
  information

Article

Classification of Relaxation and Concentration Mental States
with EEG

Shingchern D. You

����������
�������

Citation: You, S.D. Classification of

Relaxation and Concentration Mental

States with EEG. Information 2021, 12,

187. https://doi.org/10.3390/

info12050187

Academic Editor: Chih-Peng Fan

Received: 15 March 2021

Accepted: 23 April 2021

Published: 26 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science and Information Engineering, National Taipei University of Technology,
Taipei 106344, Taiwan; scyou@ntut.edu.tw; Tel.: +886-2-2771-2171 (ext. 4234)

Abstract: In this paper, we study the use of EEG (Electroencephalography) to classify between
concentrated and relaxed mental states. In the literature, most EEG recording systems are expensive,
medical-graded devices. The expensive devices limit the availability in a consumer market. The EEG
signals are obtained from a toy-grade EEG device with one channel of output data. The experiments
are conducted in two runs, with 7 and 10 subjects, respectively. Each subject is asked to silently
recite a five-digit number backwards given by the tester. The recorded EEG signals are converted
to time-frequency representations by the software accompanying the device. A simple average is
used to aggregate multiple spectral components into EEG bands, such as α, β, and γ bands. The
chosen classifiers are SVM (support vector machine) and multi-layer feedforward network trained
individually for each subject. Experimental results show that features, with α + β + γ bands and
bandwidth 4 Hz, the average accuracy over all subjects in both runs can reach more than 80% and
some subjects up to 90+% with the SVM classifier. The results suggest that a brain machine interface
could be implemented based on the mental states of the user even with the use of a cheap EEG device.

Keywords: EEG; mental states; SVM; neural networks

1. Introduction

Inputting information to a machine solely based on “thoughts” of the brain is a long-
seeking goal to communicate with machines. Furthermore, known as brain–computer
interface (BCI), this technique is especially useful when the user is unable to use hands
to control the machine or choose the options the machine provides. Among the brain–
computer interface techniques, a widely used one is through analyzing the EEG (Electroen-
cephalography) signals of the user. Typically, the EEG signal is divided into several bands,
including delta (δ) band for frequency less than 4 Hz, theta (θ) band for 4–7 Hz, alpha (α)
band for 8–12 Hz, beta (β) band for 13–30 Hz, and gamma (γ) band for frequencies higher
than 30 Hz [1]. In terms of application, when a person is relaxed, the power in alpha band
is stronger; whereas when a person concentrates their attention, the beta band will have a
stronger power [2].

Although detecting a person’s mental states by classifying an EEG signal has been
studied for many years, many existing papers reported the results based on instrumental
EEG (recording) devices, which are capable of recording many channels [1,3–6]. However,
an instrumental EEG device is expensive. In order to use the EEG device for BCI in a
commercial market, this device must be affordable. In this paper, we use a low-cost (less
than 300 USD) EEG device from Neurosky. In contrast to an instrumental EEG device, a
cheap device typically has only one or two channels to minimize the cost. Therefore, we
need to perform classification based on one or two channels. It is then import to study
whether one or two channels are sufficient to obtain high accuracy in actual applications.
After reading some existing literature, the answer seems inconclusive, some with good
accuracy [7,8], high correlation [9], or acceptable usability [10], whereas others with ex-
tremely low accuracy [11] or marginal accuracy (around 50%) [12]. Therefore, we intend to
find out our own answer.
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To invoke two mental states for classification, we initially recorded EEG for subjects
listening to favorite or dislike songs. We later found that the accuracy was strongly affected
by the selected song titles for each subject. We then concluded that mental states invoked
by listening to favorite songs was not a reliable choice. Therefore, we decided to classify
only attention and meditation states. This problem has been studied by many researchers
before, e.g., [5–15]. Although such a problem is a binary classification problem, it is actually
not easy to achieve high accuracy. For example, the accuracy of [11] is around 60% even
with the use of a 14-channel EEG device. In Section 2, we will review some existing work
and provide the reported accuracy. Overall, to improve the classification accuracy, it is
important to have a method to invoke these two states with high accuracy.

As pointed out by Kahneman in [16], when a person is doing effortful work, their
pupils dilate substantially. With this kind of physiological evidence, we think that it could
be easier to classify the metal states as effortful or effortless states with a low-cost EEG
device. In the following, we use concentrated state to mean that a person’s mind is doing
effortful work and relaxed state if not doing effortful work. In the literature, some authors
use attention state and meditation state to represent similar mental states as ours presented
here. Because we intend to develop an efficient mechanism to communicate with the
machine, it is acceptable to pick any type of mental state as the input to the machine.
Though there are only two mental states considered in this paper, it is still possible to
develop a user interface with only two options. For example, we can associate “yes” with
the concentrated state and “no” with the relaxed state. Thus, the key issue of the technique
is how to identify these two states with sufficient accuracy in a reasonable time using a
cheap EEG recording device.

The contributions of this paper include (please also refer to Section 2):

• Present a reliable method to invoke two mental states for a low-cost EEG device at a
short period of time.

• Subjects do not receive training before conducting experiments.
• Subjects are not screened to exclude BCI-illiteracy subjects.
• Use one EEG recording, but not a slice of it, as a sample for either training or testing.

This paper is organized as follows: Section 2 briefly describes some work related to
this paper. Section 3 covers the experimental setting, including how to invoke different
mental states and the chosen features. Section 4 covers experimental procedures and
results. In this section, we examine the accuracy of two classifiers over different features
and discuss the results. Finally, Section 5 is the conclusion.

2. Related Work

Liu et al. [7] used a Neurosky device to distinguish attentive state from inattentive
state. The features they used are energies of α, β, θ, δ bands, plus the energy ratio of α to β
bands. They reported that the average accuracy was around 77%.

Maskeliunas et al. [11] reported their study on the problem whether consumer-grade
EEG devices were useful for control tasks. They used two EEG devices, namely Emotive
Epoch and Neurosky Mindwave to distinguish attention and meditation mental states.
Their experimental results revealed that the Neurosky Mindwave had very low accuracy:
19% for attention and 25% for meditation. Therefore, they concluded that using the
Neurosky device for control was not so much plausible. Morshad et al. [12] also used the
Neurosky device to study its usability. By directly using the attention and mediation data
from the Neurosky software, they had accuracy rates of 47.5% and 52.3% for attention and
mediation states, respectively. Besides, Rebolledo-Mendez et al. [14] studied the usability
of the Neurosky’s EEG devices for attention detection. They concluded that “there is a
positive correlation between measured and self-reported attention levels”. Unfortunately,
as the experiments were not conducted to classify two mental states, their paper did not
have any accuracy rating.

To measure the attention level of a subject, Li et al. also used a consumer grade EEG
device [8]. In their experiments, they classified the subject’s attention into three levels,
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instead of two. The features they used were derived from alpha, beta, and theta bands.
After seven sessions of training, the accuracy was around 57%.

Morabito et al. [17] studied the differentiation of EEG signals of CJD (Creutzfeldt-
Jakob Disease) disease from rapidly progressive dementia. In contrast to traditional time
or frequency features for EEG signals, they used a stacked auto-encoder instead because
the auto-encoder was able to perform nonlinear dimensionality reduction. Doing so, they
achieved an accuracy of 89%.

Although the EEG device is expected to be a mean for BCI, some users have much worse
performance (accuracy) than others. This phenomenon is known as BCI-illiteracy [18–21].
According to Ahn et al. [18], “depending on the control paradigm used, about 10–30% of
BCI users reportedly do not modulate the brain signals that are required to run the BCI
system”. This causes high performance variability between and within subjects. During
our experiments, we also experienced this problem, but we did not screen test subjects to
avoid it for higher classification accuracy.

To effectively use sensors for healthcare applications, we also need a framework to
ease the access. For this problem, Ali et al. proposed a good solution [22]. In addition, the
use of machine learning techniques receives increasing attention. To this end, the sixth
Machine Learning for Health (ML4H) workshop was held to discuss this problem [23]. The
machine learning technique is also used by Hyland et al. for early prediction of circulatory
failure in the intensive care unit [24]. Finally, Ali et al. proposed a monitoring system based
on ensemble deep learning and feature fusion with impressive results [25]. Overall, it is a
trend to use machine learning approaches to various healthcare related problems.

In the above mentioned papers, Liu et al. [7] and Maskeliunas et al. [11] divided a
long EEG recording into many slices as samples, and used one slice as a sample for training
or testing. Therefore, it is likely that an EEG slice from, say, time t0 is used for testing,
whereas another slice from time t0 ± 1 is used for training. Because neighboring EEG
slices (within a few seconds) tend to have higher correlation, the classification accuracy
is expected to be high. In our case, we treat one recording as one sample without slicing.
Although Li et al. [8] showed acceptable accuracy for classifying three mental states, the
subjects needed to train seven sessions before conducting experiments. On the contrary,
our approach does not require any training on subjects. While Morabito et al. [17] used
the autoencoder for classification; we do not use the same strategy because training an
autoencoder requires a large number of training samples. Since we have a small dataset,
using the SVM is a better choice. For the experiments conducted by Morshad et al. [12] and
Rebolledo-Mendez et al. [14], the features were directly obtained by the Neurosky software.
In our case, we also consider the selection of different frequency bands. As identifying the
attention state of mind is an important task, some researchers used many-channel EEG
devices [5,6,15] to seek for higher accuracy. However, we use a 2-channel, low-cost EEG
device in the experiments.

3. Experimental Settings
3.1. Invoking Proposed Mental States and Test Subjects

As mentioned in Section 1, we intend to classify different mental states in the exper-
iments. The mental state of a subject is in concentration (attention) state if their mind
works hard. To invoke this state, Maskeliunas et al. ask the subjects to solve mathematical
problems such as finding the roots of 5x2− 4x− 1 = 0 [11]. In our experiments, we decided
not to use this method. We found that some subjects were very good at mental calculation,
and therefore they used only one or two seconds to answer the question, and then they
felt relaxed in the rest of time (we recorded five seconds of EEG for one mental state). On
the other hand, some subjects were extremely poor on math calculation. Consequently,
their minds refused to concentrate when hearing a math question. Liu et al. propose to use
English questions [7] for the subject to invoke the attention state. Since we intend to find a
way to invoke the concentration state in a short period of time, preferably without external
materials, we do not use this method. Another possible method is the n-back memory
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test [26]. However, this method usually involves visual stimuli. Unfortunately, we were
unable to resolve the eye-blinking problem with such a cheap device. Therefore, we did
not use this method.

After reading Kahneman’s book [16], we decide to use the method given in the book
to achieve the concentration state for a subject. Basically, the subject is asked to silently
recite a five-digit number backwards given by the tester. For example, if the tester reads
(aloud) “13542”, the subject silently recites “24531”. During this time, their EEG is recorded.
On the other hand, if the subject is in the relaxed states, he/she is asked to relax and to
keep their mind idle by not thinking anything.

The experiments are carried out in two runs. In the first run, experiments are con-
ducted to obtain classification results. Then, in the second run, we repeat the same exper-
iments with different test subjects to check if the results in the first run are reproducible
or not. In the first run, we have 7 volunteer subjects, who are graduate students in our
department. In the second run, we have another 10 subjects. All subjects are aged from 22
to 27. Although we are aware of the BCI-illiteracy problem, we did not screen test subjects.
Therefore, we expect that some subjects will have relatively low accuracy. In addition, none
of them have undergone prior training to use EEG devices.

3.2. EEG Recording Device

The used EEG device has a headband to attach two sensors to the FP1 and FP2
positions in the 10–20 system [27], as shown in Figure 1. Note that higher-resolution
system is also widely used [27]. The device comes with a software tool to combine the
recorded signal together with a time-frequency (T/F) transformation; therefore we use the
transformed data in the experiments. As the EEG device is a low-price product, its signal
is likely interfered by artifacts such as the eye blinking, and it is unknown whether the
artifacts are removed by the accompanying software tool or not. To avoid this interference,
the test subjects are asked to close their eyes during the signal recording phase.

Figure 1. The attached sensors in the 10–20 system [28].

In our experiments, the recording has a duration of 10 s and a frequency range from
0 to 64 Hz. By using the time-to-frequency transformation module in the accompanying
software, the collected EEG data contains energy values with a time resolution of 0.125 s
and a frequency resolution of 0.25 Hz. Therefore, the obtained data in one recording can
also be plotted as a spectrogram. Figure 2 shows the spectrogram of a portion of a recording
from a subject in the relaxation state. In the figure, the grid on the bottom left corner has
a frequency band from 4 Hz to 4.25 Hz at time 5 to 5.125 s. Its energy value is between 0
and 20 (based on the color bar). It is observed that most time-frequency grids have very
small energy values, with only a few grids with large values. Actually, the energy values of
this recording have a maximum of 367, a minimum of 0, a mean of 5.01, and a standard
deviation of 13.56.
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Figure 2. A portion of a recording displayed as a spectrogram. Note that energy values greater than
100 are limited to 100.

3.3. Feature Extraction

In conducting the experiments, the test subjects are asked to relax without concen-
tration for 5 s. The recorded EEG data in this portion is served as the baseline. Then,
the subject is either asked to recite a number backwards or just to relax (mentioned in
Section 3.1) for another 5 s. Therefore, one EEG piece has a duration of 10 s. The EEG data
corresponding to the sixth to eighth seconds (a duration 3 s) are used for classification. For
each subject, 40 pieces of EEG signals are recorded, where 20 of them are in concentration
state and the other 20 in relaxed state.

During the experiments, 70% of the collected EEG recordings are used for training,
and the other 30% for testing. The training and testing procedure is repeated 40 times
(trials), and the averaged performance is reported. The training and testing recordings are
randomly chosen in every trial of the experiments. However, to maintain a fair comparison,
the selected training and testing pieces are used for all methods examined in one trial.

As the transformed energy data are used, the data have 8× 4 = 32 values per second
per Hertz. As the beta band has a bandwidth of 16 Hz, the total number of energy data
for 3 s is 32× 16× 3 = 1536. This number is too large to train classifiers. Thus, we need
to reduce the dimensionality of the energy data. In our case, we simply use the average
energy, although more complicated methods are also available [1]. Let the energy data of
the chosen part in an EEG piece be denoted as xn,k , where n is the time index and k is the
frequency index. We use the following average as basis for computing features:

ym,l =
1
8

8m+7

∑
n=8m

xn,4×l (1)

where ym,l is one feature value used in the experiments with time index m (unit: second)
and frequency index l (unit: Hz). We use different energy band ranges and bandwidths for
different types of features, detailed below:

(i) All band average energy (All band energy). In this type of feature, the total energy
per second is calculated for each band (theta, alpha, beta_1, beta_2, and gamma).
For beta band, we sum up all ym,l values for l from 13 to 20 in Equation (1) to form
beta_1, and from 21 to 28 to form beta_2. Thus, the feature dimension to represent
one EEG piece has 3× 5 = 15 values, i.e., 3 s with 5 bands per second.
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(ii) Beta band with different frequency resolution (β only). It is known that when a
person is in concentration, the beta band has much stronger energy. Thus, we use this
band to classify mental states. Features in this category are averaged energy of beta
band in 1, 2, or 4 Hz bandwidth. As the beta band is from 13 to 28 Hz, a bandwidth
of 1 Hz produces a feature of 3 × 16 = 48 dimensions for one piece of EEG signal.

(iii) Beta band plus a portion of alpha band (α + β). Similar to (ii), but the frequency
range is from 9 to 28 Hz. Although it is given in the literature that higher energy
appears in beta band when the subject is in the concentration mental state, different
persons may have different frequency ranges in the beta band. In fact, the frequency
ranges of the bands are somewhat arbitrary. As pointed out in Wikipedia on EEG [2]:

Unfortunately there is no agreement in standard reference works on what
these (band) ranges should be—values for the upper end of alpha and
lower end of beta include 12, 13, 14 and 15 (Hz).

Considering this situation, we have a strong reason to also examine energy from
other bands.

(iv) Beta band plus a portion of alpha and gamma band (α + β + γ). Similar to (ii), but
the frequency range is from 9 to 43 Hz.

3.4. Used Classifiers

In the experiments, the classifiers are support vector machines (SVM), obtained
from [29], and multi-layer feedforward neural network (BPNN) trained with the back
propagation algorithm. SVM has been extensively used in many classification problems.
Previously, Liu et al. reported that good accuracy (more than 76%) was obtained by using
SVM to classify two mental states based on EEG [7]. Therefore, we also choose SVM as a
classifier. To use SVM, one needs to determine many parameters. One key parameter is
the kernel type, where a widely used one is the RBF (radical basis function) kernel. In the
experiments, we also use this type of kernel. To use the RBF kernel, we need to provide the
value of gamma. In many cases, this parameter is obtained through an extensive search. In
our case, after some trials, we set this parameter to 8. In addition, we set the cost parameter
to 32.

We also use the BPNN as a classifier because it is also used for EEG classification in
the literature [30,31]. One reason to examine both classifiers is to observe whether one
subject has good accuracy by using one classifier, but poor accuracy by using the other one.
The used BPNN is a three-layer fully connected network. The number of hidden neurons is
set to 10, although the classification accuracy remains almost the same from 5 to 50 hidden
neurons. The performance criterion is the mean squared error. As the accuracy of the
BPNN is not as good as that of the SVM, unless necessary, we only report the accuracy
results based on SVM.

Recently, the convolutional neural networks (CNN) have been demonstrated to out-
perform traditional classifiers such as SVM in EEG classifications [32]. When used with
1D convolutional layers, the network is capable of extracting features directly from the
time-domain signal. In our case, unfortunately, we did not have sufficient information to
retrieve the time-domain signals. Therefore, we used the time-frequency energy values
computed by the accompanying software, as described in Section 3.2. Still, it is possible to
use the spectrogram as the inputs to a 2D CNN, as widely used in the vocal detection [33]
problems. Actually, we have tried this idea before, but the performance was poor due to the
small number of training samples (28 training samples per subject). We were suggested by
the anonymous reviewer that we could use the transfer learning approach [34] to overcome
the problem of small training sets. We will investigate this approach in our future work.

4. Experiments and Results

We conducted several experiments to evaluate the accuracy of the proposed approach,
as shown in Figure 3. In the experiments, we have two groups (runs) of subjects. The
first experiment checks if an individualized SVM model is better than a generic model
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with subjects in run 1 (Section 4.1). The second experiment checks which type of features
described in Section 3.3 is better for both types of classifiers (Section 4.2). The third
experiment examines if the dimensionality reduction technique improves the classification
accuracy (Section 4.3). To check if the experiments are reproducible, we repeat the above
experiments with patients in run 2 (Section 4.4). Finally, we aggregate the results in both
runs with some discussions in Section 4.5.

Figure 3. Framework of the experiments.

4.1. Generic Model vs. Individualized Model

In the first experiment, the generic SVM model is trained by using the EEG pieces
from all subjects, and the model is used to classify all testing EEG pieces. For the individ-
ualized SVM mode case, EEG signals from each subject is independently used to train a
personalized SVM model for testing. As the brain–computer interface is typically used by
one or a small group of users, it is a reasonable assumption that we can train the classifier
and pick the features to fit the need of each individual user. The idea of training individual
model is also used in [11].

For the first experiment, we use the features “All band energy” mentioned in Section 3.3.
The accuracy is shown in Table 1. Note that the “accuracy” given in the table refers to the
ratio of correctly classified items in both mental states to the total test items. From the
results, we know that using individualized model improves the classification accuracy
significantly. In a sense, the experimental results indicate that using individualized models
for each subject is a better approach for this particular classification problem.

Table 1. Results for experiment I. The numbers given are percentage.

Setting Accuracy

All band energy with common SVM Model 57.1%
All band energy with individual SVM model 74.4%

4.2. Features with Different Band Ranges and Different Bandwidths

To further examine which feature type has higher accuracy, we conduct the second
experiment. In this experiment, the SVM models are individually trained and tested with
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different kinds of features, particularly feature type (ii) to (iv) given in Section 3.3. The
purpose of this experiment is to know the variation of accuracy versus the used frequency
range and frequency resolution.

The experimental results for this experiment using SVM are given in Table 2. To better
understand the performance differences between SVM and BPNN classifiers, we also give
the BPNN accuracy in Table 3. In the tables, the mean correct rates for both classes are
given. In the following, we consider the concentration state as the positive state, and the
relaxation state as the negative state, then the mean correct rate of the concentration state
is the same as the sensitivity (true positive rate, TPR), and that of the relaxation state is
the same as the specificity (true negative rate, TNR) in the literature [35]. In our case, TPR
is calculated by TP/P, where TP is the corrected identified positive samples and P is the
total positive samples. Similarly, TNR = TN/N, where TN is the corrected identified
negative samples and N is the total negative samples. Since we know TP, P, TN, and N,
we can compute TPR and TNR. In addition, it can be easily shown that the false positive
rate (FPR) is (1− TNR), and the false negative rate (FNR) is (1− TPR) [35]. To save space,
these numbers are omitted. In the table, the F1 score is computed as

F1 =
2TP

2TP + FP + FN
(2)

where TP stands for true positive, FP false positive, and FN false negative.

Table 2. Results for experiment II using SVM. The numbers given are percentage.

Sensitivity Specificity Accuracy

Metric Mean Std. Mean Std. Mean std. F1 Score

β only, 1 Hz 75.9 15.4 80.6 15.7 78.2 11.0 77.4
β only, 2 Hz 76.0 12.7 82.4 8.6 79.2 9.4 78.2
β only, 4 Hz 71.0 20.3 82.9 9.9 77.0 12.9 74.3
α + β, 1 Hz 74.3 23.1 74.8 25.3 74.5 8.7 73.3
α + β, 2 Hz 74.1 16.5 79.6 14.5 76.8 12.1 75.9
α + β, 4 Hz 74.9 18.4 83.2 8.4 79.1 12.5 77.4

α + β + γ, 1 Hz 78.3 20.6 79.8 22.4 79.0 12.2 78.1
α + β + γ, 2 Hz 79.5 11.1 84.2 11.6 81.9 9.1 81.4
α + β + γ, 4 Hz 74.5 18.2 84.1 8.9 79.3 12.4 77.4

Table 3. Results for experiment II using BPNN. The numbers given are percentage.

Sensitivity Specificity Accuracy

Metric Mean Std. Mean Std. Mean std. F1 Score

β only, 1 Hz 66.8 15.0 73.3 11.3 70.1 9.7 68.6
β only, 2 Hz 68.2 13.7 74.8 14.4 71.5 11.0 70.4
β only, 4 Hz 70.8 18.3 76.4 11.6 73.6 12.8 72.1
α + β, 1 Hz 66.1 16.4 72.2 12.9 69.2 11.0 67.7
α + β, 2 Hz 68.9 14.6 74.8 13.2 71.8 11.7 70.8
α + β, 4 Hz 69.5 16.3 79.3 12.5 74.4 12.8 72.7

α + β + γ, 1 Hz 67.3 14.3 74.5 11.7 70.9 8.0 69.4
α + β + γ, 2 Hz 70.8 14.4 79.3 13.4 75.1 10.5 73.7
α + β + γ, 4 Hz 69.3 18.2 80.0 11.9 74.7 12.6 72.6

From Tables 2 and 3, we observe that SVM offers much higher accuracy. For SVM
classifier, features derived from α + β + γ, BW = 2 Hz are slightly better than others in
terms of average accuracy. For β only and α + β + γ features, BW = 2 Hz has higher
accuracy, and the accuracy decreases by either BW increasing or decreasing. On the other
hand, the accuracy increases when BW increases for the case of α + β features. When
observing Table 3, we notice that the average accuracy tends to increase with the increase of
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bandwidth with the BPNN classifier. Thus, it is inconclusive if increasing BW will improve
the accuracy. We will discuss this problem again in Section 4.6.

It is worth mentioning that Maskeliunas et al. [11] also used a Neurosky device to clas-
sify the mental states into attention and meditation states. They also used individualized
features for each subject. However, their accuracy was around 25%. The main difference
between theirs and ours lies in different features and classifiers used. Thus, we believe that
although EEG devices affect the overall accuracy a lot (as observed by Maskeliunas et al.);
there is still room for improvement with better algorithms.

To have a better understanding about the accuracy of each individual subject with
respect to each type of feature, we provide the accuracy of individual subject in Figure 4. It
is observed that some subjects seem to have higher accuracy by using β band only than
using more bands. We will discuss the influences of classifiers on the selection of energy
band ranges in Section 4.6.
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b 2 Hz

b 4 Hz

a+b 1 Hz

a+b 2 Hz

a+b 4 Hz

a+b+g 1 Hz

a+b+g 2 Hz

a+b+g 4 Hz

Figure 4. Accuracy comparison for each subject with different types of features. In the legends, a
means α, b means β, and g means γ.

4.3. Dimensionality Reduction by Factor Analysis

Previously, Morabito et al. used a stacked auto-encoder as a nonlinear method to
reduce the dimensionality of the EEG features, and good results were obtained [17]. There-
fore, we would also like to investigate if a dimensionality reduction technique is useful.
Considering that the classification model is individually trained, we also want to reduce the
dimensionality individually for each subject. As the number of training pieces per subject
is small (only 28), using the auto-encoder could easily result in over-fitting. Thus, we need
to use conventional methods. Previously, we have studied the use of PCA (principal com-
ponent analysis) for reducing the dimensionality of spectral-temporal objects [36], and the
results were promising. Later on, we also repeated the experiments by using factor analysis
(FA) [36], and found that FA was more robust to distorted objects. So, we would like to
investigate if FA is useful in the present case. Please note that the FA method presented is
actually PCFA (principal component factor analysis). This approach is generally similar
to that of the FA. The only difference is the computation of the matrix for reduction, i.e.,
Equation (6). As the FA approach used here is an extension of the PCA approach [36], we
omit the use of the PCA in this subsection to save space.

In this experiment, the chosen full-resolution features are β-only features with band-
width of 1 Hz. For optimal performance, the FA procedure is independently carried out for
each subject in one (concentration or relaxation) state. To apply FA for reduction, we use
the following procedure.
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1. Let

B =

 ↑ · · · ↑
b1 · · · b42
↓ · · · ↓

 (3)

where one bi is a column vector formed by ym,l in one-second a duration as its
elements. Therefore, b1 contains y0,0 to y0,15 from a particular EEG piece. As there are
14 training pieces per subject per state, we have 14 × 3 = 42 bi vectors total.

2. Compute the covariance matrix as

C =
1

42

42

∑
i=1

bi · bi
T (4)

where T denotes matrix transpose.
3. Compute the eigenvalues and the associated eigenvectors for C. Denote the largest

p eigenvalues as λ1, . . . , λp with the corresponding eigenvectors e1, . . ., ep. In the
simulation, we use p = 8, 6, or 4 for dimension reduction rates. Basically, p is the
number of values remained after FA in one second. Note that full resolution has
p = 16.

4. Construct the loading matrix L by

L =

 ↑ ↑√
λ1e1 · · ·

√
λpep

↓ ↓

 (5)

5. The dimension-reduced features are obtained as

fi = (LTL)−1LTti (6)

where ti is either a training or a testing vector arranged in a form similar to that in
Equation (3). As one testing EEG piece has a duration of 3 s, three fi vectors are
concatenated as a feature vector for training or testing.

The experimental results are given in Figure 5. The results show that some subjects
have lower accuracy after FA reduction, whereas some have higher accuracy, especially
subject 6. Note that in the p = 8 case, one second of EEG signal produces 8 values after
FA reduction, so a feature has a dimension of 8× 3 = 24. The same feature dimension
is obtained in the case of β only with BW = 2 Hz. Similarly, p = 4 has the same feature
dimension as the β only, BW = 4 Hz case. When comparing FA with p = 4 and β only with
BW = 4 Hz cases, we find that the average accuracy of the FA approach is slightly higher
(77.9% vs. 77.0%). However, the performance difference is not sufficiently large to claim
that FA is a better method. Nevertheless, we find that the standard deviation of the FA
approach is much lower (4.9% vs. 12.9%). So, the accuracy variation among subjects is
reduced. To this end, it may be worth conducting further research to see if any particular
dimensionality reduction technique works better for the EEG signal in terms of minimizing
the standard deviation.
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Figure 5. Accuracy comparison by various levels of dimensionality reduction.

4.4. Reproducible Test

As our previous experiment has only seven subjects, we are not very confident that
the results we obtained can be reproduced or not. To this end, we repeat experiments two
and three (in Sections 4.2 and 4.3) with 10 different subjects. The experimental procedure
remains the same, so the procedure is omitted here.

The results for experiment two are given in Table 4. The experimental results show
some degree of consistency with our previous experiment, such as α + β, 1 Hz has lower
accuracy. However, in contrast to our previous experiment, the results here show that wider
bandwidth (BW = 4 Hz) yields higher average accuracy than narrower ones. Furthermore,
note that the average accuracy is higher than previous one. As to the BPNN classifier, the
average accuracy is still lower than that of SVM, but the difference is much smaller, only
about 2 to 3%.

One thing worth mentioning is that the standard deviations in Table 4 are higher than
those we see in Table 2. When examining the accuracy of individual subjects, we find that
several subjects have very high accuracy (higher than 90%), but some have relatively low
accuracy (around 60%), and, again, the accuracy varies with different types of features.
Thus, the situation we observe in Figure 4 is not a single incidence, but a general case. To
save space, the accuracy plot is omitted here.

Table 4. Results for reproducible test. The numbers given are percentage.

Sensitivity Specificity Accuracy

Metric Mean Std. Mean Std. Mean std. F1 Score

β only, 1 Hz 74.6 24.5 94.6 6.9 84.6 15.0 81.1
β only, 2 Hz 82.0 19.2 88.5 15.3 85.3 14.9 84.2
β only, 4 Hz 85.8 14.8 89.6 8.0 87.7 11.1 87.1
α + β, 1 Hz 59.6 30.0 94.0 7.1 76.8 17.5 68.5
α + β, 2 Hz 67.3 27.8 95.3 5.5 81.3 15.8 75.3
α + β, 4 Hz 79.0 20.6 87.4 20.0 83.2 17.3 81.9

α + β + γ, 1 Hz 65.1 28.7 93.7 7.5 79.4 17.1 73.1
α + β + γ, 2 Hz 75.4 25.9 94.5 5.8 85.0 15.2 81.2
α + β + γ, 4 Hz 83.8 18.2 87.5 15.0 85.6 15.4 84.9

We also conducted FA experiment (Section 4.3) for these new subjects. The results
show that the accuracy with FA reduction is not as good as that of the β only, BW = 4 Hz
(80.2% vs. 87.7%). However, we again notice the advantage of lower standard deviation
in the FA approach (6.4% vs. 11.1%). Thus, the advantage of lower standard deviation is
consistent to that in Section 4.3.
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4.5. Discussions

In Section 4.2, we are unsure whether wider bandwidth leads to higher average
accuracy. As we now have more test subjects, we then aggregate the accuracy of all test
subjects in the following analysis. Because we use two classifiers (SVM and BPNN) in our
previous experiments, we can perform cross comparison to observe the influences of the
classifiers. Table 5 summarizes the accuracy under various conditions. We observe that, in
most cases, average accuracy has the tendency to increase if the bandwidth increases. As the
experimental results of FA in Section 4.3 also show that a certain degree of dimensionality
reduction is beneficiary for high-dimensional EEG features, it seems safe to say that wider
bandwidth tends to improve average accuracy with different energy band ranges.

Table 5. Accuracy of aggregating both groups of subjects. The numbers given are percentage.

SVM BPNN

Metric Acc Sens. Spec. F1 Score Acc Sens. Spec. F1 Score

β only, 1 Hz 82.0 75.1 88.8 80.9 76.2 78.1 74.3 78.0
β only, 2 Hz 82.8 79.5 86.0 83.4 77.5 78.7 76.4 79.2
β only, 4 Hz 83.3 79.7 86.9 85.4 80.0 81.1 78.8 81.4
α + β, 1 Hz 75.9 65.6 86.1 71.1 75.7 78.6 72.8 77.7
α + β, 2 Hz 79.4 70.1 88.8 77.1 77.9 79.9 76.0 79.7
α + β, 4 Hz 81.5 77.3 85.7 82.5 80.9 81.2 80.5 83.3

α + β + γ, 1 Hz 79.3 70.5 88.0 75.8 76.7 78.7 74.7 78.6
α + β + γ, 2 Hz 83.7 77.1 90.3 82.4 80.2 80.9 79.5 82.3
α + β + γ, 4 Hz 83.0 79.9 86.1 84.6 81.5 81.5 81.5 84.0

To visualize the accuracy differences between these two classifiers, we also use the
Bland–Altman plot [37] for subjects in the α + β + γ, 4 Hz setting, as shown in Figure 6.
The figure shows that the SVM has a higher average accuracy than the BPNN by about 1.5%
(shown as the mean line). In addition, most subjects have higher accuracy by using the
SVM classifier (points above zero in the vertical direction), and only one subject strongly
favors the BPNN classifier. Overall, we confirm that the SVM, in general, is better in
this experiment.

Figure 6. The Bland–Altman plot for α + β + γ, 4 Hz case. The LOA means limits of agreement and
CI is the confidence interval.
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Previously, we mention that each subject may need different energy band ranges to
yield higher accuracy. We now investigate whether this situation is due to the behavior
of the classifier. In this comparison, we only consider which band range yields higher
accuracy for a subject, but not the bandwidth. That is, if β, 1 Hz is the best type of feature
for one subject using SVM, and β, 4 Hz using BPNN, we say that both are consistent. To
avoid BCI illiteracy subjects affecting the comparison, only subjects with a highest accuracy
(using SVM) greater than 85% are chosen in the comparison. The results are shown in
Table 6. The results show that the consistency rate is 50%, not a particularly high rate.
Therefore, we know that the chosen classifier has some influences on the selection of energy
band range. With this understanding, we suggest using band range of α + β + γ, as it
yields satisfactory accuracy for both types of classifiers.

Table 6. Energy band range yielding highest accuracy for some subjects using both classifiers. To
save space, α + β + γ is denoted as αβγ.

Classifier S2 S5 S7 S8 S10 S11 S13 S14 S15 S17

SVM β αβ αβγ αβγ αβγ αβγ αβγ β αβγ αβγ
BPNN β αβγ αβγ αβ αβγ αβ αβ β αβ αβγ

We know that individual variability plays an important role in the EEG classification
problem. To see if subjects with low/high accuracy in one classifier also yield low/high
accuracy in another one, we plot the highest accuracy for each individual under different
types of features in Figure 7. The plot shows that both classifiers have high consistency.
Thus, if the accuracy of a subject is particularly low, the problem may not be the type of
used classifier. Instead, it is more likely that the subject is BCI illiteracy.

50 
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80 

85 

90 

95 

100 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 

SVM Acc 

BPNN Acc 

Figure 7. Highest accuracy for each subject with SVM or BPNN classifier. The horizontal axis is the
subject index and the vertical axis is accuracy.

4.6. Limitations of the Study

Although the experimental results are promising, the proposed approach, nevertheless,
has the following limitations.

• The subjects are clear-headed. During the experiments, we observed that a subject
could not concentrate if he/she was sleepy. Therefore, it is important to check the
subject’s drowsiness before conducting the experiments.

• The subjects are limited to a small group with a uniform background. Currently,
the experiments were conducted with subjects aged in their 20 s with college de-
grees in one geographic area. Therefore, subjects with different age groups, different
educational levels, and different areas will be needed in the future work.
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• The proposed features are in the frequency-domain with a short period of time. Recall
that the features we used represent only one channel with a duration of 3 s. However,
public datasets such as DEAP (Database for Emotion Analysis using Physiological
Signals) [38] have multiple channels with much longer recording time. For example,
in the DEAP dataset, each EEG recording has 32 channels with a recording duration of
1 min. To apply the features presented in this paper, we need to choose one appropriate
channel among the 32 channels and one particular 3-s segment from the one-minute
recording. Certainly, this work is not trivial. For this type of dataset, it might be easier
to use a 1D CNN classifier to extract features directly from the time-domain signal.

5. Conclusions

This paper studies the accuracy of classifying relaxed and concentrated mental states.
The concentration mental state is invoked by silently reciting a five-digit number backwards.
In the experiments, the training and testing recordings are from different files to reflect
a more realistic situation. The experimental results show that when averaging over all
17 test subjects with α + β + γ, 4 Hz features, the classification accuracy can achieve 80% or
higher if using individually trained models. When comparing the results from SVM and
BPNN, wider bandwidth tends to improve the accuracy in most cases. On the other hand,
whether a particular energy band range is better, in a certain degree, is affected by the
used classifier. Even so, we recommend using features of α + β + γ, 4 Hz, as they produce
satisfactory accuracy in the experiments for both classifiers. In addition, we find that using
the FA approach can reduce the variance of accuracy. Therefore, other types of reduction
technique deserve further study. Overall, we demonstrate that it is plausible to distinguish
between concentrated and relaxed mental states even with the use of a cheap EEG device.
In the future, we plan to examine whether the proposed feature selection mechanism is
appropriate for existing EEG datasets. In addition, we also plan to study the use of CNN
classifiers to classify the dataset presented in this paper to evaluate the advantages of the
deep learning approach.
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