
stage of training. When the PFM can be generated roughly, the self-supervising loss starts
to come into play gradually.

3.2. Criteria for Connective Inspection

The set of subspaces extracted from a vector graph is denoted asS = {s1, s2, · · · , sn−1, sn},
where si, i = 1, 2, · · · , n− 1 are the internal subspaces, and sn is the subspace outside the ex-
ternal contour, as shown in Figures 6 and 7. As the regions annotated with “AC” in Figure 6
are the spaces for air conditioners out of the door, they are ignored in Figures 7 and 8. The
undirected graph of S can be written asH = {S ,D,W}, whereD = {(i, j) ∈ S × S : i ∼ j},
andW = {(i, j) ∈ S × S : i ∼ j}. (i, j) ∈ D and (j, i) ∈ D if subspace i and j are connected
with a door; moreover, (i, j) ∈ W and (j, i) ∈ W if subspace i and j are connected with a
window. Denote the adjacency matrix as MH ∈ Rn×n. The elements mHij , 0 ≤ i, j ≤ n, of

MH has the following properties:

(1) mHij = 1 if (i, j) ∈ D; mHij = 0.5 if (i, j) ∈ W ; otherwise mij = 0;

(2) mHii = 1;
(3) mHij = mHji , that is, MH is symmetrical.
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Figure 8. The curve of loss.

The subgraph without windows and its adjacency matrix are denoted as G = {S ,D}
and MG ∈ Rn×n respectively. The elements mGij = 1 if mHij = 1, otherwise mGij = 0. The

Laplacian matrix of G is defined as LG = diag
{

∑n
j=1,j 6=i mij

}
−MG , and its eigenvalues are

denoted as λ1(LG) ≤ λ2(LG) ≤ · · · ≤ λn(LG). If λ2(LG) > 0, then G is a connected graph.
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The degree of internal and external connectivity of each subspace are denoted as
Cinner

i = ∑n−1
j=1 mij and Cexternal

i = min respectively. The criteria for inspection of connectiv-
ity include the following:

(1) There is a door on the external door at least, i.e., ∑n−1
i=1 Cexternal

i ≥ 1;
(2) The number of doors on the external doors is often less than 2, i.e., ∑n−1

i=1 Cexternal
i ≤ 2;

(3) Each subspace except those with special architectural functionality (for example,
the regions for air condition and pipe) has at least one door, that is, Cinner

i ≥ 1 and

min
i=1,2,··· ,n−1

{
max

j=1,2,··· ,n−1

{
mij
}}
≥ 1, where i, j = 1, 2, · · · , n− 1;

(4) G is a connected graph, that is, λ2
(

Lg
)
> 0.

All those four criteria are sufficient conditions for a fully connected graph. Further-
more, Criterion (4) is the sufficient condition of Criteria (1)–(3), but its computation is much
complicated than other criteria.

3.3. Classifying of Subspaces Based on GNN

A GNN with K layers is defined as

H(k+1) = σ
(

MHH(k)W(k)
)

,

where k = 1, 2, · · · , K − 1 is the index of layer, Wk ∈ Rdk−1×dk is the weight parameters
to be learned, dk is the output dimension of the kth layer of the GNN, and σ(·) is the
activation function.

The input of GNN is the feature matrix Xg ∈ Rn×m of G and the output is the
classifying probability matrix Cg ∈ Nn×ns , where m is the length of the feature, n is the
number of subspaces, and ns is the number of categories. The input dimension of the first
layer is d0 = n, and the last output is Hk = CG with dK = ns.

The BCE loss function adopted to train the GNN is as follows:

lG =
1
N ∑N

i=1−
[
HK log CG +

(
1−HK

)
log
(

1− CG
)]

(3)

where CG is the one-hot labeled category. Considering that the number of subspaces in
each VFP varies, MG is expanded to MG ∈ R20×20 with MG = diag

{
XG , I(20−n)

}
, and XG is

expanded to XG ∈ R20×20 with XG = diag
{

XG , 0(20−n)

}
. The output dimension of the last

layer becomes dK + 1 and the label vector CG =

[
CG

dk·1(20−n)×1

]
. The labels of subspace

are coded from 0 to dk − 1. Thus, the new virtual subspace is labeled with dk.

4. Experimental Results and Discussion

In this section, three experiments are conducted to illustrate the proposed methods.
First, EdgeGAN is compared with the DL-based pipeline on the ZSCCSVFP dataset. Second,
the usage of connective criteria is demonstrated by presenting an example. Lastly, the GNN
is compared with four common classifying methods to validate its advantage in terms of
structural information.

4.1. EdgeGAN

In this experiment, all training sets are executed on the hardware platform “CPU
Intel Core i9-9900K, 64 GB memory, and GPU NVIDIA RTX2080TI×2,” and the software
is “Python 3.6, Pytorch 1.4.0 [36], Cuda 10.0, and Cudnn 7.4.2 [37].” The maximal training
epoch is 220, and the batch size is 128. λ1 is always set to 10, and λ2 is set to 0 in the first
10 epochs and 100 in the subsequent epochs. The learning rate is set to 0.0002 at the first
20 epochs and decreased to 0 linearly in subsequent epochs. The training is recorded in
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Figure 8. G_ f ilter_loss is 0 in the first 10 epochs and decreases gradually. The G_L1_loss is
stable at approximately 1.38 since the 20th epoch. Thus, it is not a suitable measurement of
accuracy. The corresponding evolutionary process of Y is depicted in Figure 9.
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Figure 9. Generated images in epoch 10, 60, 110, 160, 210.

The quality of generated images can be divided into three levels:

(1) Level 1: The generated images are free from noisy points and have high-quality lines,
and the recognition accuracy of primitives is close to the conventional pipeline. The
proportion of level 1 is approximately 40%. These images can be used to obtain
vector graphics with a few manual adjustments, similar to the conventional pipeline.
Figure 10 compares the number of adjusting operations that are counted by a decora-
tion designer on 100 FPs with level 1 results. Although the results of EdgeGAN satisfy
the requirements of the application, its performance is still slightly weaker than that of
the DL-based pipeline. The mean value of operations of the DL-based pipeline (16.50)
is close to that of EdgeGAN (16.67). However, the standard deviation of EdgeGAN
(8.34) is much larger than that of the DL-based pipeline (4.4628), which means that
the latter is more stable. Moreover, 30 PFMs generated by the DL-based pipeline
need less than eight operations, while only 21 PFMs by EdgeGAN, which means that
the former has a higher rate of excellence. The results of EdgeGAN. Considering
that the pseudo-ground truth annotations themselves are obtained on the basis of
the conventional pipeline and suffer from inaccuracy, the results are reasonable. The
performance of EdgeGAN can be improved if it is training on a larger and higher
quality dataset.

(2) Level 2: In addition to inaccurate primitives, some noisy points, broken lines, redun-
dancy lines, or unaligned lines are presented in the generated images, as shown in
the lines in the main body of Figure 11. The proportion of level 2 is approximately
55%. The self-supervising loss can relieve but cannot eliminate this phenomenon.
Some postprocessing methods are necessary to address these problems. Solving this
problem by using the EdgeGAN itself is direct but still challenging.

(3) Level 3: Serious defects in quality or accuracy with a proportion of approximately
5% are observed in the sloping walls in Figure 11. The reason is that the number of
samples with sloping walls is less than 100, which is much less than horizontal and
vertical walls.
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Figure 11. The undetected sloping walls.

On one single RTX2080TI, the frame rate of EdgeGAN and its postprocessing is
approximately 32 fps; and the frame of the DL-based pipeline on an Intel 9900 K CPU
is approximately 2 fps. Although EdgeGAN can obtain PFM at a much higher speed, a
gap still exists between the integral accuracy and quality of generated images and the
requirements of applications.

4.2. Connectivity of Subspaces

The adjacent matrix of the vector graph in Figure 6 is as follows. Notably, subspace
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1, 2, and 4 are ignored.

MG =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 1


.

Thus, the Laplacian matrix is

LG =



−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 1 −1 −1 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0 0


.

The graph is not connected because λ2(LG) > 0. MG shows that the presence of five
unconnected loops. Other criteria can also be calculated easily with MG .

4.3. Classifying of Subspaces Based on GNN

A new dataset that contains feature matrices annotated with subspace types is es-
tablished to validate the advantage of GNN. The distributions of instances in the dataset
are listed in Table 1. The features used here include window ratio, area ratio, number
of doors, number of windows, and number of edges. Four widely used methods [38],
namely, C4.5, iterative dichotomiser 3 (ID3), basic backpropagation (BP) neural network,
and classification and regression tree (CART), are compared with GNN. The input of these
four methods is the feature vector of one subspace, which means that they can only predict
the type of one subspace independently. The input dimension of the BP network with one
hidden layer is 5, the output dimension is 7, and the number of neurons in the hidden layer
is 20. Part of the decision tree obtained by CART is shown in Figure 12.

Table 1. Number of instances in the dataset.

Training Set Test Set

master bedroom 809 200
balcony 1242 315

bathroom 1143 287
study room 174 46
living room 809 200

second bedroom 2358 587
kitchen 805 200

Only GNN considers the connective graph and achieves higher accuracy than other
methods. The results are listed in Table 2. The confusion matrices of CART and EdgeGAN
are depicted in Figures 13 and 14, respectively. The accuracies of the study room and the
kitchen are enhanced dramatically.
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5. Conclusions

EdgeGAN generates PFM in an end-to-end manner with a frame rate of 32 fps on
an RTX2080TI GPU, which is much faster than the DL-based pipeline’s 2 fps since many
modules of the pipeline can only run on a CPU. Although the accuracy of EdgeGAN is
slightly lower than that of the DL-based pipeline, especially on sloping walls, its potential
can be further exploited if given a larger and higher quality training set. Four connective
criteria are proposed to inspect the connectivity of subspaces segmented from one FP. Those
criteria are also suitable for postprocessing the results of traditional methods and object
detection frameworks. GNN utilizes the connective information to predict the categories
of subspaces and achieves 4.69% higher accuracy than other classification approaches. The
category information of subspaces can be used to check with the depictive texts of FP.

In this study, since the PFM generation and subspace segmentation are fulfilled
separately, the computing speed and performance can be improved further if they are
realized in an end-to-end manner based on a one-stage framework. Thus, we will develop
a one-stage multitask framework that finishes primitive detection, subspace segmentation,
optical character recognition, and consistency inspection, simultaneously, in a future study.
Furthermore, to improve the quality of PFM about irregular walls, some deep activate
contour methods, such as deep snake [39] and deep level set loss [40], will also be exploited.
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Abbreviations
All abbreviations notations used in this work are listed below.

FP floor plans
VFP vectorization of floor plans
FVG floor vector graph
PFM primitive feature map
SCG subspace connective graph
GAN generative adversarial network
GNN graph neural network
EdgeGAN edge extraction GAN
ZSCVFP private dataset established by us
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