
 information

Article

Visualisation of Control Software for Cyber-Physical Systems

Igor Melatti 1,*,† , Federico Mari 2,† , Ivano Salvo 1,† and Enrico Tronci 1,†

����������
�������

Citation: Melatti, I.; Mari, F.; Salvo, I.;

Tronci, E. Visualisation of Control

Software for Cyber-Physical Systems.

Information 2021, 12, 178. https://

doi.org/10.3390/info12050178

Academic Editor: Xavier Bellekens

Received: 9 February 2021

Accepted: 12 April 2021

Published: 21 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Sapienza University of Rome, Via Salaria 113, 00198 Rome, Italy;
salvo@di.uniroma1.it (I.S.); tronci@di.uniroma1.it (E.T.)

2 Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”,
Piazza Lauro De Bosis 15, 00135 Rome, Italy; federico.mari@uniroma4.it

* Correspondence: melatti@di.uniroma1.it
† These authors contributed equally to this work.

Abstract: Cyber-physical systems are typically composed of a physical system (plant) controlled by a
software (controller). Such a controller, given a plant state s and a plant action u, returns 1 iff taking
action u in state s leads to the physical system goal or at least one step closer to it. Since a controller K
is typically stored in compressed form, it is difficult for a human designer to actually understand how
“good” K is. Namely, natural questions such as “does K cover a wide enough portion of the system
state space?”, “does K cover the most important portion of the system state space?” or “which actions
are enabled by K in a given portion of the system space?” are hard to answer by directly looking
at K. This paper provides a methodology to automatically generate a picture of K as a 2D diagram,
starting from a canonical representation for K and relying on available open source graphing tools
(e.g., Gnuplot). Such picture allows a software designer to answer to the questions listed above, thus
achieving a better qualitative understanding of the controller at hand.

Keywords: control software synthesis; control software visualisation; cyberphysical systems; model
checking

1. Introduction

In a Cyber-Physical System [1,2], two main components can be highlighted—a physical
part (often referred to as the plant), and a software part. The software part may have two
possible goals, either to monitor the plant by checking that its evolution satisfies given
safety and/or liveness properties [2,3], or to control the plant, by computing actions being
taken so that the plant evolution satisfies given safety and/or liveness properties.

In this paper, we focus on the latter category, which we call Software Based Control
Systems (SBCSs). Thus, an SBCS consists of two main subsystems—the controller and the
plant. Typically, the plant is a physical system consisting, for example, of mechanical or
electrical devices whereas the controller consists of control software running on a microcon-
troller. In an endless loop (see Figure 1), the controller reads sensor outputs from the plant
and sends commands to plant actuators in order to guarantee that the closed loop system
(that is, the system consisting of both plant and controller) meets given safety and liveness
specifications (system level formal specifications). The typical control loop skeleton for an
SBCS is the following. Measure x of the system state from plant sensors goes through an
analog-to-digital (AD) conversion, yielding a quantized value x̂. Then, a function ctrlLaw
computes a command û to be sent to plant actuators after a digital-to-analog (DA) conversion.

Software generation from models and formal specifications forms the core of Model
Based Design of embedded software [4]. This approach is particularly interesting for SBCSs
since in such a case system level (formal) specifications are much easier to define than the
control software behavior itself. Basically, the control software design problem for SBCSs
consists in designing software implementing the function ctrlLaw .

Information 2021, 12, 178. https://doi.org/10.3390/info12050178 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-6273-6190
https://orcid.org/0000-0003-4289-9301
https://orcid.org/0000-0002-0377-3119
https://doi.org/10.3390/info12050178
https://doi.org/10.3390/info12050178
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12050178
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12050178?type=check_update&version=2

Information 2021, 12, 178 2 of 19

PLANT

CONTROLLER

DA AD

Figure 1. Closed loop composed by plant and controller.

Automatic methods and tools aiming at automatically synthesizing function ctrlLaw
have been developed in recent years, for example, in [5–10]. In this paper, we will refer to
the method described in [10,11], but the approach we describe may be applied to the other
ones as well. Namely, the methodology described in [10,11] (which is implemented by the
QKS tool) takes as input the following:

• A plant model, given as a Discrete Time Linear Hybrid System (DTLHS). Namely,
such a model may be defined by continuous as well as discrete variables, provided
that the dynamics is described by linear constraints;

• System level formal specifications, that describe functional requirements of the closed
loop system (i.e., initial and goal regions);

• Implementation specifications, that describe non functional requirements of the control
software, such as the number of bits used in the quantization process, the required
worst case execution time, and so forth.

The output is a C-code implementation of function ctrlLaw , which is able to drive any
initial plant state to the plant goal states.

In the following, by exploiting the quantization (i.e., discretization) of states and
actions, we represent the control software with a boolean relation K (controller), which takes
as input (the n-bits encoding of) a state x of the plant and (the a-bits encoding of) a proposed
action to be performed u, and returns as output true (i.e., 1) iff the system specifications are
met when performing action u in state x. Moreover, we define dom(K) = {x | ∃u. K(x, u)}
as the set of states covered by K. Note that QKS always synthesizes a controller K s.t.
dom(K) is as big as possible. Furthermore, the C-code implementation of K which is
output by QKS is actually based on a representation of K as a compressed boolean function,
by using OBDDs (Ordered Binary Decision Diagrams, see Section 2). This is also the case
for most of the other methodologies cited above [5–9].

Suppose now that the number of bits encoding the system state is about 20, and the
number of bits encoding the system action is between 1 and 4. Even assuming such low
numbers, if K is represented as a plain (state, action) pairs, it will contain millions of (state,
action) pairs. While this is fine if K must be accessed by an actual control software, it would
be difficult for a human designer to actually understand how “good” K is. Namely, natural
questions such as “does K cover a wide enough portion of the system state space?”, “does
K cover the most important portion of the system state space?”, “how can we qualitatively
compare two different controllers K1 and K2?” or “which actions are enabled by K in a
given portion of the system space?” are hard to answer by directly looking at the table
representing K. If K is compressed using OBDDs, answering these questions may be even
harder. In order to enable a human to give a (qualitative) answer, we need a representation
of K more suited for humans than a (compressed) table, which is more suited for software.
Thus, a graphical compact representation of K as a 2D (or 3D) picture is needed.

Information 2021, 12, 178 3 of 19

1.1. Our Main Contributions

In this paper we present an algorithm that, from an OBDD representation of a con-
troller K for a DTLHS modeling an SBCS, effectively and efficiently generates a 2D picture
(namely, an input file for Gnuplot [12]) depicting K. Such a picture consists of a Cartesian
plane representing the starting DTLHS state space. If the starting DTLHS is described
by exactly two state variables, each axis of the Cartesian plane directly corresponds to a
DTLHS variable and each point of the Cartesian space directly corresponds to a DTLHS
state. Otherwise, our approach allows the user to choose two (“interesting”) variables
among the ones describing the DTLHS. The picture is generated so that all regions of states,
for which the same actions are defined on K, are painted with the same color. Namely, the
color for a state (x, y) is uniquely determined by the set of actions enabled by K in (x, y).
In the following, we will denote such actions set as c(x, y) = {u | K((x, y), u)}. As a special
case, if c(x, y) = ∅ for some (x, y), that is, (x, y) is not controlled by K, then the color is
white. A separate picture showing the relation between a color and the corresponding
actions set is also automatically generated. In this way, the state region for which any color
is shown depicts the coverage of K, whilst the regions colors give a glimpse of which actions
are turned on by K. This allows designers to qualitatively answer questions regarding how
“good” K is, such as those exemplified above.

In our setting, since we look for controllers K for which a software implementation
is possible, a finite number of bits is used to encode both the states and the actions of the
starting DTLHS. Suppose now that |u| = a, that is, a bits are needed in order to encode
an action of the given DTLHS. Then, there may be at most 22a

different actions sets. This
entails that we may need up to 22a

different colors, that is, |{c(x, y) | (x, y) is a state}| ≤ 22r
.

As an example, with a = 5 we need about 4× 109 colors, which is more than a typical RGB
(Red-Green-Blue) code with 8 bits per color may achieve. Thus, in worst case our method
may work only up to a = 4. However, for most systems |{c(x, y) | (x, y) is a state}| � 22a

,
that is, the worst case very rarely occurs, thus we may generate the picture even if a ≥ 5.

We present experimental results showing the effectiveness of the proposed algorithm.
As an example, in about one hour we are able to generate the pairs of pictures described
above for a multi-input buck DC-DC converter with a = 4 action bit variables.

Finally, we remark that, though in this paper we focus on controllers visualisation,
our methodology can be extended to formal verification of cyber-physical systems [13–15],
as formal verification and control synthesis are intertwined research areas. Namely, the
following is a (non-complete) list of possible envisaged extensions of our approach.

1. For OBDD-based (i.e., symbolic) formal verification [16,17], our methodology could
be easily adapted to visualise, for example, the reachable state space, which is rep-
resented with OBDDs. This is also possible for some explicit model checkers such
as SPIN, which may represent the reachable state space as an OBDD-like data struc-
ture [18].

2. In system-level formal verification [19–29], a simulation campaign is used to check if
a system is correct, by relying on a simulator of the system itself. Furthermore, a
simulation campaign compactly represents a set of input (test) traces for the system
under verification, in a way which resembles the compaction provided by OBDDs.
Hence, our methodology could be used to visualise the distribution of the test traces,
as well as their coverage w.r.t. the state space of the system to be verified.

3. Statistical model checking [30,31] refers to a series of simulation-based techniques that
can be used to determine if the probability that a system satisfies a given property is
sufficiently high or not (or to actually compute an approximation of such probability).
Statistical model checking can be used in many and very diverse areas, for example,
biological systems [32–37], smart grids [38–40] and communication protocols [41]. In
such context, our approach may be extended so as to visualise the probability of a
given property, by colouring the state space of the system under verification. The
same idea may be applied to probabilistic model checking (see, e.g., [42,43]).

Information 2021, 12, 178 4 of 19

1.2. Paper Outline

This paper is organized as follows. Section 2 provides the background needed to
understand the results of this paper. Section 4 describes our method to generate a picture
visualizing a controller. Section 5 provides experimental results. Section 3 provides a
survey of related work. Finally, Section 6 summarizes and concludes the paper.

2. Basic Definitions

To make this paper self-contained, in this section we briefly summarize previous
work on the automatic generation of control software for Discrete Time Linear Hybrid
System (DTLHS) from system level formal specifications focusing on basic definitions and
mathematical tools that will be useful in the sequel.

Figure 2 shows the control software synthesis flow that we consider here [10]. We
model the controlled system (i.e., the plant) as a DTLHS (Section 2.4), that is a discrete time
hybrid system whose dynamics is modeled as a linear predicate (Section 2.1) over a set of
continuous as well as discrete variables. The behavior (i.e., semantics) of a DTLHS is given
in terms of a Labeled Transition System (LTS, Section 2.3).

Figure 2. Control Software Synthesis Flow.

Given a plant H modeled as a DTLHS, a set of goal states G (liveness specifications)
and an initial region I, both represented as linear predicates, we are interested in finding
a restriction K of the behavior of H such that in the closed loop system all paths starting in a
state in I lead to G after a finite number of steps. Finding K is the DTLHS control problem
(Section 2.4) that is in turn defined as a suitable LTS control problem (Section 2.3).

Finally, we are interested in controllers that take their decisions by looking at quantised
states, that is, the values that the control software reads after an AD conversion. This is the
quantised DTLHS control problem. Controllers K, which are solution of a quantised DTLHS
control problem, are the starting point for the method we describe in this paper.

2.1. Predicates

We denote with X = [x1, . . . , xn] a finite sequence of variables. Each variable x ranges
on a known (bounded or unbounded) interval Dx either of the reals or of the integers

Information 2021, 12, 178 5 of 19

(discrete variables). We denote with DX the set ∏x∈X Dx. Boolean variables are discrete
variables ranging on the set B = {0, 1}. Unless otherwise stated, we suppose real variables
to range on R and integer variables to range on Z.

A linear expression over a list of variables X is a linear combination of variables in X
with rational coefficients. A linear constraint over X (or simply a constraint) is an expression
of the form L(X) ≤ b, where L(X) is a linear expression over X and b is a rational constant.
Finally, a conjunctive predicate is a conjunction of constraints.

2.2. OBDD Representation for Boolean Functions

We will denote boolean functions f : Bn → B with boolean expressions on boolean
variables involving + (logical OR), · (logical AND, usually omitted thus xy = x · y), ¯
(logical complementation) and ⊕ (logical XOR). We will also denote vectors of boolean
variables in boldface, e.g., x = 〈x1, . . . , xn〉. Moreover, we also denote with f |xi=g(x) the
boolean function f (x1, . . . , xi−1, g(x), xi+1, . . . , xn). Note that, with such notation, we have
that ∃xi. f (x) is the boolean function f |xi=0(x) + f |xi=1(x). A truth assignment µ is a partial
map from an ordered set of boolean variables V to (B∪ {⊥})|V|. A minterm of µ is a total
extension of µ, i.e., a total truth assignment ν : V → B|V| s.t. µ(x) 6=⊥→ ν(x) = µ(x) for
all x ∈ V . The value of a minterm (or of a total truth assignment) ν is ∑n

i=1 2i−1ν(xi), being
V = [x1, . . . , xn].

A Complemented edges OBDD (COBDD [44,45]) ρ = (V, E, r,V , var, low, high, flip, ord)
is a directed acyclic graph (DAG) (V, E) with the following properties:

• r ∈ V is the root of the DAG ρ;
• var : V → V ∪ 1 assigns to each vertex v either a variable in V (if v is an internal node)

or the unique terminal node 1 (otherwise), so that var(v) = var(v′) = 1 implies v = v′;
• the terminal node v s.t. var(v) = 1 has no children (i.e., the set {v′ | (v, v′) ∈ E} is

empty). In the following, by abusing notation, we will denote with 1 the terminal
node itself;

• each internal node v 6= 1 has exactly two children (i.e., the set S(v) = {v′ | (v, v′) ∈ E}
has exactly two elements);

• high, low : V → V∪ ⊥ are partial functions which distinguish the two successors of v
as the then-child and the else-child. That is, high(v) ∈ S(v) represents the case in which
var(v) is true (then-child) and low(v) ∈ S(v) represents the case in which var(v) is
false (else-child). Both high, low are partial since they are not defined on the terminal
node 1;

• flip : V → B∪ ⊥ is a partial function assigning to each internal node v a boolean
value, meaning that the edge (v, low(v)) is complemented. Function flip is partial
since it is not defined on the terminal node 1;

• on each path from an internal node to the terminal node 1, the variables labeling each
internal node must follow the same ordering ord. That is, ord : V → {1, . . . , |V|} is a
bijective function and for all π = v1, . . . , vn s.t. (vi, vi+1) ∈ E and var(vn) = 1, it must
hold that ord(var(vi)) < ord(var(vi+1)) for all i = 1, . . . , n− 2.

Given a COBDD ρ, its semantics is a boolean function depending on boolean variables
in var(V). Such semantics, denoted by J·Kρ, is recursively defined as follows. The semantics
of the terminal node 1 w.r.t. flipping bit b is the boolean constant b̄, that is,

J1, bKρ := b̄. (1)

The semantics of internal node v w.r.t. flipping bit b, with var(v) = x, is the
boolean function

Jv, bKρ := xJhigh(v), bKρ + x̄Jlow(v), b⊕ flip(v).Kρ (2)

Finally, the semantics of ρ is Jr, flip(r)Kρ. We will write Jv, bK instead of Jv, bKρ when ρ
is understood.

Information 2021, 12, 178 6 of 19

In the following, we will always consider reduced COBDDs, that is, COBDDs with the
minimum number of nodes among the ones having as semantics the same boolean function.
Computing boolean operations on such reduced COBDDs can be efficiently implemented,
as described in [44–46].

2.3. Most General Optimal Controllers

A Labeled Transition System (LTS) is a tuple S = (S, A, T) where S is a (finite or infinite)
set of states, A is a finite set of actions, and T is the (possibly non-deterministic) transition
relation of S . A controller for an LTS S is a function K : S× A → B enabling actions in a
given state. We denote with dom(K) the set of states for which a control action is enabled.
An LTS control problem is a triple P = (S , I, G), where S is an LTS and I, G ⊆ S. A controller
K for S is a strong solution to P iff it drives each initial state s ∈ I in a goal state t ∈ G,
notwithstanding nondeterminism of S . A strong solution K∗ to P is optimal iff it minimizes
path lengths. An optimal strong solution K∗ to P is the most general optimal controller (we
call such a solution an MGO) iff in each state it enables all actions enabled by other optimal
controllers. For more formal definitions of such concepts, see [10]. For efficient algorithms
to compute MGOs starting from finite-state (nondeterministic) LTSs see [47].

2.4. Discrete Time Linear Hybrid Systems

In this section, we introduce the class of discrete time Hybrid Systems that we use as
plant models, namely Discrete Time Linear Hybrid Systems (DTLHSs for short). For a more
complete introduction, see [10].

Definition 1. A Discrete Time Linear Hybrid System is a tupleH = (X, U, Y, N) where: X is
a finite sequence of present state variables (we denote with X′ the sequence of next state variables
obtained by decorating with ′ all variables in X); U is a finite sequence of input variables; Y is a finite
sequence of auxiliary variables; N(X, U, Y, X′) is a conjunctive predicate over X ∪U ∪Y ∪ X′

defining the transition relation (next state) of the system. Note that X, U, Y may contain discrete
as well as continuous variables.

DTLHSs may be used to represent many interesting real-world plants, such as e.g.,
the multi-input buck DC-DC converter used in Section 5.

Given a DTLHS H = (X, U, Y, N), we define its behavior (i.e., dynamics) as LTS(H)
= (DX, DU , Ñ) where: Ñ : DX × DU × DX → B is a function s.t. Ñ(x, u, x′) ≡ ∃ y ∈
DY. N(x, u, y, x′). A state x for H is a state x for LTS(H). A DTLHS control problem
P = (H, I, G) is defined as the LTS control problem (LTS(H), I, G).

In classical control theory, the concept of quantisation has been introduced (e.g., see [48])
in order to manage real valued variables in (discrete) control software. Quantisation is
the process of approximating a continuous interval by a set of integer values. Formally, a
quantisation function γ for a real interval I = [α, β] is a non-decreasing function γ : I → Z
s.t. γ(I) is a bounded integer interval. In the following, we will only consider uniform
quantisations. That is, all quantisation functions γ are defined so that [α, β] is divided in
2b equal intervals, and γ(x) = v iff x lays inside the v-th interval, with 0 ≤ v ≤ 2b − 1.
As a result, γ−1(v) is an interval for all 0 ≤ v ≤ 2b − 1. In the following, we will define a
uniform quantisation function γ by only providing b as the number of bits. We will also
refer to the quantisation function step of γ, notation ‖γ‖, as |I|

2b .
Finally, a quantisation Q = (A, Γ) for a DTLHS encloses the set of quantisation func-

tions Γ, containing a quantisation function γx (as discussed above, γx ∈ N is the number of
bits to be used in the quantisation) for all state and action variables x ∈ X and u ∈ U (in
the following, we will refer to Γ−1 with the set of all γ−1

x), as well as the bounded (safe)
admissible region A on which the desired controller is supposed to work. Namely, A bounds
both state variables (subregion AX) on which the controller has to keep the system and
action variables (subregion AU) on which the controller works. The quantisation step ‖Γ‖ is

Information 2021, 12, 178 7 of 19

defined as max{ ‖γ‖ | γ ∈ Γ}. Again, given all admissible regions A, a quantisation can
be defined by only providing the number of bits bx for each variable x ∈ X.

By applying a quantisation to the dynamics LTS(H) of a DTLHS H we obtain a
finite-state LTS. A control problem admits a quantised solution if control decisions can
be made by just looking at quantised values (i.e., considering only the finite-state LTS).
This enables a software implementation for a controller, as well as usage of algorithms
mentioned in Section 2.3 in order to compute controllers. To accommodate quantisation
errors, always present in software based controllers, it is useful to relax the notion of control
solution by tolerating the error on the continuous variables to be at most the quantisation
step. Accordingly, we look for controllers that drive the plant to the goal G with an error
at most ‖Γ‖ (we call such a controller a ‖Γ‖-solution to P). Definition 2 formalizes the
above concepts.

Definition 2. Given a quantisation Q, a Q Quantised Feedback Control (QFC) solution to a
DTLHS control problem P is a ‖Γ‖ solution K(x, u) to P such that K(x, u) = K̂(Γ(x), Γ(u)),
where K̂ : Γ(AX)× Γ(AU)→ B.

For efficient (non-complete) algorithms to compute QFC solutions to a DTLHS control
problem, for example, see [10]. The approach we present here (Section 4) takes as input a
controller which is a QFC solution of a DTLHS control problem.

2.4.1. Controllers and COBDDs

By Definition 2, K is based on a controller K̂ that only looks at integer (quantised)
values. Thus, by considering the boolean encoding of such values (as it is usual in Model
Checking applications), we have that K̂, and by abuse of notation K, can be represented
as a COBDD ρ s.t. JρK = K. More formally, given Q = (A, Γ), for all x ∈ X, we need a set
of Γx boolean variables enc(x) = [x1, . . . , xΓx] in order to encode x (and analogously for
actions u ∈ U). This implies that, in the resulting COBDD ρ, the set of boolean variables
V (which is the target set for labeling function var) consists of the boolean variables
x = [enc(x1), . . . , enc(x|X|)] for the state and u = [enc(u1), . . . , enc(u|U|)] for the action.

3. Other Related Work

This article is an extended and completely revised version of [49]. With respect
to [49], this paper provides more details in all article sections, including revised and
enriched experiments.

Many papers (e.g., see [10,11,50–54]) tackling the problem of synthesizing control
software (which looks tato quantized states) or control laws (which look at real states)
of hybrid systems show pictures of the type we generate in this paper (with r = 1, i.e.,
only one bit for the actions). However, to the best of our knowledge there are no papers
directly focusing on the method to generate such pictures, thus no automatic approach to
controllers visualization is described.

An entire area of Computer Science is dedicated to Visualization, that is, to using (often
parallel) algorithms to visualize scientific data (see [55] for a survey). Such algorithms are
tailored to visualize data coming from given application domains, such as Biology (see,
e.g., [56,57]), Medicine (see, e.g., [58–61]), Mathematics (see, e.g., [62]), and more specifically,
for example, in weather forecasting (see, e.g., [63]), in cellular screen visual analysis (see,
e.g., [64]) and in taxi trajectories [65]. Such works typically start from a huge amount of
available data to be visualized, whilst here our starting point is an OBDD representing a
controller. Moreover, we focus on a field, that is, visualization of control software, which is
not considered by works in the topics of Visualization. Finally, the OBDD-based method
described here to obtain the final pictures is not used in Visualization.

Therefore, to the best of our knowledge this is the first time that an algorithm generat-
ing a picture of the coverage of a controller for a DTLHS is presented.

Information 2021, 12, 178 8 of 19

4. Automatic Visualization of Control Software

In this section, we describe (Algorithms 1 and 2) our method to automatically generate
a 2D picture giving a human-readable representation of a Q QFC solution K to a DTLHS
control problem P = (H, I, G) with a given quantisation Q = (A, Γ).

The picture we generate lies on a 2D Cartesian plane. IfH has exactly 2 state variables,
then each axis of the picture is labeled with a state variable ofH and has a range bounded
by A. The key property is the following: a point (x, y) in the picture is colored depending
on which action set is enabled by K in the DTLHS state (x, y), that is, on

c(x, y) = {u | K((x, y), u) = 1}. (3)

IfH has l + 2 state variables with l > 0 (i.e., if |X| = l + 2), then our method requires us
to choose which variables have to be used as axis labels. That is, as a further input a partition
of X in two sets {x, y} and {d1, . . . , dl} is needed. Given this, the action set we consider for
each point (x, y) in the Cartesian space is c(x, y) = {u | ∃d1, . . . , dl . K((x, y, d1, . . . , dl), u) =
1}. This entails that in the output picture a state (x, y) is colored iff there exists at least a
value for all plant state variables {d1, . . . , dl} that is controlled by K.

Note that the picture output by our approach is practically useful ifH has at least two
real variables, which is indeed the case in most real-world SBCSs. Finally, a second picture
showing the correspondence between action sets and colors is also generated, so that the
first one may be easily interpreted.

Algorithm 1 Visualizing a controller.

Require: DTLHS H, quantisation Q = (a, Γ), state variables set Ξ s.t. |Ξ| = 2, COBDD
ρ = (V, E, r,V , var, low, high, flip, ord)

Ensure: Visualize(H,Q, Ξ, ρ):
1: let n = ∑x∈Ξ Γx and a = ∑u∈U Γu
2: let enc be the encoding defined by Q on X and U
3: let ∪x∈X\Ξenc(x) = {v1, . . . , v`}
4: let v, b be s.t. Jv, bKρ = ∃v1, . . . , v`. JρK
5: let ρ′ = (V′, E′, r′,V , var′, low′, high′, flip′, ord′) be s.t. i) Jρ′Kρ′ = JρKρ and ii) ord′(w) =

ord(w)− a if ord(w) > a, and ord′(w) = ord(w) + n otherwise
6: M←CreateGnuplotBody(ρ′, flip′(r′), n,⊥,∅)
7: M′ ←CompactSameColorRegions(M)
8: χ←LexOrderedDiffColorsRGB ({(v, b) | ∃µ s.t. (µ, v, b) ∈ M′})
9: 〈P, C〉 ← 〈∅,∅〉

10: for all triples (µ, v, b) ∈ M′ do
11: using Q, append to P the rectangle corresponding to µ with color χ((v, b))
12: for all (v, b) s.t. ∃(µ, v, b) ∈ M′ do
13: append to C a rectangle of color χ((v, b)) with label SatAll(ρ′, v, b)
14: return 〈P, C〉

Information 2021, 12, 178 9 of 19

Algorithm 2 Visualizing a controller: Gnuplot body.

Require: COBDD ρ = (V, E, r,V , var, low, high, flip, ord), flipping bit b, number of state
boolean variables n, truth assignment µ, (assignment, COBDD node, flipping bit) triples
set M

Ensure: CreateGnuplotBody(ρ, b, a, µ, M):
1: c← b
2: if (v = 1 ∧ ¬c) ∨ (v 6= 1 ∧ ord(var(v)) > n) then
3: for all minterms ν of µ do
4: M← M ∪ (ν, v, c)
5: else if v 6= 1 then
6: µ(var(v))← 1
7: M←CreateGnuplotBody(ρ, high(v), c, n, µ, M)
8: µ(var(v))← 0
9: if flip(v) then c← ¬c

10: M←CreateGnuplotBody(ρ, low(v), c, n, µ, M)
11: return M

4.1. Input and Output

In order to generate the two pictures with the properties described above, we design a
function Visualize (described in Algorithm 1), which takes as input:

• A DTLHS plant modelH = (X, U, Y, N);
• A quantisation Q = (A, Γ) for H. Such quantisation specifies i) how many bits are

used to discretize variables in X and in U and ii) the bounds of variables in X and U;
• A subset Ξ ⊆ X of plant state variables s.t. |Ξ| = 2. Variables in Ξ are those to be

shown in the axes of the final 2D picture. If |X| = 2, then Ξ = X;
• A Q QFC solution K to a control problem involvingH, represented as a COBDD ρ s.t.

JρK = K.

The output of Visualize is a Gnuplot [12] source files pair (P, C) describing the picture
P to be generated and the color legend C. Note, however, that Visualize may be easily
adjusted to work with any other graphing tool, provided that it generates pictures from
textual descriptions. In Algorithm 1, we represent P as a list of rectangles in the plant state
space (restricted to variables in Ξ). To each rectangle, we associate the RGB code of the
corresponding color to be displayed. Analogously, C is a list of colored rectangles with
height equal to the height of the picture: on the x axis the action set corresponding to each
colored rectangle is shown. If too many action sets are used in P, then C may be split in
many pictures in order to retain readability.

4.2. Algorithm Details

Function Visualize works as follows. First of all, in line 1 the number of boolean
variables needed to encode the plant state variables in Ξ and action variables in U are
computed as n and a respectively. Then, in lines 2–4, state boolean variables encod-
ing plant state variables not in Ξ (i.e., those not to be displayed in the final picture) are
existentialised out from K, thus obtaining COBDD node v and flipping bit b such that
Jv, bK = ∃v1, . . . , v`. JρK = ∃v1, . . . , v`. K = K̃. As a result, the final picture will show
all values for plant state variables in Ξ s.t. there exists at least a value for all plant state
variables in X \ Ξ that is controlled by K.

In order to generate the desired picture, we need to visit the COBDD ρ starting from
the node v with the flipping bit b computed above, so as to obtain an action set. That is,
we want to traverse ρ starting from v so as to arrive to a node ṽ s.t. the COBDD rooted
in ṽ is only labeled with action boolean variables. In formulas, we want to find all ṽ, b̃ s.t.
Jṽ, b̃Kρ = F(u), i.e., F does not depend on state variables in x, but only on action variables
in u. In order to do this, we need state variables to come before action variables in the
ordering defined by function ord, i.e., ord(vx) < ord(vu) for all vx ∈ enc(x), vu ∈ enc(u) s.t.
x ∈ X, u ∈ U. However, in order to obtain a better compression, controllers are represented

Information 2021, 12, 178 10 of 19

with COBDDs where the ordering function ord is s.t. ord(vx) > ord(vu) [10]. Hence, by
using standard COBDD reordering algorithms [44,45], line 5 changes the ordering to be
the desired one, thus obtaining a new COBDD ρ′ representing the same function of ρ, that
is, K̃.

This allows us to perform a depth-first search (DFS in the following) of the COBDD ρ′

representing K̃, by calling (line 6) function CreateGnuplotBody described in Algorithm 2.
The goal of function CreateGnuplotBody (see Section 4.2.1) is to return a list M of (µ, w, c)
triples s.t. µ is a total truth assignment to all state boolean variables, w is a node of COBDD
ρ′ and c is a flipping bit. For each triple (µ, w, c) in M, the following holds: if x̂ is the value
of µ (i.e., x̂ is a quantised state described by the variables in Ξ), then Jw, cK is the (boolean)
characteristic function of the action set enabled by K̃ in x̂. That is, Jw, cK = F s.t. F(û) holds
iff K̃(x̂, û) holds. Note that, by definition of K̃, this entails that for all plant states x in the
quantised state x̂ (i.e., such that x ∈ Γ−1(x̂)) K enables the set of actions u s.t. the boolean
encoding of u (i.e., û) satisfies Jw, cK.

Once function CreateGnuplotBody has finished, the returned list M may be directly
translated in a Gnuplot file P as follows. For each triple (µ, w, c) in M, the value x̂ of µ is
translated in a rectangle having as bounds those of Γ−1(x̂), that is, of the Cartesian product
of the intervals that are mapped to x̂ (line 11). The RGB color of such a rectangle may be
determined starting from the address (a C language pointer) of w, also taking into account
the flipping bit c. However, this has the following drawbacks: (i) the Gnuplot file for
the picture may be too big; (ii) different runs of function Visualize (e.g., with different
quantisations, and thus different boolean encoding, for plant state variables) may result
in different colors for equal action sets, which may make difficult an effective comparison
between different experiments. In order to counteract (i), M is compacted, by collapsing
contiguous quantised states with the same action sets (function CompactSameColorRegions
in line 7 of Algorithm 1). This is performed by a greedy sub-optimal procedure, which
first compacts vertically all adjacent rectangles with the same color and then compacts the
resulting rectangles horizontally. In order to avoid (ii), we first generate all the needed
colors, that is, those corresponding to action set in A = {(w, c) | ∃µ s.t. (µ, w, c) ∈ M}
(line 8). Then, we use a lexicographical ordering on A to pick one of such colors. This is
done by actually considering all actions enabled by Jw, cK, so that we always obtain the
same colors associated to the same action sets.

Note that generating many distinguishable colors is by itself a non-trivial problem [66,67].
In this work, we rest on a technique which generates equally spaced colors in the H-
dimension of the HSV (Hue Saturation Value) color space [68], and then converts them
back into the RGB space using fixed values for S and V (in our experiments, we fix
V = 0.95 and S = 0.5) and standard algorithms [69]. Namely, we start from c1 = 0.5
and then, for all color pairs (ci, ci+1) s.t. ci+1 is generated immediately after ci, we
have that H(ci+1) = frac(H(ci) + Φ), being H the H-dimension in the HSV color space,
Φ =

√
5−1
2 ≈ 0.618033988749895 the golden ration conjugate and frac(x) = x − bxc the

fractional part of x. Using more complex (and more expensive from a computational point
of view) techniques, like e.g., [66], may improve pictures readability.

Finally, the Gnuplot file C maintaining the correspondence between colors and action
sets is generated in lines 12–13, where SatAll returns all satisfying minterms of the boolean
function represented by the given COBDD. If this results in too many colors, C is split in
many files in order to retain readability.

We remark that, by using the above described technique for generating distinguishable
colors, we are not giving a special meaning to the colors we are using. That is, our approach
would equally work if, e.g., we swap the colors assigned to two different action sets. As a
result, we would obtain a differently colored figure P, and a different figure C giving the
new legend. Summing up, using colors is, in our approach, a means to visualize which
action set is used in a given state region, by simultaneously considering the two figures P
(where colors are used) and C (where colors meaning, in terms of action set, are provided).

Information 2021, 12, 178 11 of 19

4.2.1. Function CreateGnuplotBody

Function CreateGnuplotBody (Algorithm 2) essentially performs a DFS of COBDD ρ
starting from the root r with flipping bit flip(r). We recall that, when CreateGnuplotBody is
called at line 6 of Algorithm 1, the COBDD ρ′ resulting from having changed the variables
ordering and having existintialised on “non-interesting” variables is passed. On each path
from r to 1, such DFS stops as soon as an action boolean variable is found at node v and
flipping bit c. In fact, if ord(var(v)) > n (line 2), then we have passed the mark for plant
state boolean variables, and hence the sub-tree rooted in v will only contain nodes labeled
with action boolean variables (as a consequence of variable reordering discussed above).
While exploring such a path, the corresponding (partial) truth assignment µ is maintained,
that is, if the then edge of a node w has been traversed, then µ(var(w)) is set to 1 (lines 6–
7); if the else edge has been traversed, then µ(var(w)) is set to 0 (lines 8–10). Moreover, if
a complemented edge is traversed, the flipping bit b is flipped (line 9). Once the current
path ends in a node v labeled by an action boolean variable (line 2), the to-be-returned list
M is updated (lines 3–4) by adding all minterms of the current µ together with the action
set (v, c). Line 2 also detects the case in which 1 is reached without passing through action
variables. In this case, if the flipping bit is 0 (i.e., no complementation required) then all
actions are enabled by K for the quantised states corresponding to values of minterms
of µ, thus all minterms of µ are added to M. Otherwise, if the flipping bit is 1, then no
action is enabled for the quantised states corresponding to values of minterms of µ (i.e., the
corresponding action set is ∅), thus no minterms are added.

5. Experimental Results

We implemented our picture generation algorithm in the C programming language,
using the CUDD (Colorado University Decision Diagram) package for OBDD based com-
putations and BLIF (Berkeley Logic Interchange Format) files to represent input OBDDs.
We name the resulting tool KPS (Kontroller Picture Synthesizer). KPS is part of a more general
tool named QKS (Quantized feedback Kontrol Synthesizer [10]). In this section we present our
experiments that aim at evaluating effectiveness of KPS.

5.1. Experimental Settings: Case Study

The experimental results in this paper refer to the multi-input buck DC-DC con-
verter [70] (Figure 3) case study. Namely, a multi-input buck DC-DC converter is a cyber-
physical control system where the plant is a mixed-mode analog circuit converting the
DC input voltage (Vi in Figure 3) to a desired DC output voltage (vO in Figure 3), and the
controller computes actions to actuate some circuit switches in order to maintain current
and voltage within given bounds. As an example, buck DC-DC converters are used off-chip
to scale down the typical laptop battery voltage (12–24) to the just few volts needed by the
laptop processor (e.g., [71]) as well as on-chip to support Dynamic Voltage and Frequency
Scaling (DVFS) in multicore processors (e.g., [72]). Because of its widespread use, control
schemas for buck DC-DC converters have been widely studied (e.g., see [71,72]). The typi-
cal software based approach (e.g., see [71]) is to control the switches u1, . . . , un in Figure 3
(typically implemented with a MOSFET) with a microcontroller.

In such a converter (Figure 3), there are n power supplies with voltage values
V1, . . . , Vn, n switches with voltage values vu

1 , . . . , vu
n and current values Iu

1 , . . . , Iu
n , and

n input diodes D0, . . . , Dn−1 with voltage values vD
0 , . . . , vD

n−1 and current iD
0 , . . . , iD

n−1.
The typical goal for a multi-input buck is to drive iL and vO within given goal intervals.

In our case study, we have that the goal is defined by the linear constraints −2 ≤ iL ≤ 2
and 4.99 ≤ vO ≤ 5.01.

Information 2021, 12, 178 12 of 19

R

+vO
L

iD

Vn

Vn−1

Vi

V1

Iun

Iun−1

Iui

+vun un

D0

D1

Di

Dn−1

iL rL

+vC C

rCiC

+vui

un−1

ui

+vD

. . .

. . .

Iu1 +vD1

+vDi

+vun−1 +vDn−1

+vu1 u1

Figure 3. Multi-input Buck DC-DC converter.

5.2. Experimental Settings: Running KPS

For our experiments, we consider four controllers for buck DC-DC converters with
i inputs, being i ∈ {1, 2, 3, 4}, generated by QKS as described in [11]. We denote the
DTLHS representing the buck with i inputs as Hi, and with ρi the COBDD representing
the controller Ki(x, u) forHi as generated by QKS. Quantizations for such DTLHSs is Q is
s.t. n = |x| = 20 and ai = |u| = i. For each ρi, we run KPS so as to compute Visualize(Hi,
Q, X, ρi, vi, bi) (see Algorithm 1). All our experiments have been carried out on a 3.0 GHz
Intel hyperthreaded Quad Core Linux PC with 8 GB of RAM.

5.3. KPS Performance

In this section we will show the performance (in terms of computation time and output
size) of the algorithms discussed in Section 4. Table 1 shows our experimental results. The
i-th row in Table 1 corresponds to experiments running KPS so as to compute Visualize(Hi,
Q, X, ρi, vi, bi) (see Algorithm 1). Columns in Table 1 have the following meaning. Column
a shows the number of action variables |u| (note that |x| = 20 on all our experiments).
Column CPU(P) shows the computation time of KPS, that is, of function Visualize of
Algorithm 1 (in seconds). Columns |P|, |J| and |E| show the size in KB of, respectively,
the source Gnuplot file for the 2D picture (i.e., the output P of function Visualize of
Algorithm 1), the JPEG (Joint Photographic Experts Group) file generated by Gnuplot from
P (i.e., with compression), and the EPS (Encapsulated Postscript) file generated by Gnuplot
from P (i.e., without compression). Finally, Column CPU(G) shows the computation time
of Gnuplot (in seconds) to generate the JPEG and the EPS files (computation time and size
for file C are negligible).

Table 1. KPS performance (CPU times are in seconds).

a CPU(P) CPU(G) |P| |J| |E|

1 9.15e+00 3.25e+02 6.17e+03 2.46e+01 5.19e+03
2 1.00e+01 1.47e+03 1.29e+04 2.91e+01 1.09e+04
3 1.06e+01 2.43e+03 1.67e+04 2.91e+01 1.39e+04
4 1.10e+01 3.58e+03 2.02e+04 3.16e+01 1.68e+04

From Table 1 we can see that, in slightly more than 10 s we are able to generate the
Gnuplot file for the multi-input buck with a = 4 action variables. Then, Gnuplot needs
about one hour to synthesize the actual picture (either in JPEG or in EPS).

Information 2021, 12, 178 13 of 19

5.4. Controllers Qualitative Evaluation via Pictures

In Figures 4, 6, 8 and 9 we show the output P generated by the KPS–Gnuplot chain
for K1, . . . , K4. Moreover, in Figures 5 and 7 we show the output C (i.e., colors legend)
generated by the KPS–Gnuplot chain for K1 and K2.

We now show how we may answer to the questions exemplified in Section 1 (plus
one), thanks to Figures 4–9:

• Do K1, . . . , K4 cover a wide enough portion of the system state space? The answer is yes
for all controllers K1, . . . , K4, since the region for which any color is shown covers
nearly all the system state space. Moreover, we may see that, increasing the number
of actions (i.e., going from K1 to K4) the coverage increases.

• Do K1, . . . , K4 cover the most important portion of the system state space? Again, the answer
is yes for all controllers K1, . . . , K4. Namely, in the DC-DC buck converter case study
the most important part is the starting point iL = 0, vO = 0 and the goal region
(delimited by −2 ≤ iL ≤ 2 A and 4.99 ≤ vO ≤ 5.01 V). In all four cases, it is clear that
such regions are covered.

• Which actions are enabled by K1, . . . , K4 in a given portion of the system space? If we focus
on the whole covered state space, we have the following. From Figure 5 we may
immediately see that all possible actions sets are used by K1. On the other hand,
from Figure 7 we immediately conclude that only 7 actions sets out of 222 − 1 = 15
(excluding the empty actions set) are indeed enabled in K2. Note that, in order to
retain readability, colors legend pictures always have at most 3 colors. If more than
n > 3 actions sets are used by the given controller, then d n

3 e pictures for colors legend
are used. This results in 1 picture for K1 and in 3 pictures for K2. For space reasons,
we do not show colors legends for K3 and K4. Namely, K3 uses 25 actions set (out of
255), resulting in 9 files for colors legend, whilst K4 uses 83 actions sets (out of 65,535),
resulting in 28 files for colors legend.

• Is there an actions set which is used more than the other actions sets? We have that the most
used actions sets are {1} for K1 and {(0, 1), (1, 1)} for K2. By considering the missing
colors legend pictures, analogous results may be obtained for K3 and K4.

• Which is the distribution of action sets on the state space? Let us focus, e.g., on Figure 4.
We have a huge portion on the left part of the picture which is colored in green, which
corresponds to action u1 = 1 (see Figure 5). This may be interepreted as follows: for
negative values of iL (provided that vO is not too small w.r.t. iL), the only action
enabled by the controller is always to close the switch u1 (see Figure 3). As a further
example, if 2 ≤ iL ≤ 3 A and vO < 2 V, then there are some states for which u1 = 1
(switch closed, green color in Figure 5) and some other for which it is ok to perform
any action (either close or open the switch is ok, pink color in Figure 5).

Figure 4. Picture P for K1, as generated by KPS and Gnuplot. The x-axis is in Ampere (A), the y-axis
is in Volt (V).

Information 2021, 12, 178 14 of 19

Figure 5. Picture C for K1, as generated by KPS and Gnuplot. The x-axis represents possible
action sets.

Figure 6. Picture P for K2, as generated by KPS and Gnuplot. The x-axis is in Ampere (A), the y-axis
is in Volt (V).

Figure 7. Pictures C for K1, as generated by KPS and Gnuplot. The x-axis represents possible action sets.

Information 2021, 12, 178 15 of 19

Figure 8. Picture P for K3, as generated by KPS and Gnuplot. The x-axis is in Ampere (A), the y-axis
is in Volt (V).

Figure 9. Picture P for K4, as generated by KPS and Gnuplot. The x-axis is in Ampere (A), the y-axis
is in Volt (V).

6. Conclusions and Future Work

In this paper, we addressed the problem of providing a graphical human-readable
representation (i.e., of visualizing) a controller K for a software-based control system,
represented as a discrete-time linear hybrid system (DTLHS). Such a representation is
useful for allowing a human designer to have a qualitative measure of the controller
behavior. To this aim, we presented an algorithm and a tool KPS implementing it, which,
from an OBDD representation of K, effectively generates a 2D picture depicting K. Such a
picture consists of a Cartesian plane where each point corresponds to a state of the starting
DTLHS, and assigns the same color to all regions of states for which the same actions set
is defined on K. A separated set of pictures showing the relation between a color and the
corresponding actions set is also automatically generated. In this way, the state region
for which any color is shown depicts the coverage of K, whilst the regions colors give a
glimpse of which actions are turned on by K on given plant states regions. We have shown
feasibility of our proposed approach by presenting experimental results on using it to
visualize the controller for a multi-input buck DC-DC converter. Such experimental results
show that our automatically generated pictures may indeed answer important qualitative
questions above the controller behavior.

The proposed approach currently generates a 2D picture, which works well for systems
with two plant state variables. A useful extension of the proposed approach would be
to synthesise an interactive 3D picture in essentially the same way as we do here, by

Information 2021, 12, 178 16 of 19

generating parallelepipeds instead of rectangles. Such an approach would work well for
systems with at least three state variables. Having an interactive picture would allow the
designer to rotate or zoom the picture, so as to explore hidden regions.

An interesting future research direction is also to investigate a different graphical
representation of a given controller, in order to work well with any number of state
variables. As an example, a 3D bar picture may be generated so that for each quantized
value of the two variables to be shown (i.e., those in Ξ in the notation of Section 4.1)
a bar shows the percentage of coverage w.r.t. variables not to be shown (i.e., not in Ξ).
Moreover, we plan to show how we can use our approach to qualitatively compare different
controllers for the same plant, obtained by changing some key parameters in the plant
model. Furthermore, we plan to apply our approach to other areas in which OBDDs or
OBDD-like data structures are used, such as symbolic formal verification, system-level
formal verification and statistical model checking.

Author Contributions: All authors have equally contributed to the present paper. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the following research projects/grants: Italian
Ministry of University & Research (MIUR) grant “Dipartimenti di Eccellenza 2018–2022” (Dept.
Computer Science, Sapienza Univ. of Rome); EC FP7 project SmartHG (Energy Demand Aware Open
Services for Smart Grid Intelligent Automation, 317,761); INdAM “GNCS Project 2018”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used for this paper have been described within the paper itself.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AD Analog-to-Digital

BLIF Berkeley Logic Interchange Format

COBDD Complemented edges OBDD

CUDD Colorado University Decision Diagram

DA Digital-to-Analog

DAG Directed Acyclic Graph

DFS Depth-First Search

DTLHS Discrete Time Linear Hybrid System

EPS Encapsulated Postscript

FDRI Fault Detection, Isolation and Recovery

HSV Hue Saturation Value

JPEG Joint Photographic Experts Group

KPS Kontroller Picture Synthesizer

LTS Labeled Transition System

MGO Most General Optimal controller

MILP Mixed Integer Linear Programming

OBDD Ordered Binary Decision Diagram

QFC Quantized Feedback Control

QKS Quantized feedback Kontrol Synthesizer

RGB Red Green Blue

SBCS Software Based Control Systems

Information 2021, 12, 178 17 of 19

References
1. Lee, E.A.; Seshia, S.A. Introduction to Embedded Systems, A Cyber-Physical Systems Approach; MIT Press: Cambridge, MA, USA,

2017.
2. Bartocci, E.; Deshmukh, J.; Donzé, A.; Fainekos, G.; Maler, O.; Ničković, D.; Sankaranarayanan, S. Specification-based monitoring

of cyber-physical systems: A survey on theory, tools and applications. In Lecture Notes in Computer Science (including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2018; pp. 135–175.
[CrossRef]

3. Gawand, H.L.; Bhattacharjee, A.; Roy, K. Online Monitoring of a Cyber Physical System Against Control Aware Cyber Attacks.
Procedia Comput. Sci. 2015, 70, 238–244. [CrossRef]

4. Henzinger, T.A.; Sifakis, J. The Embedded Systems Design Challenge. In Proceedings of the International Symposium on Formal
Methods, Hamilton, ON, Canada, 21–27 August 2006; pp. 1–15.

5. Henzinger, T.; Ho, P.H.; Wong-Toi, H. HyTech: A Model Checker for Hybrid Systems. STTT 1997, 1, 110–122. [CrossRef]
6. Frehse, G. PHAVer: algorithmic verification of hybrid systems past HyTech. Int. J. Softw. Tools Technol. Transf. 2008, 10, 263–279.

[CrossRef]
7. Wong-Toi, H. The synthesis of controllers for linear hybrid automata. In Proceedings of the CDC, San Diego, CA, USA, 10–12

December 1997; Volume 5, pp. 4607–4612. [CrossRef]
8. Tomlin, C.; Lygeros, J.; Sastry, S. Computing Controllers for Nonlinear Hybrid Systems. In Proceedings of the HSCC, Berg en Dal,

The Netherlands, 29–31 March 1999; pp. 238–255.
9. Mazo, M.; Davitian, A.; Tabuada, P. PESSOA: A Tool for Embedded Controller Synthesis; In International Conference on Computer

Aided Verification (CAV), Proceedings of the 22nd International Conference, CAV 2010, Edinburgh, UK, 15–19 July 2010; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 566–569.

10. Mari, F.; Melatti, I.; Salvo, I.; Tronci, E. Model Based Synthesis of Control Software from System Level Formal Specifications.
ACM TOSEM 2014, 23, 1–42. [CrossRef]

11. Alimguzhin, V.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E. A Map-Reduce Parallel Approach to Automatic Synthesis of Control
Software. In Proceedings of the International SPIN Symposium on Model Checking of Software (SPIN 2013), Stony Brook, NY,
USA, 8–9 July 2013; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7976, pp. 43–60. [CrossRef]

12. Janert, P.K. Gnuplot in Action: Understanding Data with Graphs; Manning Publications Co.: Greenwich, CT, USA, 2009.
13. Clarke, E.M.; Grumberg, O.; Peled, D.A. Model Checking; The MIT Press: Cambridge, MA, USA, 1999.
14. Sirjani, M.; Lee, E.A.; Khamespanah, E. Verification of Cyberphysical Systems. Mathematics 2020, 8, 1068. [CrossRef]
15. Sirjani, M.; Lee, E.A.; Khamespanah, E. Model Checking Software in Cyberphysical Systems. In Proceedings of the 2020 IEEE

44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 13–17 July 2020; pp. 1017–1026.
[CrossRef]

16. Burch, J.R.; Clarke, E.M.; McMillan, K.L.; Dill, D.L.; Hwang, L.J. Symbolic model checking: 1020 states and beyond. Inf. Comput.
1992, 98, 142–170. [CrossRef]

17. Cimatti, A.; Corvino, R.; Lazzaro, A.; Narasamdya, I.; Rizzo, T.; Roveri, M.; Sanseviero, A.; Tchaltsev, A. Formal Verification and
Validation of ERTMS Industrial Railway Train Spacing System. In International Conference on Computer Aided Verification (CAV),
Proceedings of the 24th International Conference, CAV 2012, Berkeley, CA, USA, 7–13 July 2012; Springer: Berlin/Heidelberg, Germany,
2012; pp. 378–393.

18. Holzmann, G.; Puri, A. A Minimized Automaton Representation of Reachable States. Int. J. Softw. Tools Technol. Transf. (STTT)
1999, 2, 270–278. [CrossRef]

19. Zuliani, P.; Platzer, A.; Clarke, E. Bayesian Statistical Model Checking with Application to Stateflow/Simulink Verification; Formal
Methods in System Design; Springer: Berlin/Heidelberg, Germany, 2010; Volume 43, pp. 243–252. [CrossRef]

20. Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Merli, F.; Tronci, E. System Level Formal Verification via Model Checking Driven
Simulation. In Proceedings of the CAV 2013, Saint Petersburg, Russia, 13–19 July 2013; Springer: Berlin/Heidelberg, Germany,
2013; Volume 8044, pp. 296–312. [CrossRef]

21. Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Tronci, E. System Level Formal Verification via Distributed Multi-Core Hardware in
the Loop Simulation. In Proceedings of the PDP 2014, Torino, Italy, 12–14 Feburary 2014; pp. 734–742. [CrossRef]

22. Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Tronci, E. Anytime System Level Verification via Random Exhaustive Hardware In
The Loop Simulation. In Proceedings of the DSD 2014, Verona, Italy, 27–29 August 2014; pp. 236–245.

23. Camilli, M. Formal Verification Problems in a Big Data World: Towards a Mighty Synergy. In Companion Proceedings of the 36th
International Conference on Software Engineering; ICSE Companion 2014; Association for Computing Machinery: New York, NY,
USA, 2014; pp. 638–641. [CrossRef]

24. Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Tronci, E. SyLVaaS: System Level Formal Verification as a Service. In Proceedings of
the 23rd Euromicro International Conference on Parallel, Distributed and Network-Based Computing (PDP), Turku, Finland, 4–6
March 2015; pp. 476–483.

25. Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Tronci, E. Anytime System Level Verification via Parallel Random Exhaustive
Hardware in the Loop Simulation. Microprocess Microsyst. 2016, 41, 12–28. [CrossRef]

26. Duggirala, P.S.; Mitra, S.; Viswanathan, M.; Potok, M. C2E2: A Verification Tool for Stateflow Models. In Tools and Algorithms for
the Construction and Analysis of Systems; Baier, C., Tinelli, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 68–82.

http://doi.org/10.1007/978-3-319-75632-5_5
http://dx.doi.org/10.1016/j.procs.2015.10.079
http://dx.doi.org/10.1007/s100090050008
http://dx.doi.org/10.1007/s10009-007-0062-x
http://dx.doi.org/10.1109/CDC.1997.649708
http://dx.doi.org/10.1145/2559934
http://dx.doi.org/10.1007/978-3-642-39176-7_4
http://dx.doi.org/10.3390/math8071068
http://dx.doi.org/10.1109/COMPSAC48688.2020.0-138
http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1007/s100090050034
http://dx.doi.org/10.1145/1755952.1755987
http://dx.doi.org/10.1007/978-3-642-39799-8_21
http://dx.doi.org/10.1109/PDP.2014.32
http://dx.doi.org/10.1145/2591062.2591088
http://dx.doi.org/10.1016/j.micpro.2015.10.010

Information 2021, 12, 178 18 of 19

27. Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Tronci, E. SyLVaaS: System Level Formal Verification as a Service. Fundam. Inform.
2016, 149, 101–132. [CrossRef]

28. Zutshi, A.; Sankaranarayanan, S.; Deshmukh, J.V.; Jin, X. Symbolic-Numeric Reachability Analysis of Closed-Loop Control
Software. In Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, Vienna, Austria,
12–14 April 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 135–144. [CrossRef]

29. Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Salvo, I.; Tronci, E. On Minimising the Maximum Expected Verification Time. Inf.
Proc. Lett. 2017, 122, 8–16. [CrossRef]

30. Grosu, R.; Smolka, S.A. Monte Carlo Model Checking. In Tools and Algorithms for the Construction and Analysis of Systems;
Halbwachs, N., Zuck, L.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 271–286.

31. Legay, A.; Lukina, A.; Traonouez, L.M.; Yang, J.; Smolka, S.A.; Grosu, R., Statistical Model Checking. In Computing and Software
Science: State of the Art and Perspectives; Springer International Publishing: Cham, Switzerland, 2019; pp. 478–504. [CrossRef]

32. Tronci, E.; Mancini, T.; Salvo, I.; Sinisi, S.; Mari, F.; Melatti, I.; Massini, A.; Davi’, F.; Dierkes, T.; Ehrig, R.; et al. Patient-Specific
Models from Inter-Patient Biological Models and Clinical Records. In Proceedings of the FMCAD 2014, Lausanne, Switzerland,
21–24 October 2014; pp. 207–214. [CrossRef]

33. Mancini, T.; Tronci, E.; Salvo, I.; Mari, F.; Massini, A.; Melatti, I. Computing Biological Model Parameters by Parallel Statistical
Model Checking. In Proceedings of the IWBBIO 2015, Granada, Spain, 15–17 April 2015; Springer: Berlin/Heidelberg, Germany,
2015; Volume 9044, pp. 542–554. [CrossRef]

34. Rieger, T.R.; Allen, R.J.; Bystricky, L.; Chen, Y.; Colopy, G.W.; Cui, Y.; Gonzalez, A.; Liu, Y.; White, R.D.; Everett, R.A.; et al.
Improving the Generation and Selection of Virtual Populations in Quantitative Systems Pharmacology Models. bioRxiv 2018.
[CrossRef]

35. Schmiester, L.; Schälte, Y.; Froehlich, F.; Hasenauer, J.; Weindl, D. Efficient parameterization of large-scale dynamic models based
on relative measurements. Bioinformatics (Oxf. Engl.) 2019, 36, 594–602. [CrossRef]

36. Sinisi, S.; Alimguzhin, V.; Mancini, T.; Tronci, E.; Leeners, B. Complete populations of virtual patients for in silico clinical trials.
Bioinformatics 2020, 36, 5465–5472.

37. Maggioli, F.; Mancini, T.; Tronci, E. SBML2Modelica: Integrating Biochemical Models within Open-Standard Simulation
Ecosystems. Bioinformatics 2020, 36, 2165–2172. [CrossRef] [PubMed]

38. Mancini, T.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.; Gruber, J.; Hayes, B.; Prodanovic, M.; Elmegaard, L. Demand-Aware Price
Policy Synthesis and Verification Services for Smart Grids. In Proceedings of the SmartGridComm 2014, Venice, Italy, 3–6
November 2014; pp. 794–799. [CrossRef]

39. Lee, C.K.; Chaudhuri, N.R.; Chaudhuri, B.; Hui, S.Y.R. Droop Control of Distributed Electric Springs for Stabilizing Future Power
Grid. IEEE Trans. Smart Grid 2013, 4, 1558–1566. [CrossRef]

40. Mancini, T.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.; Gruber, J.; Hayes, B.; Elmegaard, L. Parallel Statistical Model Checking
for Safety Verification in Smart Grids. In Proceedings of the SmartGridComm 2018, Aalborg, Denmark, 29–31 October 2018.
[CrossRef]

41. Basu, A.; Bensalem, S.; Bozga, M.; Delahaye, B.; Legay, A.; Sifakis, E. Verification of an AFDX Infrastructure Using Simulations and
Probabilities; Runtime Verification; Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O.,
Tillmann, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 330–344.

42. Kwiatkowska, M.; Norman, G.; Parker, D. PRISM 4.0: Verification of Probabilistic Real-Time Systems; Computer Aided Verification;
Gopalakrishnan, G., Qadeer, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 585–591.

43. Norman, G.; Parker, D. Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance; Technical Report;
Leese, R., Melham, T., Eds.; The London Mathematical Society and the Smith Institute: Oxford, UK, 2014.

44. Brace, K.S.; Rudell, R.L.; Bryant, R.E. Efficient Implementation of a BDD Package. In Proceedings of the 27th ACM/IEEE Design
Automation Conference (DAC), Orlando, FL, USA, 24–28 June 1990; pp. 40–45.

45. Minato, S.; Ishiura, N.; Yajima, S. Shared Binary Decision Diagram with Attributed Edges for Efficient Boolean function
Manipulation. In Proceedings of the 27th ACM/IEEE Design Automation Conference (DAC), Orlando, FL, USA, 24–28 June 1990;
pp. 52–57.

46. CUDD Web Page. Available online: http://web.mit.edu/sage/export/tmp/y/usr/share/doc/polybori/cudd/cuddIntro.html
(accessed on 21 April 2021)

47. Cimatti, A.; Roveri, M.; Traverso, P. Strong Planning in Non-Deterministic Domains Via Model Checking. In Proceedings of the
Fourth International Conference on Artificial Intelligence Planning SystemsJune (AIPS’98), Pittsburgh, PA, USA, 8–10 June 1998;
pp. 36–43.

48. Fu, M.; Xie, L. The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 2005, 50, 1698–1711.
[CrossRef]

49. Mari, F.; Melatti, I.; Salvo, I.; Tronci, E. Control Software Visualization. In Proceedings of the Second International Conference on
Advanced Communications and Computation (INFOCOMP), Venice, Italy, 21–26 October 2012.

50. Girard, A. Synthesis using approximately bisimilar abstractions: Time-optimal control problems. In Proceedings of the IEEE
Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 5893–5898. [CrossRef]

51. Mazo, M.J.; Tabuada, P. Symbolic approximate time-optimal control. Syst. Control Lett. 2011, 60, 256–263. [CrossRef]

http://dx.doi.org/10.3233/FI-2016-1444
http://dx.doi.org/10.1145/2883817.2883819
http://dx.doi.org/10.1016/j.ipl.2017.02.001
http://dx.doi.org/10.1007/978-3-319-91908-9_23
http://dx.doi.org/10.1109/FMCAD.2014.6987615
http://dx.doi.org/10.1007/978-3-319-16480-9_52
http://dx.doi.org/10.1016/j.pbiomolbio.2018.06.002
http://dx.doi.org/10.1093/bioinformatics/btz581
http://dx.doi.org/10.1093/bioinformatics/btz860
http://www.ncbi.nlm.nih.gov/pubmed/31738386
http://dx.doi.org/10.1109/SmartGridComm.2014.7007745
http://dx.doi.org/10.1109/TSG.2013.2258949
http://dx.doi.org/10.1109/SmartGridComm.2018.8587416
http://web.mit.edu/sage/export/tmp/y/usr/share/doc/polybori/cudd/cuddIntro.html
http://dx.doi.org/10.1109/TAC.2005.858689
http://dx.doi.org/10.1109/CDC.2010.5717756
http://dx.doi.org/10.1016/j.sysconle.2011.02.002

Information 2021, 12, 178 19 of 19

52. Girard, A.; Pola, G.; Tabuada, P. Approximately Bisimilar Symbolic Models for Incrementally Stable Switched Systems. IEEE
Trans. Autom. Control 2010, 55, 116–126. [CrossRef]

53. De Gleizer, G.A.; Mazo, M., Jr. Towards Traffic Bisimulation of Linear Periodic Event-Triggered Controllers. IEEE Control Syst.
Lett. 2020, 5, 25–30. [CrossRef]

54. Zamani, M.; Mazo, M., Jr.; Khaled, M.; Abate, A. Symbolic abstractions of networked control systems. IEEE Trans. Control. Netw.
Syst. 2017, 5, 1622–1634. [CrossRef]

55. Kehrer, J.; Hauser, H. Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey. IEEE Trans. Vis. Comput. Graph.
2013, 19, 495–513. [CrossRef]

56. O’Donoghue, S.I.; Gavin, A.C.; Gehlenborg, N.; Goodsell, D.S.; Hériché, J.K.; Nielsen, C.B.; North, C.; Olson, A.J.; Procter, J.B.;
Shattuck, D.W.; et al. Visualizing biological data—Now and in the future. Nat. Methods 2010, 7, S2–S4. [CrossRef]

57. Won, J.H.; Jeon, Y.; Rosenberg, J.K.; Yoon, S.; Rubin, G.D.; Napel, S. Uncluttered Single-Image Visualization of Vascular Structures
Using GPU and Integer Programming. IEEE Trans. Vis. Comput. Graph. 2013, 19, 81–93. [CrossRef]

58. O’Connor, S.; Waite, M.; Duce, D.; O’Donnell, A.; Ronquillo, C. Data visualization in health care: The Florence effect. J. Adv. Nurs.
2020, 76, 1488–1490. [CrossRef] [PubMed]

59. Smith, C.M.; Kozlakidis, Z.; Frampton, D.; Nastouli, E.; Coen, P.G.; Pillay, D.; Hayward, A. Development of a novel application
for visualising infectious diseases in hospital settings. Lancet 2017, 390, S84. [CrossRef]

60. Linsen, L.; Hagen, H.; Hamann, B. Visualization in Medicine and Life Sciences; Springer: Berlin/Heidelberg, Germany, 2008.
61. Wiemker, R.; Klinder, T.; Bergtholdt, M.; Meetz, K.; Carlsen, I.C.; Bulow, T. A Radial Structure Tensor and Its Use for Shape-

Encoding Medical Visualization of Tubular and Nodular Structures. IEEE Trans. Vis. Comput. Graph. 2013, 19, 353–366. [CrossRef]
[PubMed]

62. Frey, S.; Sadlo, F.; Ertl, T. Visualization of Temporal Similarity in Field Data. IEEE Trans. Vis. Comput. Graph. 2012, 18, 2023–2032.
[CrossRef] [PubMed]

63. Ferstl, F.; Kanzler, M.; Rautenhaus, M.; Westermann, R. Time-Hierarchical Clustering and Visualization of Weather Forecast
Ensembles. IEEE Trans. Vis. Comput. Graph. 2017, 23, 831–840. [CrossRef]

64. Dinkla, K.; Strobelt, H.; Genest, B.; Reiling, S.; Borowsky, M.; Pfister, H. Screenit: Visual Analysis of Cellular Screens. IEEE Trans.
Vis. Comput. Graph. 2017, 23, 591–600. [CrossRef]

65. Liu, D.; Weng, D.; Li, Y.; Bao, J.; Zheng, Y.; Qu, H.; Wu, Y. SmartAdP: Visual Analytics of Large-scale Taxi Trajectories for Selecting
Billboard Locations. IEEE Trans. Vis. Comput. Graph. 2017, 23, 1–10. [CrossRef]

66. Campadelli, P.; Posenato, R.; Schettini, R. An algorithm for the selection of high-contrast color sets. Color Res. Appl. 1999,
24, 132–138. [CrossRef]

67. Carter, R.C.; Carter, E.C. High-contrast sets of colors. Appl. Opt. 1982, 21, 2936–2939. [CrossRef] [PubMed]
68. Joblove, G.H.; Greenberg, D. Color Spaces for Computer Graphics. In Proceedings of the 5th Annual Conference on Computer

Graphics and Interactive Techniques, Atlanta, GA, USA, 23–25 August 1978; Association for Computing Machinery: New York,
NY, USA, 1978; pp. 20–25. [CrossRef]

69. Agoston, M.K. Computer Graphics and Geometric Modeling: Implementation and Algorithms; Springer: Berlin/Heidelberg, Germany,
2005.

70. Rodriguez, M.; Fernandez-Miaja, P.; Rodriguez, A.; Sebastian, J. A Multiple-Input Digitally Controlled Buck Converter for
Envelope Tracking Applications in Radiofrequency Power Amplifiers. IEEE Trans. Pow. El. 2010, 25, 369–381. [CrossRef]

71. So, W.C.; Tse, C.; Lee, Y.S. Development of a fuzzy logic controller for DC/DC converters: Design, computer simulation, and
experimental evaluation. IEEE Trans. Power Electron. 1996, 11, 24–32. [CrossRef]

72. Kim, W.; Gupta, M.S.; Wei, G.Y.; Brooks, D.M. Enabling On-Chip Switching Regulators for Multi-Core Processors Using Current
Staggering. Available online: https://www.semanticscholar.org/paper/Enabling-On-Chip-Switching-Regulators-for-using-
Kim-Gupta/7dc7fbaeb3e1f85e1e9738345c22bc4c4abcd8f5 (accessed on 21 April 2021).

http://dx.doi.org/10.1109/TAC.2009.2034922
http://dx.doi.org/10.1109/LCSYS.2020.2999177
http://dx.doi.org/10.1109/TCNS.2017.2739645
http://dx.doi.org/10.1109/TVCG.2012.110
http://dx.doi.org/10.1038/nmeth.f.301
http://dx.doi.org/10.1109/TVCG.2012.25
http://dx.doi.org/10.1111/jan.14334
http://www.ncbi.nlm.nih.gov/pubmed/32090370
http://dx.doi.org/10.1016/S0140-6736(17)33019-2
http://dx.doi.org/10.1109/TVCG.2012.136
http://www.ncbi.nlm.nih.gov/pubmed/22689078
http://dx.doi.org/10.1109/TVCG.2012.284
http://www.ncbi.nlm.nih.gov/pubmed/26357108
http://dx.doi.org/10.1109/TVCG.2016.2598868
http://dx.doi.org/10.1109/TVCG.2016.2598587
http://dx.doi.org/10.1109/TVCG.2016.2598432
http://dx.doi.org/10.1002/(SICI)1520-6378(199904)24:2<132::AID-COL8>3.0.CO;2-B
http://dx.doi.org/10.1364/AO.21.002936
http://www.ncbi.nlm.nih.gov/pubmed/20396153
http://dx.doi.org/10.1145/800248.807362
http://dx.doi.org/10.1109/TPEL.2009.2028732
http://dx.doi.org/10.1109/63.484413
https://www.semanticscholar.org/paper/Enabling-On-Chip-Switching-Regulators-for-using-Kim-Gupta/7dc7fbaeb3e1f85e1e9738345c22bc4c4abcd8f5
https://www.semanticscholar.org/paper/Enabling-On-Chip-Switching-Regulators-for-using-Kim-Gupta/7dc7fbaeb3e1f85e1e9738345c22bc4c4abcd8f5

	Introduction
	Our Main Contributions
	Paper Outline

	Basic Definitions
	Predicates
	OBDD Representation for Boolean Functions
	Most General Optimal Controllers
	Discrete Time Linear Hybrid Systems
	Controllers and COBDDs

	Other Related Work
	Automatic Visualization of Control Software
	Input and Output
	Algorithm Details
	Function CreateGnuplotBody

	Experimental Results
	Experimental Settings: Case Study
	Experimental Settings: Running KPS
	KPS Performance
	Controllers Qualitative Evaluation via Pictures

	Conclusions and Future Work
	References

