
 information

Article

Network Representation Learning Enhanced by Partial
Community Information That Is Found Using Game Theory

Hanlin Sun 1,2 , Wei Jie 3,* , Jonathan Loo 3 , Liang Chen 3 , Zhongmin Wang 1,2 , Sugang Ma 4 ,
Gang Li 1,2 and Shuai Zhang 1,2

����������
�������

Citation: Sun, H.; Jie, W.; Loo, J.;

Chen, L.; Wang, Z.; Ma, S.; Li, G.;

Zhang, S. Network Representation

Learning Enhanced by Partial

Community Information That Is

Found Using Game Theory.

Information 2021, 12, 186. https://

doi.org/10.3390/info12050186

Academic Editor: Gabriele Gianini

Received: 2 April 2021

Accepted: 22 April 2021

Published: 25 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Technology, Xi’an University of Posts and Telecommunications,
Xi’an 710121, China; sunhanlin@xupt.edu.cn (H.S.); zmwang@xupt.edu.cn (Z.W.); gangl@xupt.edu.cn (G.L.);
15802951591@163.com (S.Z.)

2 Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing,
Xi’an University of Posts and Telecommunications, Xi’an 710121, China

3 School of Computing and Engineering, University of West London, London W5 5RF, UK;
Jonathan.Loo@uwl.ac.uk (J.L.); Liang.Chen@uwl.ac.uk (L.C.)

4 School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China;
msg@xupt.edu.cn

* Correspondence: wei.jie@uwl.ac.uk

Abstract: Presently, data that are collected from real systems and organized as information networks
are universal. Mining hidden information from these data is generally helpful to understand and
benefit the corresponding systems. The challenges of analyzing such data include high computational
complexity and low parallelizability because of the nature of complicated interconnected structure of
their nodes. Network representation learning, also called network embedding, provides a practical
and promising way to solve these issues. One of the foremost requirements of network embedding
is preserving network topology properties in learned low-dimension representations. Community
structure is a prominent characteristic of complex networks and thus should be well maintained.
However, the difficulty lies in the fact that the properties of community structure are multivariate
and complicated; therefore, it is insufficient to model community structure using a predefined model,
the way that is popular in most state-of-the-art network embedding algorithms explicitly considering
community structure preservation. In this paper, we introduce a multi-process parallel framework
for network embedding that is enhanced by found partial community information and can preserve
community properties well. We also implement the framework and propose two node embedding
methods that use game theory for detecting partial community information. A series of experiments
are conducted to evaluate the performance of our methods and six state-of-the-art algorithms. The
results demonstrate that our methods can effectively preserve community properties of networks in
their low-dimension representations. Specifically, compared to the involved baselines, our algorithms
behave the best and are the runners-up on networks with high overlapping diversity and density.

Keywords: network representation learning; network embedding; partial community structure;
ego-net analysis; game theory; multi-label classification

1. Introduction

With the advancement of data collecting and processing technologies, network struc-
ture data are universal and extensive. The reason for this lies in the fact that information
network is a direct and natural way for organizing data that are from a wide diversity of
real-world systems, such as social networks, citation networks, web networks, the Internet,
and so forth. Mining useful hidden information from such networks is essential because
it is helpful to understand and may benefit the corresponding applications by making
good usage of the found information. For example, based on a community structure of
an online social network being detected, a better recommendation in terms of friendship

Information 2021, 12, 186. https://doi.org/10.3390/info12050186 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-2961-4834
https://orcid.org/0000-0002-5392-0009
https://orcid.org/0000-0002-2197-8126
https://orcid.org/0000-0003-3706-6479
https://orcid.org/0000-0003-0870-454X
https://orcid.org/0000-0002-8588-8111
https://orcid.org/0000-0002-4369-3412
https://doi.org/10.3390/info12050186
https://doi.org/10.3390/info12050186
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12050186
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12050186?type=check_update&version=2

Information 2021, 12, 186 2 of 19

can be made due to the observation that users within then same community generally
have similar roles or properties and may make friends with a higher probability. The effi-
ciency of network data analyzing heavily relies on the way how a network is represented.
Generally, a network can be denoted as a graph G = (V , E, I) where V is a node set that
represents objects in a system, E is an edge set that stands for connection relationships
among these objects, and I is the side information that associates with the nodes and edges,
like node labels, edge weights, etc.. However, such a way of representation will induce
high computational complexity and low parallelizability as analyzing due to the nature of
complicated interconnected structure of graph nodes. It even may cause the analysis of
large-scale networks being impossible in terms of computing time.

Recently, network representation learning (NRL), also called network embedding (NE),
provides a practical and promising way to alleviate these issues, and has received a lot of
research attention with several algorithms being developed [1–6]. Its basic idea is to learn
latent, low-dimensional representations (usually continuous vectors) for network nodes,
edges, or subgraphs with the property that preserves the network topology structure
proximity and node and edge side information affinity. In a low-dimensional space,
network analytic tasks, such as node classification, node clustering, link prediction, and
so on, can be easily and efficiently carried out by applying a plenty of ready vector-based
machine learning algorithms.

Community structure is a prominent mesoscopic topology property in complex net-
works, therefore it is necessary to preserve it in learned low-dimensional representations.
Our previous work [7] has quantitatively shown the necessity and importance of incorporat-
ing community structure properties in network embedding. In that paper, we defined the
concept of partial community structure and presented two algorithms using it to enhance
node representation learning. The crucial point is how can we find an accurate community
structure for a network. However, the method for finding a partial community structure [7]
is executed directly on whole network, and thus is not easy to parallel program. In this
paper, we design a multi-process parallel approach for partial community information
extracting. We will mention other recently proposed network embedding algorithms that
explicitly consider preserving community properties later in Section 2.

In summary, the main contributions of this paper are:

(1) We introduced a multi-process parallel framework for network node representa-
tion learning enhanced by partial community structure information. The frame-
work first extracts the ego-net of each node in a network, and then finds the partial
community information for the center node on it. The information is then incorpo-
rated into collecting random walks that will be used to learn node representations.
As a result, the community structure properties can be well preserved in learned
low-dimension representations.

(2) We proposed an improved game theory-based algorithm for partial community in-
formation extraction. A merging operation is added at the end of each game-playing
iteration, to reduce community labels if it is possible and thus speed up the game con-
vergence. A post-process operation from the viewpoint of a community is introduced
as well, to mend the quality of the found information. The algorithm is employed
in the proposed framework for partial community information finding on ego-nets.
Though game theory-based algorithms are superior at overlapping community struc-
ture detecting, they are generally computational cost and thus cannot be used on
large-scale networks. Our framework can avoid this drawback because an ego-net is
usually much smaller in size than the whole network.

(3) We implemented the framework to improve two popular node representation learning
methods based on random walk, DeepWalk [8] and node2vec [9], and bring forth
GameNE-DW (Game-based Network Embedding on DeepWalk) and GameNE-N2V
(Game-based Network Embedding on Node2Vec).

Information 2021, 12, 186 3 of 19

(4) We conducted a series of experiments on synthesized networks, of which their commu-
nity structure properties can be controlled through model parameters, to evaluate the
ability of community structure preservation of our algorithms. We also compare our
methods against six state-of-the-art representation learning algorithms. The results
demonstrate that GameNE-DW and GameNE-N2V are adept at preserving commu-
nity structure properties, especially on networks with high overlapping diversity
and density.

The structure of the rest paper is organized as follows: in Section 2, we mainly describe
the algorithms that explicitly consider to preserve community property of networks in
node representation learning, and game theory-based algorithms designed for community
structure detecting; in Section 3, we briefly introduce the concepts of game theory for
community detection; Section 4 details our multi-process parallel framework that uses
game-playing to enhance network node representation learning; Section 5 gives out the
experiment results that show the excellent ability of community structure preserving of
our algorithms, especially on networks with high-density overlapping nodes and high-
diversity overlapping memberships; at last, Section 6 discusses the pros and cons of our
methods and Section 7 concludes the paper.

2. Related Work
2.1. DeepWalk and Node2vec

We first introduce DeepWalk and node2vec, two sequence-based network embedding
approaches, on which our algorithms build.

DeepWalk by Perozzi et al. [8] is the first practical algorithm that can learn node repre-
sentations for large-scale networks. It is inspired by the observation that the distribution
of node pair appearance in random walks collected on a network within a given window
is power-law, and such a distribution is considerably similar to the distribution of word
co-occurrences in natural language corpus. DeepWalk learns network node representations
by imitating word embedding: treats a node as a word and a short random walk as a
special sentence and then solves node representations using the Skip-Gram optimizing
model. Actually, DeepWalk tries to keep the likelihood of observed neighborhood samples.

Node2vec by Grover et al. [9] extends DeepWalk by designing a biased random walk
with introducing two parameters: returning p and in-out q that control how fast the next
walk explores or leaves the neighborhood of a starting node, respectively. As setting p and
q as 1.0, node2vec becomes DeepWalk. Our algorithms control random walks further using
partial community information of a network.

2.2. Network Embedding Preserving Community Structure

Noting the affect and importance of community structure on network analysis, re-
cently a few studies have considered to preserve community features explicitly in node
embedding [7,10–19]. In general, there are two ways to take community structure into con-
sideration. The first is assuming the existence of a prior community model and introducing
it in node embedding model, then jointly solving them to compute node representations
and community representations (or a community structure) simultaneously. The other is
finding some community structure information for networks first and then making good
use of the information to enhance node representation learning. Most previous works fall
into the first category in which detecting a high-quality community structure for a network
is a hard problem to tackle.

Wang et al. [10] combined a non-negative matrix factorizing (NMF) model for node
representations learning and a NMF model for community structure detecting, and pro-
posed M-NMF (Modularized NMF). One of its drawbacks is it can only deal with disjoint
community structure, which is usually not true for real networks. Benedek et al. [11]
presented GEMSEC (Graph Embedding with Self-Clustering) that considered the two
problems of node embedding and community detection at the same time by introduc-
ing a clustering optimizing term in the objective function, where a clustering means a

Information 2021, 12, 186 4 of 19

community. Like Wang et al’s work, it only deals with disjoint communities. Similarly,
NECS (Network Embedding with Community Structure information) by Li et al. [12]
modeled community structure using a matrix and introduced a community optimizing
term in its objective function. COSINE (COmmunity-preserving Social Network Embed-
ding from Information diffusion cascades) proposed by Zhang et al. [13] employed the
Gaussian Mixture Model to model communities in low-dimension space and learned node
representations using information diffusion model. Cavallari et al. [14] introduced the
ComE (Community Embedding) framework that integrated the three tasks of community
detection, community embedding and node embedding as a closed loop procedure. It
takes the Multivariate Gaussian Distribution as the model for community representations
and supposes that node representations are generated from such community distributions.
In contrast to aforementioned algorithms, the ComE supports overlapping community
structure. CNRL (Community-enhanced Network Representation Learning) designed by
Tu et al. [16] extends the idea of DeepWalk by modeling a community as a topic in natural
language and hires the Gibbs Sampling of Latent Dirichlet Allocation to find community
assignments for nodes. Jia et al. [17] proposed CommunityGAN (Community Generative
Adversary Network) to learn node representations and detect overlapping communities
simultaneously. It uses the generative and discriminative thinking. However, it requires the
dimension of learned node representation must be same with the number of communities.
Sun et al. [18] proposed vGraph for joint community detection and node representation
learning. It assumes that each node can be represented as a mixture of communities and
each community is defined as a multinomial distribution over nodes.

The forenamed algorithms, including M-NMF [10], GEMSEC [11], NECS [12], CO-
SINE [13], ComE [14], CNRL [16], CommunityGAN [17] and vGraph [18] need to specify
the number of communities as an input parameter, which is usually not known in practice
and hard to estimate accurately, however. Cavallari et al. have improved their ComE to
ComE+ [15] that can handle the issue of unknown number of communities through an
inferring algorithm using Bayesian model. Another problem of the first-class algorithms is
that the community structure properties of real networks are multivariate and complicated.
High overlapping diversity, high overlapping density, wider ranging community size
are just some examples. Therefore, a predefined model may be insufficient to capture
community properties well.

CARE (Community Aware Random walk for network Embedding) proposed by Mo-
hammad et al. [19] and our previous work PCGNE (Partial Community structure Guided
Network Embedding) [7] belong to the second class. CARE first detects a community
structure for a network using Louvain, a popular community detection method, and then
uses the obtained communities to guide DeepWalk random walks. However, the aggressive
way of using community information leads to its performance severely relaying on the
accuracy of found communities. Up to now, detecting a high-quality community structure
is not easy for large-scale networks. Our PCGNE was inspired by CARE, but used the
information of partial community structure that was easier and more cost-effective to find
for random walk guidance.

Though it is possible to implement a parallel version of the partial community struc-
ture finding algorithm used in PCGNE, the programming will not be easier. The algorithm
needs to sit on a distributed graph processing platform Giraph++ [20], and deal with
complicate inter-communication among processing computing servers. In this paper, we
design a multi-process parallel framework for finding partial community information of
each node in a network. We extract the 2-hop ego-net for each node and detect a commu-
nity structure for it. Every and each detection is completely independent and thus can be
executed parallel by multiple processes. On each ego-net, the detection is achieved using a
game theory-based method that is superior at overlapping community structure finding.

Information 2021, 12, 186 5 of 19

2.3. Game Theory for Community Detection

The game theory is an abstract mathematical model that focus on decision-making
scenarios. The formation of a community structure of a network also can be modeled
as a game-playing. Several game-based approaches have been proposed to solve the
problem of disjoint or overlapping community detection on social networks. Annapurna
and Lakshmanan [21] did a survey work in this regard. In general, these algorithms
can be categorized into three classes, the non-cooperative game-based, the cooperative
game-based (also known as coalitional game-based), and the evolutionary game-based.
In non-cooperative game-based methods, the game players are individual nodes that
update their strategies (community labels) according to a defined personal utility function,
while in cooperative game-based ones, the players can be viewed as communities, i.e.,
individuals update their strategies to improve the quality of related communities, measured
by a community utility function. The evolutionary game-based approaches aim to find
community structures of dynamic networks. During evolutionary game-playing, players
can be added or removed as needed. Chen’s algorithm [22] is a non-cooperative game
method for finding overlapping community structure and has a wide influence. It is the
first game algorithm that models the dynamics of community formation of a network.
Based on Chen’s algorithm, several extension and improvements have been made, as
reported in this survey [21].

Except the adopted game theory class, the differences of game-based community
detection methods mainly lie on the designed utility functions (especially gain functions)
and player actions (individual or community). Neo-algorithms have been proposed by
defining new utility functions and (or) actions. Mahboobeh et al. [23] presented an
overlapping community structure detection algorithm, in which a new action attract was
added and the local influence was used as profit (gain) function. The local influence of a
node measures the influence from its local neighbors, i.e., adjacent and 2-hop neighbors.
Sun et al. [24] proposed GExplorer for overlapping community structure detection as
well. It investigates how similar vertices affect the formation of community game and
introduces indirect impact from 2-hop neighbors in gain function. Zhou et al. [25] improved
Chen’s algorithm by introducing node pair similarity in the gain function and designing
two strategies to suggest candidate labels for players during game-playing. The before-
mentioned three algorithms belong to the non-cooperative class. Konstantin et al. [26]
employed the cooperative game theory to find disjoint community structure on social
networks. They proposed two approaches that based on Myerson value and Hedonic
game, respectively. Zhou et al. proposed cooperative game-based methods for identifying
overlapping and hierarchical communities [27], and for detecting communities in multi-
relational networks [28].

One main challenge of game theory-based algorithms is that they are usually computa-
tional cost to converge, therefore cannot be used on large-scale networks. Moscato et al. [29]
further improved Zhou’s algorithm to reduce computational requirements through using a
greedy approach and a gain function working only on neighbors of nodes.

In this paper, we improve Chen’s algorithm to find network community information,
as it has the closest relationship with the community modularity definition. In addition, it
explores more strategies for nodes than others during game-playing and thus may reveal
a more accurate community structure. Since we play a game on 2-hop ego-net of each
network node, of which the size is much smaller than that of the whole network, the issue
of convergence time does not need to be considered any more.

3. Game Theory Preliminary
3.1. Basic Concepts

A game has several players (or agents) and each player is assumed to be rational or
selfish. In non-cooperative game, players will make their own decisions to increase their
own benefit. The key is that as one player selects its choice, the decision will influence its
neighbors and trigger chain reactions, i.e., the influenced neighbor players may change their

Information 2021, 12, 186 6 of 19

decisions to make their benefit maximize, and they will further influence their neighbors,
and so on. At the moment no player can increase its benefit from changing its own decision,
the game is said to reach an equilibrium, namely all players have made their best decisions.

In a non-cooperative community formation game, each and every node is a player, and
its decision is to select the labels of communities in which it prefers to join. In formal, a node
v keeps the labels of the communities it wants to join in, which is referred as the strategy of
v, denoted as s. Denote the set of all possible community labels as C = {1, 2, · · · , K}, the
strategy s of a node is a subset of C and can be none, which means the node does not join in
any community. Here K is polynomial in the number of nodes. For example, the maximum
K can be the number of nodes, which means each node forms a singleton community. K
can also be less than the number of nodes if some nodes have a same label for sure at start.
Usually, as a community formation game reaches its equilibrium, the final community
structure has much smaller number of communities than K.

The strategies of all players, denoted as S = {s1, s2, . . . , sN} where N is the number of
nodes and si (1 ≤ i ≤ N) is the strategy of node vi, is called the strategy profile of a game.

The notations of community formation game are listed in Table 1.

Table 1. Notations of Community Formation Game.

Notation Explanation

C the set of all possible community labels
K the maximum community label
si the strategy of player vi
s
′
i the best strategy of player vi

S−i the set of strategies of players other than vi
S the strategy profile of the game

gi(·) the gain function of player vi
li(·) the loss function of player vi

ui(·) the utility function of player vi
Li the candidate community labels for player vi

l a community label

3.2. Utility Function for Community Detection

Each player makes its own decision to increase its own benefit that is measured by a
utility function ui(·) in a non-cooperative game. A utility function consists of two parts,
the gain function gi(·) and the loss function li(·), and

ui(·) = gi(·)− li(·). (1)

In a community formation game, given S−i, the set of strategies of players other than
vi, the best response strategy of vi is s

′
i:

arg max
s′i⊆C

(
gi(S−i, s

′
i)− li(S−i, s

′
i)
)

. (2)

If all players have their best strategies, the community formation game reaches a
pure Nash equilibrium, at that no player can increase its own utility by changing its
strategy unilaterally.

In this paper, we will use the utility function put forth by Chen et al. [22], of that the
gain function, called the Personalized modularity function, is defined as (the symbols are
revised as used in this paper):

gi(S−i, si) =
1

2m ∑
j∈V

(
Aij δ̂(i, j)−

didj

2m
·
∣∣si ∩ sj

∣∣), (3)

where S−i is the set of strategies of players other than vi and si is the strategy of vi; m is
the number of network edges; Aij is the component of the ith row and the jth column in
the network adjacent matrix; δ̂(i, j) is 1 if |si ∩ sj| ≥ 1, otherwise 0; |si ∩ sj| indicates the

Information 2021, 12, 186 7 of 19

number of common labels that node vi and vj have; and di (dj) is the degree of vi (vj). The
associate loss function is:

li(S−i, si) =
1

2m
(|si| − 1). (4)

It has been proved that both the personalized modularity function and the loss func-
tion are locally linear functions with linear factor 1/2 and 1, respectively, and thus the
community formation game is a potential game, and a Nash equilibrium is guaranteed to
exist [22].

3.3. Local Equilibrium

However, computing the best strategy for a player might be NP-hard even in some
simple cases. Therefore, it is unreasonable to assume that players always chose their best
strategies. The local equilibrium, in which a player is only allowed to select a response
strategy from a restricted strategy space that depends on the player’s current state, was
proposed to replace the pure Nash equilibrium [22]. In particular, given the player vi’s
current strategy si and a set of candidate labels Li, vi can only chose its local optimal
response from the following strategies:

• a set of strategies formed by join action, i.e., {s′i|s
′
i = si ∪ lk, lk ∈ Li ∧ lk /∈ si};

• a set of strategies built by switch action, i.e., {s′i|s
′
i = si − lt ∪ lk, lt ∈ si ∧ lk ∈ Li ∧ lt 6=

lk};
• a set of strategies created by leave action, i.e., {s′i|s

′
i = si − lt, lt ∈ si}.

The distinct joining community labels of vi’s neighbors are appropriate for candidates.

4. The Algorithms

The framework of our partial community information enhanced network node em-
bedding approach is shown in Algorithm 1. Figure 1 shows its conception structure. It
consists of four steps: (1) extracting 2-hop ego-nets for all nodes of the analyzed network,
of which the sizes are much smaller than that of the original network; (2) detecting a com-
munity structure using a game theory-based algorithm for each ego-net and extracting the
partial community information of the center node for each ego-net; (3) collecting random
walks that incorporate the found partial community information on the network; and (4)
learning low-dimension node representations using the Word2Vec algorithm. Here, the
hyper parameters stands for all parameters needed and will be introduced in following
related algorithms. Please note that all the four steps can be executed in multi-process
parallel manner easily.

Our overriding contributions lie in the first two steps. The third step is same as in our
previous work [7]. In the last step, the framework directly calls the Word2Vec. We will
explain the first three steps in detail one by one.

Algorithm 1: GameNE
input :network G, hyper parameters
output :node representations

1 extract the 2-hop ego-net for all nodes in G (call Algorithm 2);
2 find the partial community information of the center node for all ego-nets (call

Algorithm 3);
3 collect random walks guided by the partial community information on G;
4 learn node representations using Word2Vec;

Information 2021, 12, 186 8 of 19

Figure 1. The Conception Structure of GameNE.

4.1. Ego-Net Extracting

The parallel 2-hop ego-net extracting method is show in Algorithm 2.

Algorithm 2: ExtractEgos
input :network G
output :2-hop ego-net of each node in G

/* parallel execute the following lines for each node in G. */
1 extract the 2-hop ego-net for the node v;
2 repeat
3 foreach node ev in the ego-net do
4 if ev is a leaf node then
5 remove ev from the ego-net;
6 end
7 end
8 mark v as the center node of this ego-net;
9 record the degree of each ego-net node in G;

10 compute the number of edges starting from ego-net nodes in G;
/* the above three lines collecting the side information of the

ego-net for utility computing later. */
11 until no leaf node;
12 return ego-net and its associate side info;

/* end of parallel executing. */
13 return ego-nets and their side info of nodes in G;

For each node, the method first extracts its 2-hop ego-net, which consists of the
node itself, its 1-hop and 2-hop neighbors and the connecting edges among them. Then, it
repeatedly drops leaf nodes that has only one edge connection to reduce later game-playing
computational cost, because they have no contribution to the community game formation.
In addition, side information including the center node of the ego-net, the degrees of ego-
net nodes in the original network G and the total number of edges starting from ego-net
nodes in G are recorded for using in later game-playing. At last, ego-nets and their side
information of all nodes are returned for further use.

Information 2021, 12, 186 9 of 19

The extractions are parallel executed by multiple processes from a pool. Nodes should
be randomly assigned to a process for handling to make the running time of each process
be roughly equal, in that node degrees may change greatly.

4.2. Partial Community Structure Detecting

The non-cooperative game theory-based method that finds the partial community
information for the center nodes of extracted ego-nets is depicted in Algorithm 3.

Algorithm 3: GamePCS
input :ego-nets and their side info, max-iter (max iteration number), comb-num

(combining number)
output :partial community info for the center nodes of ego-nets

/* parallel execute the following lines for each ego-net. */
1 initialize community label for each node in the ego-net;
2 make a list of nodes in the ego-net;
3 pcomin f o = ∅ ;
// partial community info.

4 for ix ← 1 to comb-num do
5 f lag = True ;
6 iters = 1 ;
7 while f lag and iters ≤ max-iter do
8 f lag=False;
9 iters ++;

10 shuffle the node list;
11 foreach node evi in the list do
12 collect candidate labels for evi;
13 foreach label do
14 create candidate strategies for evi using action join, switch and

leave;
15 end
16 select the best candidate strategy for evi;
17 if the best is better than the old then
18 update evi’s strategy as the best;
19 f lag=True;
20 end
21 end
22 merge communities if possible;
23 end
24 decode the community structure;
25 call PostProc (Algorithm 4) for the community structure;
26 extract the partial community info for the center node and add it to pcomin f o;
27 end
28 combine partial community info in pcomin f o;
29 return the combined partial community info;

/* end of parallel executing. */
30 return partial community info of the center node of each ego-net.

For each ego-net, at the start, the strategy of each node is initialized as a unique label,
i.e., each node forms a singular community. After that, nodes will play the community
formation game through updating their strategies. Specifically, a node collects candidate
labels from its direct neighbors, builds candidate strategies using the join, switch and
leave actions, and then selects the best that brings out the maximum utility. If the best
candidate strategy is better than the old one, the node replaces its old strategy with the
best. Here in the gain function computation (3), the edge number m and the node degrees
di and dj are using the actual values in the original network (getting from the recorded side

Information 2021, 12, 186 10 of 19

information during the ego-net extraction), but not the values in ego-net. By doing this
way, we hope that the impacts of missing 2-above-hop nodes and edges can be alleviated
and the found partial communities, especially for the center node, can be closer to that
in the original network. The playing will stop if no node changes its strategy or if the
playing iterations reach the set maximum. Please note that at the very beginning of each
iteration, the playing order is randomly permuted to remove the effect of processing order.
To speed up convergence, at the end of each playing iteration, the method merges small
communities into a larger one that contains the smaller. This operation can reduce the
number of community labels if mergence happens.

Then, a post-process procedure (Algorithm 4) is called to further improve the quality
of the found community structure.

Algorithm 4: PostProc
input :ego-net, community structure
output : rectified community structure

/* leaving rectification */
1 foreach community comi do
2 make a list of nodes in comi;
3 repeat
4 shuffle the node list;
5 foreach node vj in the list do
6 if (vj has 0 or 1 edge with comi) or (∆Qvj < 0) then
7 remove vj from comi;
8 end
9 until no node leaves comi;

10 end
/* joining rectification */

11 find communities in which the center node vc joins, comsvc ;
12 find neighbors of vc that do not join in anyone of comsvc ;
13 make a list of such neighbor nodes;
14 shuffle the list;
15 foreach node vn in the list do
16 foreach community comi in comsvc do
17 threshold = min{∆Q of vc’s neighbor that is in comi};
18 if ∆Qvn >= threshold then
19 add vn to comi;
20 break;
21 end
22 end
23 end

The post procedure achieves this from the viewpoint of a community. For each found
community, it first repeatedly removes these nodes that have 0 or 1 edge connection with
the community or of which their modularity contribution is negative. Such nodes may
exist due to the sequential playing of nodes. Then, for these neighbors of the center node
that have not joined in any community to which the center node belongs, the procedure
tries to find if they should join in any one (a community the center node has joined in). The
criterion is that the modularity contribution of the node (suppose the node is a member) is
not less than a threshold, which is the minimum modularity contribution of neighbors of
the center node to the community.

Information 2021, 12, 186 11 of 19

The modularity contribution of a node to a community is easy to compute. According
to Newman’s modularity definition [30], the contribution of a community c to the network
modularity is:

Qc =
1

2m ∑
i,j∈c

(
Ai,j −

didj

2m

)
, (5)

where m is the number of network edges, Aij is the component of the ith row and the jth
column in the network adjacent matrix, and di (dj) is the degree of vi (vj). If node v is added
to the community, the variation of the community modularity, namely the modularity
contribution of the node, will be:

∆Qv = Qc∪v −Qc =
1

2m ∑
j∈c

(
Av,j −

dvdj

2m

)
. (6)

Finally, based on the found community structure, the partial community information
of the center node is extracted. Here the information refers to the groups of direct neighbors
of the center node: the group consisting of neighbors that share at least one community
with the center node and the group of neighbors that do not.

Because the game-playing is a heuristic algorithm and unstable, i.e., the result of
different runs on the same network can be variant, the formation game-playing is conducted
several times and their results are combined by group union.

At last, the partial community information of all nodes is returned for random walk
guidance in next step.

Similarly, the community information finding on ego-nets are parallel executed by
processes from a pool. Ego-nets should be randomly assigned to a process for dealing with
to make the running time of each process be roughly equal, in that the sizes of ego-nets
may change dramatically.

4.3. Random Walks Incorporating Partial Community Information

With the found partial community information, random walks used for node repre-
sentation learning are collected on the analyzed network as we do in our previous work [7].
Specifically, for a walk, the next step node selection is ruled as:

next_node =
{

usual_walk if r < α
prior_walk else

, (7)

where the usual_walk means DeepWalk or node2vec walk, i.e., randomly selecting a neigh-
bor of the current node as the next walk in DeepWalk or choosing the next node with
probabilities controlled by the parameters return p and in-out q. The prior_walk incorpo-
rates partial community information, i.e., randomly selecting a neighbor that shares at
least one community with the current node as the next walk. The random number r is
uniformly drawn from range [0, 1] before each walk and α is a designated threshold. By
giving neighbors sharing communities a priority, which is adjusted by α, the generated
walks are likely trapped within communities; therefore, the community properties of the
network can be implicitly preserved in walks, which will be used to learn node representa-
tions. We denote the methods using DeepWalk and node2vec walk as GameNE-DW and
GameNE-N2V, respectively.

4.4. Time Complexity

The most time-consuming step in our GameNE framework is the partial community
information extraction using game-playing. Its time complexity will dominate that of the
whole algorithm. Here, we analyze the time complexity of this step. According to the
analysis by Chen et al. [22], the worst time complexity to reach a local equilibrium on
an ego-net is O(m2), where m is the edge number of the ego-net. Therefore, the upper-
limit time complexity of our parallel partial community information extracting should be

Information 2021, 12, 186 12 of 19

O(|V |/P ·m2
max), where P is the number of processes used and mmax is the maximum edge

number of ego-nets.

5. Evaluation

We test the performance of community property preservation of our GameNE methods
using the multi-label classification application. We compare them against six existing net-
work embedding algorithms, which are DeepWalk [8], node2vec [9], LINE [31], GraRep [32],
ComE [14] and CNRL [16]. DeepWalk and node2vec are the bases of our methods. ComE
and CNRL are two algorithms that explicitly take network community structure into con-
sideration during node representation learning. Both are based on DeepWalk and node2vec.
For CNRL, we adopt the “Embedding-based assignment” strategy that use low-dimension
representations of nodes and communities to estimate assignments of node to community
due to its computing efficiency.

5.1. Network Data

Experiments are conducted on synthesized undirected and unweighted networks
generated using LFR model [33], which is widely applied for evaluating the performance of
community detection algorithms. In the model, community structure properties of network
are controlled by several parameters, as shown in Table 2.

Table 2. LFR parameter settings of synthesized networks.

Parameter Description Experiment Setting

N number of nodes 10,000
k average node degree 15

maxk maximum node degree 50
minc minimum community size 20
maxc maximum community size 1000

t1 minus exponent for −2
degree distribution

t2 minus exponent for −1
community size distribution

µ mixing ratio 0.3
on number of 10%, 20%, or 30% of N

overlapping nodes with om = 6
om number of community 3, 6, or 9 with

memberships of overlapping on = 20% of N
nodes

Game theory are superior at overlapping community detection because it is nature
that a player can join in multiple communities at the same time. In our experiment
settings, we mainly change two overlapping node control parameters, the overlapping
density on and the overlapping diversity om. The overlapping density on specifies the
number of overlapping nodes, while the overlapping diversity om designates the number
of community memberships of each overlapping node. We vary on and om to generate
networks with high overlapping density and high overlapping diversity. Specifically, the
on is set as 10%, 20% and 30% of total network nodes with om = 6 and µ = 0.3, and the om
is appointed to 3, 6, and 9 with on = 20% and µ = 0.3. The mixing ratio µ is a parameter
that controls the fraction of edges connecting with nodes that are outside of a community
to edges inside the community. The smaller the µ, the clearer the community structure. We
set µ as 0.3 to obtain networks with some blur community structure. The overall model
parameters of our experiments can be found in Table 2. Totally, we generate 6 networks
for experiments. These networks are denoted by their specific parameter on or om. Please
note that the parameters of the network on = 20% and om = 6 are same, but they are two
distinct networks.

We also rectify the community structures of these generated networks, because we
find that there are portions of nodes violating the property of a strong community, i.e., a
node has more connections within the belonging community but relatively less connections
with the rest of the network. The operations of rectification are reported below:

Information 2021, 12, 186 13 of 19

(1) a node leaves an enrolling community with which it has zero or one connection. The
zero-connection node should leave the community for sure. The one connection join-
ing comes up mainly on some high overlapping membership nodes. Their connection
number to each joining community is one. Since one connection is a trivial structure,
we believe the node should not belong to such a community.

(2) a node joins in a not-enrolling community to which the connection number of the
node is equal to or larger than a designated threshold, which here we take as the
minimum number of connections the node with its already joining-in communities.
Such a situation occurs mostly as the connection number of a new joining is 2.

Both the leaving and joining actions are executed repeatedly until no node changes its
community enrollments, or up to a designated number of times. Leaving actions should be
carried out first. These rectifications may change the overlapping memberships of some
nodes. The distributions of amended community memberships (except one) of generated
networks are shown in Figure 2. As can be seen, overlapping memberships spread in a
wider range, compared with the original same one designated by om for all overlapping
nodes. The blue bar stands for the specified om. Moreover, there are some nodes of which
their communities become singleton, namely with just itself as member. All in all, the
community structures of these networks become more complicated and are more likely as
what should be in real networks.

0 5 10 15 20 25
0

200

400

600

800

1000

1200

Fr
eq

ue
nc

ie
s

(a) om=3, on=20%

0 5 10 15 20 25
0

200

400

600

800

1000

1200

(b) om=6, on=20%

0 5 10 15 20 25
0

200

400

600

800

1000

1200

(c) om=9, on=20%

0 5 10 15 20 25
om

0

200

400

600

800

1000

1200

Fr
eq

ue
nc

ie
s

(d) on=10%, om=6

0 5 10 15 20 25
om

0

200

400

600

800

1000

1200

(e) on=20%, om=6

0 5 10 15 20 25
om

0

200

400

600

800

1000

1200

(f) on=30%, om=6

Figure 2. Distributions of amended overlapping memberships of LFR synthesized networks.

5.2. Multi-Label Classification

We label nodes of the synthesized networks using their community identifications.
Such a labeling mechanism makes the community structure of a network totally incor-
porated in its node labels, namely nodes in a community with density connections will
have the same label. Therefore, we can use the multi-label classification to verify whether
community structure properties are properly preserved in low-dimension node representa-
tions.

In experiments, we first learn the node representations for a network, then split its
nodes to two parts, training part and testing part. The training part is used to train a
classifier according to its node representations and labels, and then the classifier is hired
to predict labels for the testing nodes. The classifier employed here is the libsvm [34], in
which the linear kernel function is used, and other parameters are set as defaults.

The metrics for evaluating classification performance are Micro-F1 and Macro-F1.
Micro-F1 is computed from each label prediction instance of each node, while Macro-F1 is
the averaged F1 scores of each label prediction.

Information 2021, 12, 186 14 of 19

5.3. Experiment Settings

We run all involved algorithms on the rectified LFR networks to get their low-
dimension node representations 10 times, and then use the multi-label classification to
evaluate their performance in terms of preserving community structure properties. The
Micro-F1 and Macro-F1 scores are averaged on the 10 results. Similar to evaluation using
classification in previous works, we randomly sample 50% to 90% nodes as training nodes
and leave the rest as testing nodes. In addition, we ensure that the same ratio of overlap-
ping nodes is sampled but no singleton community node is chosen. Singleton nodes have
no contribution to training because their labels are not needed for and have little impact
on prediction, yet their labels cannot be correctly predicted if left as testing nodes since no
other nearby nodes in embedding space have their label information.

Following previous works, the node embedding dimension is set as 128. For random
walk-based approaches, the length of walk is 40 and the walk number starting from each
node is 80. Both the context window size and the negative sample number in the Skip-Gram
model are set as 5. For ComE and CNRL algorithms, the required community number is
set as the actual number(excluding singleton communities). The two trade-off parameters
of ComE, α and β, are set as 0.1 according to the analysis in that paper. The max transition
probability order of GraRep is 4. For the parameter p and q of node2vec and algorithms
based on it, as well as the walking within community threshold α of our GameNE, we run
the corresponding algorithm with each candidate parameter combination three times and
select the one that results the maximum average Micro-F1.

5.4. Results of Different Overlapping Diversity

We first show the label prediction results of networks with om changing. Remember
that the actual overlapping memberships of these networks spread in a wide range after
our adjustment, as shown in Figure 2.

Table 3 displays the scores of the network om = 3. LINE-1 uses only the first order
similarity in LINE, while LINE-c employs both the first and second order similarities. The
best score is shown in bold and the second best in bold and italic. As can be seen, from
the Micro-F1 scores, GameNE-DW or GameNE-N2V is the best or the runner-up except
while the training ratio is 70%, at which ComE is the best. GameNE methods improve
their base approaches greatly. Examining other compared algorithms, ComE that explicitly
considers preserving community structure is the third best and LINE-1 surprisingly is the
fourth in general. However, the two CNRL algorithms that also explicitly take community
structure preservation into consideration are even worse than their base approaches and
are the worst among involved algorithms.

Table 3. Micro- and Macro-F1 Scores of Multi-Label Classification, Network om = 3.

Micro-F1 Macro-F1

Alg. 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

DeepWalk 0.8304 0.8416 0.8465 0.8443 0.8579 0.8927 0.8936 0.8976 0.9034 0.8983
node2vec 0.8366 0.8438 0.8487 0.8515 0.8552 0.8984 0.9006 0.9045 0.9115 0.9100

LINE-1 0.8471 0.8530 0.8559 0.8555 0.8611 0.9242 0.9285 0.9315 0.9335 0.9293
LINE-c 0.8255 0.8282 0.8335 0.8295 0.8403 0.9024 0.9040 0.9078 0.9076 0.9087
ComE 0.8496 0.8595 0.8650 0.8644 0.8731 0.9094 0.9157 0.9176 0.9242 0.9273

CNRL-DW 0.8065 0.8133 0.8171 0.8241 0.8195 0.8830 0.8879 0.8920 0.9033 0.8867
CNRL-N2V 0.8111 0.8132 0.8183 0.8198 0.8293 0.8916 0.8897 0.9021 0.9034 0.9001

GraRep 0.8408 0.8458 0.8495 0.8569 0.8593 0.9052 0.9085 0.9069 0.9217 0.9155
GameNE-DW 0.8563 0.8609 0.8643 0.8667 0.8755 0.9171 0.9198 0.9205 0.9291 0.9287

GameNE-N2V 0.8573 0.8613 0.8639 0.8664 0.8741 0.9221 0.9238 0.9263 0.9310 0.9333

From the viewpoint of Macro scores, the phenomena are a little different. LINE-1 is the
best, and our GameNE-N2V and GameNE-DW are the second and third best, respectively.
ComE becomes the fourth. Macro-F1 is computed as the average F1 scores of each label
prediction; therefore, the variation of F1 scores of some labels may induce a different rank.

Information 2021, 12, 186 15 of 19

Table 4 presents the scores of the network om = 6. As shown, GameNE-DW or
GameNE-N2V is the best or the runner-up in both terms of Micro-F1 and Macro-F1. The
following three in rank in general are node2vec, ComE and DeepWalk from Micro-F1, and
ComE, LINE-1 and node2vec from Macro-F1. The results of the network om = 9 are similar,
as shown in Table 5.

In general, it can be concluded that our GameNE methods are superior at node
representation learning for networks with high and various overlapping diversity.

Table 4. Micro- and Macro-F1 Scores of Multi-Label Classification, Network om = 6.

Micro-F1 Macro-F1

Alg. 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

DeepWalk 0.6842 0.6845 0.6911 0.6855 0.6421 0.7981 0.7989 0.8047 0.8030 0.7503
node2vec 0.6940 0.6977 0.6991 0.6971 0.6535 0.8017 0.8061 0.8065 0.8084 0.7576

LINE-1 0.6712 0.6711 0.6688 0.6486 0.6043 0.8099 0.8110 0.8138 0.7987 0.7633
LINE-c 0.6407 0.6370 0.6352 0.6301 0.5775 0.7894 0.7870 0.7902 0.7879 0.7483
ComE 0.6916 0.6932 0.6920 0.6867 0.6188 0.8117 0.8131 0.8153 0.8110 0.7643

CNRL-DW 0.5929 0.5907 0.5817 0.5692 0.5157 0.7568 0.7554 0.7542 0.7507 0.6980
CNRL-N2V 0.5874 0.5900 0.5787 0.5635 0.5130 0.7556 0.7571 0.7522 0.7489 0.6933

GraRep 0.6542 0.6609 0.6555 0.6429 0.5979 0.7930 0.7934 0.7967 0.7900 0.7362
GameNE-DW 0.7305 0.7318 0.7293 0.7240 0.6671 0.8307 0.8328 0.8334 0.8327 0.7721

GameNE-N2V 0.7332 0.7334 0.7299 0.7207 0.6604 0.8330 0.8349 0.8341 0.8298 0.7654

Table 5. Micro- and Macro-F1 Scores of Multi-Label Classification, Network om = 9.

Micro-F1 Macro-F1

Alg. 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

DeepWalk 0.6046 0.5915 0.6042 0.5932 0.5507 0.7981 0.7850 0.7908 0.7639 0.6835
node2vec 0.6328 0.6223 0.6317 0.6277 0.5821 0.8080 0.7978 0.8016 0.7834 0.6951

LINE-1 0.5479 0.5405 0.5318 0.5123 0.4736 0.7950 0.7809 0.7773 0.7563 0.6753
LINE-c 0.4917 0.4915 0.4894 0.4722 0.4519 0.7757 0.7651 0.7630 0.7374 0.6749
ComE 0.6237 0.6126 0.6146 0.6010 0.5695 0.8129 0.8006 0.8014 0.7814 0.6978

CNRL-DW 0.4305 0.4197 0.4237 0.4010 0.3733 0.7463 0.7351 0.7330 0.7090 0.6396
CNRL-N2V 0.4146 0.4199 0.4188 0.3963 0.3679 0.7387 0.7352 0.7334 0.7080 0.6420

GraRep 0.5331 0.5423 0.5320 0.5268 0.4956 0.7752 0.7701 0.7649 0.7423 0.6702
GameNE-DW 0.6917 0.6824 0.6842 0.6760 0.6044 0.8327 0.8220 0.8234 0.8000 0.7026

GameNE-N2V 0.6965 0.6885 0.6890 0.6774 0.6044 0.8336 0.8241 0.8248 0.7991 0.7019

5.5. Results of Different Overlapping Density

We also test the effects of overlapping node density on performance of our methods
by changing on. Table 6 shows the scores for the network on = 10%. It can be seen that
GraRep is the best while our GameNE-DW or GameNE-N2V is the runner-up in most
cases. The two following regarding Micro-F1 are node2vec or DeepWalk, while Macro-F1
are ComE, node2vec or DeepWalk. The results suggest that GraRep is good at topology
properties preserving for networks with simple overlapping community structure.

Table 6. Micro- and Macro F1-Scores of Multi-Label Classification, Network on = 10%.

Micro-F1 Macro-F1

Alg. 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

DeepWalk 0.8226 0.8278 0.8232 0.8212 0.8090 0.9145 0.9111 0.9132 0.9061 0.9016
node2vec 0.8214 0.8293 0.8253 0.8231 0.7957 0.9121 0.9110 0.9134 0.9061 0.8959

LINE-1 0.8093 0.8136 0.8038 0.8058 0.7910 0.9113 0.9099 0.9082 0.9071 0.9005
LINE-c 0.8030 0.8054 0.7971 0.7987 0.7855 0.9092 0.9063 0.9085 0.9025 0.9011
ComE 0.8230 0.8253 0.8150 0.8112 0.7655 0.9181 0.9167 0.9166 0.9096 0.8999

CNRL-DW 0.7934 0.7964 0.7879 0.7912 0.7746 0.9021 0.9004 0.9015 0.8983 0.8959
CNRL-N2V 0.7930 0.7980 0.7871 0.7926 0.7748 0.9031 0.9010 0.9014 0.8960 0.8955

GraRep 0.8694 0.8672 0.8598 0.8396 0.7912 0.9309 0.9303 0.9298 0.9189 0.8923
GameNE-DW 0.8445 0.8468 0.8361 0.8204 0.7582 0.9260 0.9241 0.9234 0.9098 0.8947

GameNE-N2V 0.8405 0.8462 0.8397 0.8292 0.7851 0.9234 0.9225 0.9240 0.9127 0.9018

Information 2021, 12, 186 16 of 19

As on increases to 20%, the phenomena are similar to those of om is 6. As shown in
Table 7, GameNE-DW and GameNE-N2V are the best or the runner-up in both terms of
Micro-F1 and Macro-F1. The following three are node2vec, ComE and DeepWalk with
respect to Micro-F1 and ComE, LINE-1 and node2vec to Macro-F1.

Table 7. Micro- and Macro F1-Scores of Multi-Label Classification, Network on = 20%.

Micro-F1 Macro-F1

Alg. 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

DeepWalk 0.6711 0.6781 0.6738 0.6688 0.6293 0.8233 0.8342 0.8258 0.8178 0.7825
node2vec 0.6818 0.6854 0.6851 0.6773 0.6353 0.8276 0.8364 0.8282 0.8190 0.7819

LINE-1 0.6629 0.6604 0.6495 0.6447 0.6086 0.8318 0.8383 0.8222 0.8217 0.7889
LINE-c 0.6327 0.6344 0.6351 0.6195 0.5914 0.8214 0.8289 0.8236 0.8130 0.7909
ComE 0.6809 0.6816 0.6843 0.6726 0.6145 0.8375 0.8451 0.8402 0.8325 0.7915

CNRL-DW 0.5800 0.5777 0.5680 0.5576 0.5179 0.7916 0.7973 0.7888 0.7845 0.7508
CNRL-N2V 0.5697 0.5721 0.5593 0.5488 0.5101 0.7887 0.7953 0.7850 0.7783 0.7509

GraRep 0.5980 0.6166 0.6031 0.5954 0.5580 0.7988 0.8179 0.8062 0.7926 0.7578
GameNE-DW 0.7159 0.7156 0.7113 0.6994 0.6427 0.8503 0.8580 0.8474 0.8325 0.7948

GameNE-N2V 0.7183 0.7181 0.7116 0.7003 0.6383 0.8533 0.8592 0.8493 0.8368 0.7936

The label prediction results of the network on = 30% are depicted in Table 8. Once
more, GameNE-DW and GameNE-N2V are the best or the second regarding both Micro-F1
and Macro-F1. In general, the three following are ComE, node2vec and DeepWalk from
Micro-F1, and LINE-1, ComE and node2vec from Macro-F1.

Table 8. Micro- and Macro F1-Scores of Multi-Label Classification, Network on = 30%.

Micro-F1 Macro-F1

Alg. 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

DeepWalk 0.5828 0.5843 0.5830 0.5827 0.5502 0.7300 0.7369 0.7340 0.7144 0.6228
node2vec 0.5982 0.6021 0.5979 0.6018 0.5692 0.7433 0.7460 0.7404 0.7315 0.6350

LINE-1 0.5245 0.5262 0.5161 0.5044 0.4632 0.7608 0.7607 0.7560 0.7418 0.6524
LINE-c 0.4739 0.4823 0.4793 0.4688 0.4466 0.7148 0.7158 0.7118 0.6982 0.6156
ComE 0.6059 0.6079 0.6052 0.6012 0.5661 0.7572 0.7578 0.7586 0.7441 0.6498

CNRL-DW 0.3387 0.3293 0.3238 0.3174 0.2696 0.6554 0.6510 0.6478 0.6440 0.5469
CNRL-N2V 0.3311 0.3201 0.3210 0.3034 0.2654 0.6498 0.6478 0.6463 0.6311 0.5494

GraRep 0.5155 0.5224 0.5218 0.5091 0.4921 0.6947 0.7052 0.6992 0.6820 0.5948
GameNE-DW 0.6338 0.6377 0.6285 0.6280 0.5936 0.7748 0.7753 0.7700 0.7574 0.6544

GameNE-N2V 0.6394 0.6443 0.6371 0.6339 0.5981 0.7780 0.7783 0.7727 0.7610 0.6561

In summary, from the experiment results above, the conclusion can be safely drawn
that our GameNE methods can improve their bases, DeepWalk and node2vec, greatly and
perform better than the compared baselines on networks with high overlapping diversity
and density. The improvement rises from the fact that game theory-based algorithm
can detect high-quality overlapping community structure information for networks. In
addition, ComE that explicitly considers preserving community properties is the following
best in most cases, and contrary to the intuition, LINE-1 that only takes the first order node
pair similarity and thus is expected to be worse than LINE-c that takes both the first and
the second order node similarities shows relatively good performance. We believe that the
reason behind is the way the second order similarity is used in LINE-c, but not that the
second order similarity is unimportant or unnecessary.

6. Discussion

Our framework provides a new way for community structure preservation in network
representation learning. In contrast to the majority of previous works that generally make
an assumption on community structure model and solve network node embedding and
community embedding (or community detection) jointly, our framework (Algorithm 1) first
finds partial community information of a network and then incorporates the information
into the collected random walks, which will be used for representation learning of the
network. A predefined model may not capture complicated properties of communities

Information 2021, 12, 186 17 of 19

well. In addition, detecting a high-quality community structure is usually computation
cost. Our framework sets no community model restriction and reduces the cost by finding
just partial community information, which still can greatly improve the performance of
node representation learning, as shown in Sections 5.4 and 5.5.

The pivot of our framework is how can we find accurate community information to en-
hance random walks. In the implementation of this paper, we design a game theory-based
algorithm to achieve this (Algorithm 3). The game methods are superior at overlapping
community detecting; however, they cannot be used on large-scale networks due to compu-
tation cost as converging. We avoid this problem by finding partial community information
for each node on its 2-hop ego-net (Algorithm 2), the size of which is generally dramatically
smaller than that of the whole network. Moreover, the analyzing of ego-nets gives two
chances for a node pair to find if they belong to a same community independently, and
thus may bring out better partial community information. Other high-quality community
structure detection algorithms, including other game theory-based ones, are worth to try
as well to further improve the quality of found partial community information.

In the current framework implementation, we use a multi-process parallel manner
to independently run many ego-net analyzing. Therefore, the running time will rest with
how many processes can be actually parallel executed by the used server, which in turn
mainly depends on the number of CPU cores of that server. We are planning to improve
the framework to make it run in a distributed multi-process parallel manner, namely it can
be executed on a server cluster, to further expands its scalability.

7. Conclusions

The preservation of network topology structure properties is a basic requirement
in network representation learning. In this paper, we introduced a multi-process paral-
lel framework for network node representation learning that can maintain community
structure properties well. Ground on the framework, we implemented two methods,
GameNE-DW and Game-N2V, found on random walks of DeepWalk and node2vec, respec-
tively and use an improved game theory-based method for partial community information
finding on ego-nets. A series of multi-label classification experiments have been conducted
to evaluate the performance of community structure preserving for the proposed methods
and six existing node embedding algorithms. The results showed that our GameNE meth-
ods are superior at learning node representations that can preserve community structure
properties, especially on networks with high overlapping diversity and density.

Author Contributions: Conceptualization, H.S. and W.J.; methodology, H.S., J.L. and L.C.; software,
G.L. and S.Z.; validation, Z.W. and S.M.; formal analysis, H.S. and W.J.; investigation, G.L.; data
curation, S.Z.; writing—original draft preparation, H.S.; writing—review and editing, W.J., J.L. and
L.C.; funding acquisition, H.S. and G.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the International Science and Technology Cooperation Project
of Shaanxi Province, China, grant number 2019KW-008; and the Science and Technology Projects of
Xi’an City, China, grant number 2019218114GXRC017CG018-GXYD17.9.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and code presented in this study are available on request
from the corresponding author. The data are not publicly available due to privacy reasons.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, D.; Yin, J.; Zhu, X.; Zhang, C. Network representation learning: A survey. IEEE Trans. Big Data 2020, 6, 3–28. [CrossRef]
2. Goyal, P.; Ferrara, E. Graph embedding techniques, applications, and performance: A survey. Knowl. Based Syst. 2018, 151, 78–94.

[CrossRef]

http://doi.org/10.1109/TBDATA.2018.2850013
http://dx.doi.org/10.1016/j.knosys.2018.03.022

Information 2021, 12, 186 18 of 19

3. Hamilton, W.L.; Ying, R.; Leskovec, J. Representation learning on graphs: Methods and applications. arXiv 2018, arXiv:1709.05584.
4. Cai, H.; Zheng, V.W.; Chang, K.C.C. A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE

Trans. Knowl. Data Eng. 2018, 30, 1616–1637. [CrossRef]
5. Qi, J.; Liang, X.; Li, Z.; Chen, Y.; Xu, Y. Representation learning of large-scale complex information network: Concepts, methods

and challenges. Chin. J. Comput. 2018, 41, 2394–2420. (In Chinese)
6. Tu, C.; Yang, C.; Liu, Z.; Sun, M. Network representation learning: An overview. Sci. Sin. Inf. 2017, 47, 980–996. (In Chinese)
7. Sun, H.; Jie, W.; Wang, Z.; Wang, H.; Ma, S. Network Representation Learning Guided by Partial Community Structure. IEEE

Access 2020, 8, 46665–46681. [CrossRef]
8. Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710.
[CrossRef]

9. Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [CrossRef]

10. Wang, X.; Cui, P.; Wang, J.; Pei, J.; Zhu, W.; Yang, S. Community preserving network embedding. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 203–209.

11. Rozemberczki, B.; Davies, R.; Sarkar, R.; Sutton, C. GEMSEC: Graph Embedding with Self Clustering. In Proceedings of the
2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, BC, Canada, 27–30
August 2019.

12. Li, Y.; Wang, Y.; Zhang, T.; Zhang, J.; Chang, Y. Learning Network Embedding with Community Structural Information. In
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019.
[CrossRef]

13. Zhang, Y.; Lyu, T.; Zhang, Y. COSINE: Community-preserving social network embedding from information diffusion cascades.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018;
pp. 2620–2627.

14. Cavallari, S.; Zheng, V.W.; Cai, H. Learning community embedding with community detection and node embedding on graphs.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017;
pp. 377–386. [CrossRef]

15. Cavallar, S.; Cambria, E.; Cai, H.; Chang, K.C.C.; Zheng, V.W. Embedding Both Finite and Infinite Communities on Graphs. IEEE
Comput. Intell. Mag. 2019, 14, 39–50. [CrossRef]

16. Tu, C.; Zeng, X.; Wang, H.; Zhang, Z.; Liu, Z.; Sun, M.; Zhang, B.; Lin, L. A unified framework for community detection and
network representation learning. IEEE Trans. Knowl. Data Eng. 2019, 31, 1051–1065. [CrossRef]

17. Jia, Y.; Zhang, Q.; Zhang, W.; Wang, X. CommunityGan: Community detection with generative adversarial nets. In Proceedings
of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 784–794.

18. Sun, F.Y.; Qu, M.; Hoffmann, J.; Huang, C.W.; Tang, J. vGraph: A Generative Model for Joint Community Detection and Node
Representation Learning. In Advances in Neural Information Processing Systems (NeurIPS 2019); Wallach, H., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32.

19. Keikha, M.M.; Rahgozar, M.; Asadpour, M. Community aware random walk for network embedding. Knowl. Based Syst. 2018,
148, 47–54. [CrossRef]

20. Tian, Y.; Balmin, A.; Corsten, S.A.; Tatikonda, S.; McPherson, J. From “Think Like a Vertex” to “Think Like a Graph”. In
Proceedings of the 40th International Conference on Very Large Data Bases, Hangzhou, China, 1–5 September 2014; pp. 193–204.
[CrossRef]

21. Jonnalagadda, A.; Kuppusamy, L. A survey on game theoretic models for community detection in social networks. Soc. Netw.
Anal. Min. 2016, 6, 1–24. [CrossRef]

22. Chen, W.; Liu, Z.; Sun, X.; Wang, Y. A Game-Theoretic Framework to Identify Overlapping Communities in Social Networks.
Data Min. Knowl. Discov. 2010, 21, 224–240. [CrossRef]

23. Soleimanpour, M.; Hamze, A. A game-theoretic approach for locally detecting overlapping communities in social networks. In
Proceedings of the Eighth International Conference on Information and Knowledge Technology, Hamedan, Iran, 7–8 September
2016; pp. 38–44.

24. Sun, H.L.; Ch’Ng, E.; Yong, X.; Garibaldi, J.M.; See, S.; Chen, D.B. An improved game-theoretic approach to uncover overlapping
communities. Int. J. Mod. Phys. C 2017, 28, 1750112. [CrossRef]

25. Zhou, X.; Zhao, X.; Liu, Y.; Sun, G. A game theoretic algorithm to detect overlapping community structure in networks. Phys.
Lett. A 2018, 382, 872–879. [CrossRef]

26. Avrachenkov, K.E.; Kondratev, A.Y.; Mazalov, V.V. Cooperative Game Theory Approaches for Network Partitioning. In
Proceedings of the 6th International Conference on Computational Social Networks, Hong Kong, China, 3–5 August 2017.

27. Zhou, L.; Lü, K.; Yang, P.; Wang, L.; Kong, B. An Approach for Overlapping and Hierarchical Community Detection in Social
Networks Based on Coalition Formation Game Theory. Expert Syst. Appl. 2015, 42, 9634–9646. [CrossRef]

28. Zhou, L.; Yang, P.; Lü, K.; Zhang, Z.; Chen, H. A Coalition Formation Game Theory-Based Approach for Detecting Communities
in Multi-relational Networks. In Proceedings of the 16th International conference on Web-Age Information Management,
Qingdao, China, 8–10 June 2015; pp. 30–41.

http://dx.doi.org/10.1109/TKDE.2018.2807452
http://dx.doi.org/10.1109/ACCESS.2020.2978517
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.24963/ijcai.2019/407
http://dx.doi.org/10.1145/3132847.3132925
http://dx.doi.org/10.1109/MCI.2019.2919396
http://dx.doi.org/10.1109/TKDE.2018.2852958
http://dx.doi.org/10.1016/j.knosys.2018.02.028
http://dx.doi.org/10.14778/2732232.2732238
http://dx.doi.org/10.1007/s13278-016-0386-1
http://dx.doi.org/10.1007/s10618-010-0186-6
http://dx.doi.org/10.1142/S0129183117501121
http://dx.doi.org/10.1016/j.physleta.2018.01.036
http://dx.doi.org/10.1016/j.eswa.2015.07.023

Information 2021, 12, 186 19 of 19

29. Moscato, V.; Picariello, A.; Sperlí, G. Community detection based on Game Theory. Eng. Appl. Artif. Intell. 2019, 85, 773–782.
[CrossRef]

30. Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [CrossRef]
31. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. LINE: Large-scale information network embedding. In Proceedings of the

24th International World Wide Web Conference, Florence, Italy, 18–22 May 2015; pp. 1067–1077. [CrossRef]
32. Cao, S.; Lu, W.; Xu, Q. GraRep: Learning graph representations with global structural information. In Proceedings of the

24th ACM International Conference on Information and Knowledge Management, Melbourne, Australia, 19–23 October 2015;
pp. 891–900. [CrossRef]

33. Lancichinetti, A.; Fortunato, S.; Radicchi, F. Benchmark graphs for testing community detection algorithms. Phy. Rev. E 2008,
78, 046110. [CrossRef] [PubMed]

34. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [CrossRef]

http://dx.doi.org/10.1016/j.engappai.2019.08.003
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1145/2736277.2741093
http://dx.doi.org/10.1145/2806416.2806512
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://www.ncbi.nlm.nih.gov/pubmed/18999496
http://dx.doi.org/10.1145/1961189.1961199

	Introduction
	Related Work
	DeepWalk and Node2vec
	Network Embedding Preserving Community Structure
	Game Theory for Community Detection

	Game Theory Preliminary
	Basic Concepts
	Utility Function for Community Detection
	Local Equilibrium

	The Algorithms
	Ego-Net Extracting
	Partial Community Structure Detecting
	Random Walks Incorporating Partial Community Information
	Time Complexity

	Evaluation
	Network Data
	Multi-Label Classification
	Experiment Settings
	Results of Different Overlapping Diversity
	Results of Different Overlapping Density

	Discussion
	Conclusions
	References

