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Abstract: Motion sickness (MS) is a syndrome associated with symptoms like nausea, dizziness, and
other forms of physical discomfort. Automated vehicles (AVs) are potent at inducing MS because
users are not adapted to this novel form of transportation, are provided with less information about
the own vehicle’s trajectory, and are likely to engage in non-driving related tasks. Because individuals
with an especially high MS susceptibility could be limited in their use of AVs, the demand for MS
mitigation strategies is high. Passenger anticipation has been shown to have a modulating effect on
symptoms, thus mitigating MS. To find an effective mitigation strategy, the prototype of a human–
machine interface (HMI) that presents anticipatory ambient light cues for the AV’s next turn to
the passenger was evaluated. In a realistic driving study with participants (N = 16) in an AV on
a test track, an MS mitigation effect was evaluated based on the MS increase during the trial. An
MS mitigation effect was found within a highly susceptible subsample through the presentation of
anticipatory ambient light cues. The HMI prototype was proven to be effective regarding highly
susceptible users. Future iterations could alleviate MS in field settings and improve the acceptance
of AVs.

Keywords: motion sickness; kinetosis; automated vehicles; human–machine interface; realistic
driving study on test track

1. Introduction

With the introduction of the SAE Level 4 (L4) of automated driving [1], the role shift
for the human from driver to passenger is inevitable. An L4 automated vehicle (AV) is
defined to be capable of performing dynamic driving tasks without any expectation on the
user to intervene. One of the anticipated changes in passenger behavior is the frequent
engagement in non-driving related tasks (NDRTs). These tasks include sleeping, relaxation,
reading, consuming display-based media, and engaging in social interaction [2]. The
vehicle’s interior configuration is expected to adapt accordingly, with design concepts
considering flexible seating arrangements to enhance the passenger experience. This mode
of transportation could increase quality of life for users that commute daily, travel long
distances, or have busy schedules.

While the introduction of AVs as the new standard of individual mobility is objectively
desirable, a major obstacle for the acceptance of this innovation is motion sickness [2–5].
Motion sickness (MS) is a condition characterized by symptoms of nausea, dizziness, and
other forms of physical discomfort. AVs are considered to be potent in the evocation
of MS because of three factors: (1) the transition of the driver to a passenger and the
resulting reduced vehicle control; (2) the engagement of the driver in non-driving tasks;
and (3) rearward-facing seating arrangements [6]. While all of these factors are related
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to increased MS, they are also part of the innovations that make L4 automated driving
desirable. There is therefore a great need for a solution that preserves the benefits of
automated driving but also relieves users from MS. Additionally, a potential solution for
MS mitigation needs to not only be effective but also tailored to the psychological needs of
the passengers.

The aim of this paper was to present the current state of MS basic research, as well as
its application in HMI development. HMI conception, an experimental methodology, and
its challenges, are illustrated. The presented experimental study investigated the efficacy
of an HMI mitigating MS in a highly automated vehicle. The HMI was tested in a realistic
driving environment based on self-reports of participants in regard to MS. Additionally,
the user experience, predictability, and perceived safety of the system were evaluated.

2. Background

This section provides a general overview of the current state of research regarding
MS (Section 2.1), specifically the effect of anticipation on its mitigation (Section 2.2). Fi-
nally, based on the insights of previous research and general acceptance criteria, an HMI
prototype for MS mitigation is introduced (Section 2.3).

2.1. Motion Sickness in Automated Vehicles
2.1.1. Motion Sickness

MS describes a syndrome characterized by different symptoms that occur during
movement or perceived movement in an environment [7,8]. MS is considered a complex
phenomenon because no single cause or simply defined mechanism explaining the oc-
currence of MS has been identified so far. A wide range of stimulations can evoke the
phenomenon so that it occurs in many different environments and conditions [9]. Some
common forms of MS in dynamic environments are sea sickness, air sickness, and car sick-
ness [10–12]. However, not everyone is equally susceptible to MS. The reported prevalence
varies strongly between different sources. In a survey by Schoettle and Sivak, for example,
about half of the participants reported that they had experienced MS during a car ride [13].
However, although a significant proportion of the population seems to be susceptible to
the syndrome, highly susceptible individuals should be given special consideration in
the development of vehicle solutions because the burden of MS symptoms is higher for
them [12].

The vestibular system plays an important role in MS. It is sensitive to acceleration,
with the semi-circular canals being stimulated by angular acceleration and the otoliths
being stimulated by linear acceleration. Both types of acceleration can potentially cause
MS [14,15]. In addition, the visual system is also considered to be strongly involved in
the pathology of MS. Since the visual and vestibular systems are strongly interfering, it
has been suggested that visual stimulation usually associated with a matching vestibular
stimulus increases central vestibular activity [16,17]. However, visual input is not essential
to develop MS, as blind participants have been shown to be equally susceptible to MS as
participants with vision [18]. Nevertheless, the manipulation of vision can be utilized to
modulate MS [19–21].

2.1.2. Impact of High MS Susceptibility for AV Users

MS susceptibility describes the individual response to nauseagenic stimulation and
the intensity of the elicited MS symptoms [17]. It is determined by three factors [22]: firstly,
the individual’s initial sensitivity to motion varies between individuals and is influenced
by sex [23], age [22], genetics [24], and other factors [25]. Women have been indicated to
be generally more susceptible to MS with research, suggesting a connection to the female
hormonal cycle [26,27]. Regarding age, children around 9–10 years old show a peak in
susceptibility [28]. While MS susceptibility is thought to gradually decline throughout
the life span, an increase during older ages has been suggested [27]. As the elderly are
a relevant and growing demographic part of our society that could profit from AVs, this
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trend further increases the need for an MS mitigation strategy. Secondly, the individual rate
of adaptation, meaning the habituation to specific nauseagenic stimuli through exposure,
influences MS susceptibility [14,28]. Sustained exposure to a nauseagenic environment
leads to a reduction of MS symptoms. Depending on the duration and repetition of
exposure, the sensitivity towards the stimulus is reduced or even fully eliminated. Most
individuals show no more MS symptoms after two-to-three days of exposure within
a specific environment [17]. The exposure history of an individual has a high impact
on its MS susceptibility in general [29]. Finally, the ability to retain the adaptation to
nauseagenic stimuli determines an individual susceptibility to MS in future encounters
with the environment. Repeated exposure to the same stimulus is associated with a lowered
response intensity [28,30].

About 5–10% of the population are considered “highly susceptible” and are there-
fore likely to show more severe expressions of MS symptoms [29]. The majority of the
population reacts to nauseagenic stimuli with mild symptoms (e.g., stomach awareness,
drowsiness, and headache). Highly susceptible individuals might show more intense
symptoms like nausea, apathy, non-vertiginous dizziness, and decreased cognitive per-
formance [17,25,31]. Additionally, these individuals also report fewer encounters with
nauseagenic environments, which reflects an avoidance behavior towards situations that
cause severe MS symptoms [23]. The combination of high sensitivity, severe symptom
expression, and avoidance behavior limits highly susceptible individuals’ exposure to
nauseagenic environments and habituation to them.

AVs are a novel but potently nauseagenic environment [6]. Their novelty means that
most users will not have an exposure history, which is hypothesized to lead to an increase
in MS incidences [2]. Through exposure and (finally) full habituation, most individuals will
be able to use AVs without suffering severe MS symptoms. However, highly susceptible
individuals might suffer highly aversive symptoms when using AVs for the first few times.
This could lead to not only a negative and skeptical attitude towards the innovation but also
cause avoidance patterns that inhibit exposure and therefore adaptation to the environment.
Without a strategy to support the transition for highly susceptible individuals during the
adaptation process, this specific population could be excluded from using AVs. Developing
an effective mitigation strategy that allows for highly susceptible users specifically to adapt
to AVs promotes the inclusivity of AVs.

2.1.3. Pathogenesis of MS: Sensory Rearrangement Theory and Postural Instability Theory

Motion sickness and its pathogenesis have been explored and discussed for over
a century. Multiple theories have been discussed in literature. Thus far, none of them
has been able to fully explain the phenomenon. The two most influential theories are
the sensory rearrangement theory by Reason and Brand [22] and the postural instability
theory by Riccio and Stoffregen [32]. First introduced in 1975, the sensory rearrangement
theory (SRT) specifies the cause of MS at the interference of different sensory channels,
specifically the vestibular and visual channels. If motion-related signals transmitted by
these channels are discordant, sensory rearrangement ensues. All environments that
elicit MS are characterized by sensory rearrangement [22]. Sensory signals are considered
discordant if they are in conflict with each other or the sensation expected based on previous
interactions with a similar spatial environment. The latter conflict and its somatic symptoms
are reduced through continued interaction with a nauseagenic stimulus or habituation. The
SRT was expanded to a structural component model: the neural mismatch model [33]. The
neural store, a neurophysiological module, retains sensory information patterns previously
experienced under similar circumstances (reafferences). Current and previous sensory
information are compared in another module. If incongruent, the mismatched signal is sent
along reflex pathways and MS symptoms ensue. With a longer exposure to the mismatched
stimuli, the content of the neural store is updated, the conflict is being decreased or
resolved, and the symptoms fade. These mechanisms explain the effects of habituation in
the reduction of MS [14,30,34].
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Additionally, Reason and Brand postulated that the vestibular system must be impli-
cated for MS to occur, either directly via acceleration or indirectly via the visual illusion of
movement [22]. This premise is supported by research indicating that an intact vestibular
system is necessary to be susceptible to MS [35]. Additionally, since the vestibular organ
is only sensitive to angular and linear acceleration, constant movements should not be
nauseagenic [33]. In addition, Reason postulated the extend of rearrangement to be depen-
dent on the number of discordant sensory channels, the magnitude of discrepancy, and the
duration of the conflict [33].

Engaging in NDRTs and the introduction of novel flexible seating arrangements are
expected to increase the incidences of MS in AVs. Engaging in NDRTs or sitting backwards
to the direction of acceleration is predicted to cause discordance between the visual and
vestibular sensory channels, thus leading to MS symptoms [2,10].

The postural instability theory (PIT) focuses on the phenomenon of postural instability
that has been shown to precede MS [32,36,37]. Postural sway occurs in situations that
constrain the control of posture—the coordinated stabilization of all body segments [37]
(p. 277). In a novel situation like riding an AV, regaining control over posture is difficult
because an adequate stabilization strategy is either not available to the organism or very
challenging to enact. This causes prolonged postural instability. It is hypothesized that
the prolonged exposure to postural instability is the cause of MS and necessary to elicit its
associated symptoms [32]. Additionally, failure to detect or ignorance towards changing
dynamics can have a negative impact on postural stability. Information about possible
constraints is hypothesized to support adequate reactions to nauseagenic situations. The
severity of MS is proportional to the duration and magnitude of instability. Posture and
postural control are strongly connected to the visual [38] and vestibular system [39]. Both
modalities support the body by detecting information relevant to postural control [32].

2.2. Effect of Anticipation on Motion Sickness

Anticipation in a driving context is the cognitive ability to identify cues that could
cause potential conflict and to act accordingly [40] (p. 604). In the context of AVs, accelera-
tion, turns, and other changes in the vehicle dynamics can be sources of sensory conflict
or postural instability. Providing reliable cues to enable passenger anticipation has been
considered to be a potentially protective factor against MS [6,32,33]. Two properties of
a system that allows a user to anticipate its actions are controllability and predictability.
Understanding their relationship to MS will provide insight on how anticipation can be
modified in AVs to benefit the user.

While traveling via vehicles, most passengers have made the following observation:
out of all passengers, the driver is least likely to develop MS. After investigating this
phenomenon, Rolnick and Lubow came to the conclusion that controllability was the key
advantage drivers had over passengers [41]. As controllability provides users with reliable
information about a vehicle’s behavior, the authors hypothesized that as drivers are in
control, they are also able to anticipate the movement of the vehicle. Participants within
the group with controllability developed 35% less intense MS than participants in the no-
controllability group [41]. Similar effects were reported in an experiment by Levine, Stern,
and Koch using opto-kinetic stimuli [42]. Being in control during nauseagenic stimulation,
like a car ride, has a positive impact on the user’s well-being. However, utilizing the
benefits of L4 AVs no longer allows a user who is no longer a driver and now a passenger
to be in charge while the automation is active.

Predictability is commonly defined as the capacity to accurately anticipate future
events [42] (p. 2676). It has been shown that increased predictability via reliable information
about the trial progression reduces MS during opto-kinetic stimulation. Additionally, it was
reported that the effect of predictability was distinct from controllability in the attenuation
of perceived MS [42]. In a different experimental design that manipulated the predictability
of both movement direction and intervals in forward and backward linear acceleration,
similar results were found. The condition with both direction and interval timing being
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predictable resulted in 52% lower MS scores after 15 min compared to conditions with
neither direction nor interval timing being predictable [43]. In contrast to controllability,
predictability can be increased by HMIs in AVs, like in our study, potentially offering a
remedy to MS.

Anticipation as Motion Sickness Prevention

The anticipation of motion patterns has been suggested to have a protective effect
on a user against MS. SRT and other models attributing sensory discordance as the cause
of MS hypothesize a discrepancy between sensed and expected sensory information to
be a main cause of MS [22,33,44,45]. Reason theorized that passengers in a car enduring
passive movements are unable to create an anticipative efference to the neural store [33].
Therefore, the activation of an associated reafference trace, which contains information
about the expected sensory input and appropriate adaptation patterns, is delayed. The
sensed gravitational and inertial forces on the passenger and the expected forces are in
conflict with each other. This is caused by the reafference trace not being activated in time.
It is assumed that being able to anticipate passive movement can counteract the delay of
retrieval, reduce sensed conflict, accelerate adaptation, and finally, reduce the intensity
and duration of MS symptoms [33]. Anticipation is also considered beneficial by the PIT,
because being able to anticipate the perturbating effects of motion on posture enables
the user to more effectively coordinate their postural control. This is theorized to reduce
the duration of postural instability and therefore the intensity of MS symptoms [32,46].
Enabling a user to anticipate a vehicle’s movement trajectory both in theory and practice
appears to be a promising path in the development of a mitigation strategy against MS [6].

2.3. Development of an HMI for MS Mitigation
2.3.1. Requirements for HMI Acceptance

In the context of today’s in-vehicle HMIs, acceptance is defined as the intent to
use the system and incorporate it into the user’s driving behavior. Acceptance can be
achieved through a pleasant user experience. User experience includes different aspects
of interaction between user and system, like usability [47], as well as the hedonic quality
of interaction [48]. Additionally, acceptance can be created by providing the user with
reliable information according to its needs [49]. As L4 is still a relatively new mode of
transportation, its lack of controllability for users might increase the need for information
regarding the vehicle’s safety and driving behavior [50,51]. Therefore, the HMI should
ideally increase the predictability of vehicle dynamics [52] and enhance the perceived
safety of the vehicle to accommodate for the user’s loss of vehicle control.

Creating an HMI that is acceptable for users has an important impact on the ecological
validity of the system and the problem it is intended to solve: if users do not accept
the HMI and, as a consequence, do not utilize it, the effectiveness of the HMI is limited.
Therefore, an HMI should not only be evaluated on its efficacy but also on parameters
regarding its acceptability. As the system should be designed with the intent to support
the user’s transition to L4, an HMI that not only is effective in the mitigation of MS but
also accommodates the user’s psychological needs will probably be more accepted.

2.3.2. HMIs Utilizing Anticipation of Vehicle Dynamics

Because L4 limits a user’s need to actively control the vehicle’s movements, the need
for predictability increases [10]. Research on HMIs has explored different modalities to
provide users with information supporting anticipation. Presenting the vehicle’s trajectory
allows passengers to anticipate turns or pitching. This concept was investigated in an
aviation simulator setting [53]. The visual projection of a 4-m-trajectory on the windshield,
similar to roller coaster rails, significantly reduced the average reported MS intensity. A
similar visualization of the vehicle trajectory could be implemented in AVs. However, as
users of an AV shift visual attention to NDRTs, the effect of the projected information might
decline. Utilizing peripheral vision, both Bloch [54] and Karjanto et al. [55] explored the
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effect of visual cues provided by a vehicle in anticipation of a driving maneuver. Bloch’s
HMI displayed color-coded cues on video panels positioned on the car doors inside the
vehicle. The stimuli would change color whether the car would accelerate or decelerate 0.5
s in advance. The participants, engaged in NDRTs, would detect the cues only via their
peripheral vision. While the results did not yield significant effects, the study provided
insights into potential parameters to be considered [54]. A similar HMI introduced by
Karjanto et al. [55] also presented visual cues in the periphery of the visual field. The
cues signaled the initiation of a turning maneuver 3 s in advance. Participants of this
study showed a significantly smaller increase in MS during the AV ride when receiving
visual cues compared to not receiving them. Considering the mixed evidence on visual
HMIs, more evaluation is needed to develop a system optimized for the user enhancing
its effectiveness.

The effect of auditory anticipation cues was investigated by Kuiper et al. [56]: the
participants were accelerated in a linear forward or backward motion on a rail. Visual
information was negated. Auditory cues were either presented 1 s in advance containing
information about the direction of acceleration or in the control condition presented at
random 2–6 s after acceleration and with no reliable information about the direction.
Reported MS was significantly different between the anticipatory cue condition and the
control condition. The anticipatory cues with reliable information about the acceleration
direction were accompanied by a 17% decrease in average reported MS.

Using the haptic sensory channel to present anticipatory information was suggested by
Yusof et al. [57]: through vibrating devices attached to the participant’s forearms, a tactile
stimulus was presented to inform the participant of oncoming changes in the direction
of the vehicle’s movement. An increase in situation awareness and a decrease of MS was
reported, but, given the exploratory nature of this study and with no reported inference
statistics, these findings should be interpreted with caution.

Even though different modalities can be used to transmit anticipatory information
and should theoretically be able to prevent MS, visual cueing is considered to be a very
promising approach, more so than auditory or haptic cues when considering the predom-
inant theories on MS pathology [6,56]. HMIs utilizing different modalities have shown
the first promising results. However, visual and vestibular cues have been shown to be
interactive [58]. Manipulating visual input directly, in theory, might be more effective than
communicating via other modalities. Therefore, a visual communication strategy for an
HMI was evaluated in this study.

2.4. Prototype of an HMI for MS Mitigation in This Study

Following both theoretical and empirical considerations, an HMI prototype utilizing
anticipatory ambient light cues was developed for this study. The HMI prototype promot-
ing MS mitigation was designed with the user in mind and evaluated in a previous online
study on its communication strategy, perceptual properties, and user experience [59].

Utilizing anticipation of vehicle dynamics as the mitigation strategy, the HMI pro-
vides the user with anticipatory visual cues via ambient lighting as part of an integrative
assistance system [60]. The provided light cues allow the user to anticipate obtuse curves
and their turn direction (see Section 4.8.1). The source of the light-based cues are LED light
bands installed in the interior of the AV. The system resembles the integrative assistance
system proposed by Wilbrink, Schieben, and, Oehl [61] utilizing a 360-degree LED light
band in the vehicle interior [60]. In a traffic environment, the positioning does not obstruct
the user’s view and allows them to scan the outside environment. Being positioned within
the field of view, it enables stimuli detection within peripheral vision whether sitting with
or against driving direction or engaged in an NDRT (as recommended by [62]). The chosen
design color was cyan, as it was deemed to be a neutral color in the traffic context [63].
Considering that not only passengers of the AV but also other traffic participants might
be exposed to the stimuli, choosing a neutral color is important to reduce confusion and
ensure road safety.
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This HMI was designed for the specific use case of driving maneuvers involving
obtuse angle curves, focusing on the use case of driving on rural roads. The use case of
90-degree curves, which are common in urban settings, was already successfully addressed
in a previous simulator study [64].

3. Research Question and Hypotheses

In a realistic driving study, the abovementioned HMI utilizing anticipatory ambient
light cues was examined regarding its ability to mitigate MS. Based on the aforemen-
tioned considerations, we assumed that the HMI would effectively mitigate MS in highly
susceptible individuals, and we therefore tested the following hypotheses:

Hypothesis 1 (H1). Highly susceptible participants will report a significantly lower increase in
MS symptoms when presented with anticipatory ambient light cues by the HMI compared to being
provided with no cues.

Highly susceptible participants in the context of this study were defined as the upper
50% percentile of the convenience sample at hand regarding MS susceptibility. Hypothesis
1 (H1) was limited to this specific population, as participants with an inherent low suscep-
tibility were not expected to develop severe MS. Additionally, as this HMI was developed
with the aim to specifically support highly susceptible individuals (see Section 2.1.2), its
efficacy regarding this population was of main interest. Therefore, H1 was tested on a
subsample of the participants with the highest susceptibility of the sample (see Section 5.2).
This, however, also limits the application of the research results to this specific population,
which will be discussed in more detail in Section 6.1.

Hypothesis 2 (H2). Participants will report a significantly higher user experience of the system
in the condition, during which the HMI provides anticipatory ambient light cues compared to
conditions during which no light cues are provided.

With every feature added to a system, the corresponding user experience needed to
be evaluated. A well-designed HMI incorporates both functional and hedonic qualities,
indirectly supporting its efficacy and the acceptance of the user (see Section 2.3.1). User
experience was expected to increase for all participants, as not only highly susceptible
users would be exposed to the system in a real-life setting. Therefore, this hypothesis was
tested on the total sample of this study.

Hypothesis 3 (H3). Participants will report significantly higher predictability and perceived safety
of the system in the condition, during which the HMI provides anticipatory ambient light cues
compared to conditions where no light cues are provided.

As a result of the passenger being enabled to anticipate the AV trajectory, the pre-
dictability was expected to increase. The user could ensure themselves that the automation
and its communication were reliable, which was hypothesized to result in a higher per-
ceived safety. Perceived safety, in this context, was defined as perceived safety from driving
accidents [50,51]. Predictability and perceived safety are both predictors for acceptance
and thus influence the intention to utilize a system while driving [65]. Being accepted by
the user and utilized willingly is a desirable quality for an HMI (see Section 2.3.1). Addi-
tionally, the acceptance of an HMI also positively reflects the AV itself, possibly evoking
more acceptance for L4 automated driving.

4. Materials and Methods

This section provides a detailed description of all aspects regarding the realization of
the realistic driving study. Firstly, the design and variables of the experiment are presented,
and their operationalization is explained (Sections 4.1–4.3). The research setting and sample
(Sections 4.4 and 4.5), as well as the experimental set-up of the AV and the integrated HMI
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in the vehicle interior (Sections 4.6–4.9), are explained component by component. Finally,
the procedure of data collection is illustrated chronologically (Section 4.10).

4.1. Design

The performed experiment was constructed as a single factor (communication strategy:
HMI vs. baseline) within-design, resulting in two experimental conditions: the independent
variable communication strategy (IV) was varied between both trials to either the treatment
condition (HMI) or the control condition (baseline). During the treatment condition, the
participants were presented with anticipatory ambient light cues by the HMI. Additionally,
the automation mode was presented (see Section 4.8). During the control condition, only
the automation mode was presented to the participants. The order of presentation was
counterbalanced between the two conditions.

4.2. Dependent Variables
4.2.1. Motion Sickness

MS increases over the duration of the trials was measured using the German transla-
tion of the Simulator Sickness Questionnaire (SSQ) [66]. The state of MS of the participants
was measured before being exposed to the nauseagenic stimulus (SSQpre) and after expo-
sure (SSQpost) [67]. The questionnaire consisted of 16 items, each evaluating the intensity
of an MS symptom on a 4-point Likert scale (0 = “none;” 1 = “slight;” 2 = “moderate;” and
3 = “severe”).

Even though the SSQ was developed to measure simulation sickness, the questionnaire
was chosen because it measures the same characteristic symptoms as by established MS
measures (e.g., Motion Sickness Questionnaire [68]) but is more sensitive to lower symptom
expressions [66]. The nauseagenic stimulus in this study was chosen to be of moderate
intensity for ethical reasons and to prevent a high dropout rate. Even highly susceptible
participants were expected to show only light-to-moderate MS symptoms. Additionally,
the questionnaire was deemed suitable for measurements before and after the nauseagenic
stimulation [69].

4.2.2. User Experience, Predictability, and Perceived Safety

User experience was measured using the German version of the User Experience
Questionnaire (UEQ) [48]. The questionnaire consisted of 26 items, each regarding an
attribute of the system. Each item was scored on a 7-point Likert scale (min = −3 (e.g.,
“complicated”) and max = +3 (e.g., “easy”)). Predictability was measured using a single self-
devised item (“During the drive, I was constantly aware of what the system did or would
do.”) scored on a single choice, metric scale (min = 0 (“fully disagree”) and max = 100 (“fully
agree”). Perceived safety was also measured with a single self-devised item (“During the
drive, did you perceive the system to increase your safety?”) scored on a single choice
metric scale (min = 0 (“fully disagree”) and max = 100 (“fully agree”).

4.3. Control Variables

Affinity for technology interaction, defined as personal resources for successfully cop-
ing with technology, was measured using the German Affinity for Technology Interaction
Scale (ATI) [70]. The scale consisted of 9 items evaluated on a 6-point Likert scale (min = 1
(“completely disagree”) and max = 6 (“completely agree”). Additionally, individual MS
susceptibility was measured utilizing the Motion Sickness Susceptibility Questionnaire
(MSSQ) [71]. The questionnaire was constructed from six subscales regarding the occur-
rence of MS in nauseagenic environments during childhood and adulthood. The subscales
measure the exposure frequency on a 4-point Likert Scale (min = 0 (“Never”) and max = 3
(“11 or more trips”)) and symptom occurrence on a 5-point Likert scale (min = 0 (“Never”)
and max = 4 (“Always”).
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4.4. Sample

Twenty participants (11 male and 9 female) between the ages of 22 and 59 (M = 33.75
and SD = 11.05) took part in the experiment. The sample was recruited via the institute’s
participant database. A self-devised questionnaire was utilized to determine the partic-
ipant’s ability to participate. The preselection questionnaire examined age, gender, and
pre-existing health to ensure ensuring the physical safety of the participants. Participants
were excluded from participation if they reported preconditions endangering their health
during the participation of this study (e.g., pregnancy, vertigo, preconditions regarding the
spine, heart, metabolism, or vestibular organ). Additionally, participants were excluded if
they reported being infected with the SARS-CoV-2 virus or having close contact with an
infected person during the last 14 days prior to the experiment.

The experiment was conceptualized and realized in accordance with the Declaration
of Helsinki. Informed consent was obtained from all participants before the experiment.
The participants were allowed to stop the experiment at any point without justification or
consequence. The participants volunteered, but they were financially compensated.

4.5. Setting

The study was conducted on a former airport runway with dimensions of 895 by 29.5
m. The runway is currently used solely for scientific research.

4.6. Apparatus
4.6.1. Automated Experimental Vehicle

The German Aerospace Center (DLR) runs experimental vehicles with the ability
to drive highly automated (L4). The used vehicle in this study called FASCar®-II is a
part of the large-scale research facility FASCar®. The basic car is a Volkswagen Passat. It
was modified with an interface that translates motion commands from the automation
software (Section 4.6.2) to the longitudinal acceleration, deceleration, and steering angle of
the vehicle (Figure 1).
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Figure 1. (Left) Experimental vehicle FASCar®-II. (Right) Technical trunk installation.

4.6.2. Automation Software

To achieve a maximum intervention, the FASCar®-II is equipped with a throttle
paddle and a prototype of a brake booster that support full longitudinal control without
any restrictions. For lateral control and new HMI concepts, a steer-by-wire system is
integrated into the vehicle. It allows for the active control of the vehicle’s wheels without a
turning of the steering wheel as well as the turning on the steering wheel without turning
the vehicle’s wheels. This advantage could be used for new HMI concepts and automated
security interventions, and it enables FASCar®-II to be used not only on test sites but also
in simulator settings. FASCar®-II, due by its hardware, has no road approval and can only
be driven on test sites. In exchange, it offers a higher level of active interventions and a
futuristic HMI.

For closing the loop of controlling the car’s movements, a high precision GNSS loca-
tion system is installed onboard. The GNSS System uses a differential GPS together with a
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precise inertial measurement unit (IMU). The vehicle position is forwarded to the automa-
tion software, which runs on the car-PCs in the trunk. The interface to the car commands
is realized with a dSPACE MicroAutoBox [72] which translates the commands from the
automation software to the car internal CAN protocol. On the dSPACE MicroAutoBox,
safety checks are executed before setting the car in motion.

For perceiving the environmental situation, FASCar®-II is equipped with four laser
scanners and three long-range radars that are mounted in front and rear bumpers of
the vehicle. A C2X-System could be used for vehicle-to-infrastructure and vehicle-to-
vehicle communication.

The automation software used in this study is a proprietary development of the DLR’s
Institute for Transportation Systems and is named Cooperative Safe Automation (CSA) [73].
The main parts are represented in different libraries and are shown in Figure 2:

• ENV—classes and functions for environment representation.
• VIEW—different views of the environment data for different purposes.
• FUN—a library of classes and functions for autonomous driving functions.
• MAD—a library of mathematical functions and representations used by the other

libraries.
• Ifmiddleware—an interface specific to an IPC middleware to decouple the automation

framework from the middleware in use.
• The IPC middleware used is named Dominion [74], also developed at DLR. The logical

functions are ordered into different modules and are called apps in Dominion.
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To guarantee a precise reproduction for any repetition of the scenario, it was decided
to use a static trajectory for the test scenario. This resulted in a reduction to a minimum set
of automation apps. The following apps were used for automated driving:

• StaticTrajectoryManager: Thus reads an offline generated trajectory file (Section 4.7)
and translates the information to Dominion data structure for vehicle control. Further-



Information 2021, 12, 176 11 of 21

more, the app generates and sends the trigger signal for the LED light band to the
input port of the Arduino (Section 4.6.3).

• HighlevelController: This generates motion commands based on the current vehicle
position to follow the offline generated trajectory.

4.6.3. HMI—LED Light Band

The LED light bands (Figure 3) were built up using RGBW (red, green, blue, and
white)-light stripes. This stripe consists of single, individually-controllable light points.
Each of the light points consists of one red, one blue, one green, and one phosphor-
converted white emitter. Each of the emitters is individually controllable so that the light
color and the brightness can be adjusted for each light point. Thus, it is possible to create
any lighting scene whether static or dynamic. The light stripes were placed in an aluminum
profile and covered with a diffuse cover lens to generate a homogeneous lighting surface.
The LED light bands each were positioned between the B- and C-pillar on each side of the
AV, emulating the positioning of a 360-degree LED light band (Figure 3) [61].
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Figure 3. LED light band at base luminosity.

The LED light bands were controlled using a micro board from “Arduino” and were
driven by a 12 V power supply (modulated by a 60 W DC/DC converter). To adjust the
lighting scenes, a user interface was programmed to give the experimenter the possibility
to set different parameters of the cue like frequency, brightness, and the time before the
event starts. For triggering the programmed light scenes, an interface to the vehicle was
provided (Section 4.6.2).

4.7. Automation Scenario

For generating the static trajectory in the test scenario, i.e., the concrete AV driving
track, an open-loop single-track model of the experimental vehicle modeled in MATLAB
was used. With a set of time-based input variables (u1: acceleration; u2: steering angle
rate), the track shown in Figure 4 and the according trajectory were calculated offline.
The pictured track represents only a section of the total track. Different variations were
connected to a track with a driving time of 15 min in total. The AV drove at a maximum
speed of 13 m/s. By calculating and using a static trajectory, it was possible to easily define
and plan the maximum lateral acceleration for each curvature of the automated driven
track in advance (shown in Figure 4; illustrating sketch in Figure 5).
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4.8. Stimulus

During the treatment condition (HMI), the HMI provided the participants with antici-
patory visual light cues. Additionally, the LED light band was continuously illuminated
in cyan to signify to the participants that the AV was driving in L4 mode (mode aware-
ness) [61]. The communication strategy for mode awareness is a feature of the 360-degree
light band previously introduced by Wilbrink, Schieben, and Oehl [61]. During the control
condition (baseline), the HMI was solely illuminated in cyan (for mode awareness). The
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two conditions could be differentiated based on the quality and quantity of information
provided by the HMI. During the baseline condition, the HMI provided only the infor-
mation about the AV’s automation mode. During the treatment condition, besides the
automation mode, additional information (quantity) was provided, namely by providing
anticipatory information (quality) to provide an MS mitigation effect.

4.8.1. Communication Strategy: Anticipatory Ambient Light Cues

In addition to displaying the mode of automation, the LED light bands provided the
user with anticipatory visual light cues. The visual light cues were presented by the LED
light band on the side consistent with the turning motion. The chosen cue onset was 2 s
before the initiation of a steering maneuver by the AV. This cue onset was chosen because
previous studies operating with an anticipative cue onset between 1 and 3 s successfully
reduced MS [55,56].

The cue duration lasted from the standardized onset, 2 s before a driving maneuver,
to the first steering motion of the maneuver. The LED light band was fully illuminated for
0.5 s and then dimmed to the base luminance. This illumination pattern was repeated at a
1 Hz frequency for 2 s. The design was chosen because of its analogy to the turn signal,
which was very familiar to most users. Additionally, this communication strategy was
rated most favorably out of four other strategies evaluated in an online survey [59].

4.9. Operationalization of NDRT

NDRTs in this study were operationalized by limiting the participant’s view outside
the AV sitting in the back seat (see [57]). The rear windshield and side windows were
covered. The back seat was separated from the front seats with a divider. The only
light source in the rear department of the AV was the ambient lighting by the HMI.
NDRTs are thought to increase MS because they limit the outside view and therefore
the anticipation of vehicle dynamics [2,21], so limiting the outside view emulates this effect.
The chosen operationalization is commonly used in this field of research [43,56,57,75] and
has a high degree of standardization. While NDRTs can be abandoned by the participant at
random to compensate for the effects of the nauseagenic stimulus, blocking the outside
view is easy to control. This interior set-up of the AV was consistent throughout both
experimental conditions.

4.10. Procedure

The experiment was conducted during two separate sessions, at least 7 days apart
from each other. During each session, one trial was conducted. Demographic data were
only assessed during the first session. Depending on the balancing of the conditions, the
order of the two conditions varied between participants. As the data collection of this study
took place during the COVID-19 pandemic in Germany, the experiment was conducted
under hygienic precautions issued by the DLR. The involved participants and staff wore
FFP2-grade protective respirator masks for the duration of the experiment. Participants and
staff were instructed to disinfect their hands and practice distancing upon arrival. The AV
was aerated for 30 min before each session. Participants arrived via private transportation
at the test field.

Upon arrival at the first session, the participants were welcomed and informed about
safety requirements and the procedure. The participants were informed about the research
subject, as MS research ethically requires full disclosure about potential risks during partic-
ipation [69]. Informed consent was obtained. The participants completed a demographic
questionnaire regarding age, gender, driving and simulator experience, and alcohol con-
sumption during the last 24 h leading up to the experiment. Affinity for technology was
measured using the ATI [70]. MS susceptibility was measured utilizing the MSSQ [71].

Following demographic data collection, the first experimental trial was initiated.
Before being exposed to stimuli, the participants reported their current state of MS using
the SSQpre [66]. According to the condition, the participants were introduced to the AV,
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the HMI, and its communication strategy. This also included the type of information it
provided depending on the condition. They were instructed to get accustomed to the HMI
because they would evaluate it after the trial. The participants sat down on the middle seat
of the rear bench. They were instructed to sit back and inform the staff immediately if MS
symptoms reached their individual threshold of discomfort. Throughout the experimental
trial, the AV was supervised by a safety driver on the driver’s seat and an automation
supervisor on the front passenger seat. The participant was manually driven to the starting
location of the automation scenario. The automation and HMI scenarios were started by
the staff. The driving scenario duration was about 15 min. After completing the scenario,
the participants reported their current state of MS (SSQpost).

After the driving scenario was completed, the user experience of the system was
evaluated using the UEQ [48]. Predictability was measured with a single self-devised
item. Perceived safety was also measured using a single self-devised item. After the
completion of the experimental trial, the participants were instructed to rest until they felt
fully recovered. The participants were allowed to leave the property after stating their
capability to handle their vehicle safely.

During the second session, the other experimental trial was conducted following the
same procedure as before but under a different experimental condition. After completing
the second trial, the participants were fully debriefed and financially compensated for
their participation.

5. Results

Four datasets had to be excluded for suspicion of confounded data. Participants that
presented a decrease in MS during the baseline condition were excluded. Since items of
the SSQ test for symptoms that are not exclusive to MS, participants might have arrived
at the experiment with symptoms present (e.g., headache, exhaustion, and cold sweating
caused by nervousness). If they recovered from the symptoms during the experiment,
this could have resulted in a measured decrease of MS, confounding the effect of MS
induction. Participants with reported decreases of MS beyond their pre-measurement
during the treatment condition were included because this effect could be attributed to
the manipulated mitigation effect of the HMI compared to an uncontrolled factor during
the baseline condition. The data analysis was performed with n = 16 datasets (9 male and
7 female).

5.1. Descriptive Analysis

The ages of participants ranged from 22 to 59 years, and the mean age of the sample
was M(age) = 32.94 years (SD = 10.34). The sample had a mean ATI score of M(ATI) = 4.67
(SD = 1.15) [70]. MSSQ raw scores (M(MSSQ) = 78.36; SD = 29.25) ranged from min = 25.08
to max = 113.52.

5.2. Sample Selection for Inferential Statistics

In order to perform inferential tests for H1, a median split was performed based
on the MSSQ raw scores of the participants (Mdn = 87.29), separating the sample in two
subsamples. Subsample High (n = 8; 5 male and 3 female; M(age) = 32.30 and SD(age) = 8.81)
had MSSQ raw scores ranging from min = 92.07 to max = 113.52 (M(MSSQ) = 101.94 and
SD = 7.77). Subsample Low (n = 8; 4 male and 4 female; M(age) = 33.60 and SD(age) = 12.27)
had MSSQ raw scores ranging from min = 25.08 to max = 82.50 (M(MSSQ) = 54.97 and
SD = 12.27).

As subsample High represented the user group described in the hypothesis, the
inferential data analysis to test for H1 was performed on this subsample.
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5.3. Inferential Statistics
5.3.1. Effect of MS Mitigation

The MS increase (∆SSQ) during the trial was defined as the difference between SSQpre
and SSQpost.

∆SSQ = SSQpost − SSQpre

∆SSQ was computed for both experimental conditions. Paired sample Student t-tests
between the HMI and baseline condition were performed for both subsamples. The test
computed for subsample High reached significance (t(7) = 2.53; p = 0.039) detecting a high
effect (d = 0.895) [76], indicating that participants developed fewer MS symptoms during
the treatment condition and thus supporting a mitigation effect by the HMI. Hence, H1
was confirmed (Figure 6).
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Subsample Low presented an M(∆SSQ) = 4.43 (SD = 3.05) for the baseline condition
and an M(∆SSQ) = 6.42 (SD = 7.23) for the HMI condition. Explorative inferential testing
for differences did not reach significance.

5.3.2. User Experience

The UEQ subscales of Attractiveness, Efficiency, Perspicuity, Dependability, Stimu-
lation, and Novelty were calculated for both experimental conditions [70]. Because the
normality assumption for the factor Perspicuity was not met, non-parametric Wilcoxon
rank tests were performed for all subscales. All six tests computed reached significance
and detected intermediate-to-large effect sizes (Table 1) [76]. H2 was confirmed, meaning
that the treatment condition was rated better on all six factors of user experience.

Table 1. Wilcoxon rank test for UEQ subscales of Attractiveness, Efficiency, Perspicuity, Dependability,
Stimulation, and Novelty.

UEQ HMI Baseline

Subscale M (SD) M (SD) W Mean
Difference p r

Attractiveness 0.92 (0.86) −0.29 (1.05) 116.50 1.17 0.013 0.713
Efficiency 1.61 (0.65) 0.31 (1.02) 117.50 1.37 0.001 0.958

Perspicuity 2.53 (0.69) 1.33 (1.57) 89.50 1.25 0.002 0.967
Dependability 1.89 (0.70) 0.42 (1.28) 115.50 1.50 0.002 0.925

Stimulation 0.66 (1.04) −1.30 (0.96) 128.50 2.12 0.002 0.890
Novelty 0.80 (1.07) −0.20 (1.11) 110.00 1.00 0.005 0.834
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5.3.3. Perceived Safety and Predictability

A paired sample Student t-test was computed to analyze the variable predictability
(HMI: M = 75.00 and SD = 22.97; baseline: M = 20.43 and SD = 27.98). The test reached
significance and detected a large effect size (t(15) = 7.52; p < 0.001; d = 1.880).

For the variable of perceived safety, a nonparametric Wilcoxon rank test was com-
puted between the HMI (M = 71.19 and SD = 23.94) and baseline conditions (M = 26.69
and SD = 24.27) because the normality assumption was not met. The difference between
both conditions reached significance (W = 91.00; p = 0.002; r = 1.000). H3, predicting
higher ratings for both predictability and perceived safety during the treatment condition,
was confirmed regarding both the effects. These results indicated that the HMI was per-
ceived as supportive regarding the predictability and road safety of the AV during the
treatment condition.

6. Discussion and Future Research

This section is dedicated to a differentiated interpretation of the results of the presented
study. Its methodological strengths and weaknesses are discussed, as are its implications
for future research in this field.

The realistic driving study investigated the efficacy of a prototype for an HMI for MS
mitigation in AVs by utilizing anticipatory ambient light cues provided by a LED light
band as the HMI. The cues provide users with reliable anticipatory information about the
onset and direction of the AV’s obtuse-angle turns. Data analysis revealed a significant MS
mitigation effect regarding highly MS-susceptible individuals, confirming the hypothesis
that anticipatory cues regarding vehicle dynamics are an effective countermeasure. Partic-
ipants developed significantly fewer MS symptoms during experimental trials in which
they were provided with anticipatory cues compared to when they were provided with
no cues. Additionally, the effect corroborated previous findings regarding the effect of
anticipatory HMIs on MS mitigation [43,55,56]. As the ultimate goal of MS research is to
mitigate the symptoms in nauseagenic environments, the results of this study prove to be
a step towards reaching this goal, at least regarding AV settings. This study specifically
focused on highly susceptible individuals, the users being most negatively affected by MS
and who are therefore an important population to be considered for AV implementation
in traffic. The development of an MS mitigation strategy that is effective for them could
make a noticeable difference in the inclusivity and therefore acceptance of AVs. Consid-
ering that the prototype investigated in this study was evaluated in its first iteration, the
confirmation that the HMI was able to mitigate MS is the first step in the development
of a possible solution for highly susceptible individuals in AVs. Additionally, H2 and H3
were confirmed by the experiment. In the HMI condition, in which the HMI presented
anticipatory ambient light cues, the system was rated to be significantly more attractive
regarding user experience (H2), predictability, and perceived safety (H3) compared with
the baseline condition without anticipatory ambient light cues. User experience, increased
predictability, and perceived safety might influence the intention of a user to utilize an
HMI. By designing an HMI to be attractive, purposeful, and informative, the utility of the
HMI and its efficacy are enhanced. The new insights regarding these qualities of the HMI
will be helpful when tailoring future iterations to the psychological needs of the user.

The HMI was evaluated in a realistic driving setting including a naturalistic passenger
environment and a L4 AV. Thus far, MS mitigation strategies for L4 have mostly been
assessed in driving simulators [43,54,56] or by utilizing the Wizard-of-Oz method with
partially automated driving support systems [55,57]. As the automated driving style itself
and the increased autonomy of the vehicle are unique aspects of L4, the ecological validity
of this experimental setup enhances the impact of the MS mitigation effect reported in this
study. The validity and standardization of the method at hand are superior compared to a
Wizard-of-Oz set-up. Firstly, the method is not dependent on participants believing in the
illusion of an AV to create a valid simulation. Secondly, the driving style of an AV is more
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consistent than a Wizard-of-Oz-simulated automated driving style because the variance of
the human driving behavior does not have to be accounted for [77].

This study provides a successful proof of concept for the first iteration of an ambient
light-based anticipatory onboard HMI for MS mitigation. The results comprise a promising
basis for future iterations of this HMI with potential for field application in the future.

6.1. Limitations

While the highly susceptible subsample of this study benefited from the anticipatory
cues provided by the HMI, it is to be determined how reliable this effect is in regard
to different stimulus intensities. Based on previous research, 10–20 min of moderate
stimulation is considered sufficient to induce MS but not to the point of strong physical
discomfort [69,71,75]. However, the intensity and quality of nauseagenic stimulation are
difficult to quantify, and in a real-life setting, users might be exposed to more intense
stimuli. The manipulation of stimulation intensity could be increased or implemented as a
dependent variable to control for the effect of different intensities. However, with increased
stimulation and more trials, the burden on the participants increases because MS symptoms
are considered to increase linearly with intensity and time of exposure [75]. Considering
research ethics in regard to human subjects and the potential increase of dropouts, finding
a balance between sufficient stimulation depending on the subject of research and the
compliance and well-being of the participants will be a continuous challenge. The high
variation in responses by individuals to the same stimulus is another aspect to be considered
when testing for interaction between mitigation effect and stimulus intensity.

The stimulus in this study was chosen to be of moderate intensity, as the main objective
was a proof-of-concept of the HMI. The stimulus was sufficient to induce enough MS
that the mitigation effect was detectable. However, we had no dropouts caused by MS
symptoms, and all participants recovered from the stimulus within minutes.

For the test of the main hypothesis of this study (H1), which required a highly sus-
ceptible sample, a subsample was created post hoc out of the convenience sample. The
data exclusions and division of the convenience sample reduced the number of analyzed
cases. The test power provided by a smaller sample limits its possibilities to detect the
investigated effect. Recruiting a sample that fulfils the criteria of being highly susceptible
for MS and being possibly more homogeneous in its reaction to nauseagenic stimuli may
be realized by performing a screening with an MS susceptibility measure [55].

The sample size case of this study was sufficient to detect the predicted effect. Coinci-
dently, the subsample created by the median split was rather representative of the highly
susceptible population, presenting with MS susceptibility scores within the upper 10th
percentile [71].

The chosen operationalization that emulates the effect of NDRTs by limiting visual
information is commonly used in this field of research, but its ecological validity is lim-
ited [43,56,57,75]. As operationalization has a high degree of standardization, the influence
of different NDRTs could have an effect on the efficacy of an HMI. If an HMI’s efficacy is
hindered by factors like visual attention, cognitive workload, or other uncontrolled factors,
its usability in a natural traffic setting may be reduced. Future research should evaluate the
HMI, its efficacy on MS mitigation, and its usability during the performance of realistic
NDRTs [55,78,79].

6.2. Implications for Future Research

The investigation and evaluation of this novel HMI prototype demonstrated a promis-
ing solution to reduce MS in AVs and, therefore, to create more inclusivity and acceptance
for L4 (and future L5) automated driving. This HMI significantly mitigates MS by allowing
passengers to anticipate vehicle behavior. Thus far, only the anticipation of obtuse-angle
turns is supported by the HMI. Both SRT and PIT postulated improvements in MS miti-
gation related to the more accurate anticipation of vehicle dynamics [32,33]. Additional
features like specific ambient light cues for 90-degree curves and changes in acceleration
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could further increase the mitigation effect of the system as the HMI could provide the
user with more anticipatory information [54,64]. Additionally, optimizing the HMI further
to the perceptual and hedonic needs of potential users considering aspects like cue onset
time, cue duration, and other aspects of the stimulus presentation may further improve the
efficacy of the system.

With the proven efficacy of anticipation as a mitigation strategy, as well as the repli-
cation of MS mitigation effect of other anticipatory HMIs [55,56], the importance of the
modulating factor increases. At this point, the pathology of MS and its connection to
cognitive processes like anticipation is still not fully understood. Basic research on the
pathological mechanisms of MS would improve our understanding of the syndrome and
how to more effectively mitigate it.

Finally, once the system itself is optimized, its interaction with other features and
information strategies proposed for an HMI utilizing a 360-degree light band needs to be
further investigated [60,61,64]. This HMI for MS mitigation is intended to be part of an
integrative information system for AVs. Investigating and optimizing its compatibility
with other features that provide the user with information will be necessary to tailor the
system to the needs of future AV users.

7. Conclusions

In the present study in a realistic AV setting with 16 participants, an HMI utilizing
anticipatory ambient light cues for MS mitigation was found to have a mitigating effect on
participants with high MS susceptibility. The HMI prototype was developed by utilizing
anticipation as the main moderating factor on MS. In the current study, the MS mitiga-
tion effect—previously mostly evaluated under simulator conditions—was detected in a
realistic L4 driving environment. In addition, increases in user experience, predictability,
and perceived safety were associated with the presentation of anticipatory ambient light
cues by the HMI. The results of this study support previous findings of the mitigating
effect of anticipatory cues on MS and propose a promising first iteration of a potential
MS mitigation strategy with a high ecological validity. Future research should focus on
potential interactions of the HMI with aspects like stimulus intensity, cognitive workload,
compatibility with NDRT, and other on-board HMIs, as well as potential improvements in
the fit between user and system.

The study emphasized the importance of creating inclusivity for different populations
in regard to using AVs without suffering from MS symptoms. Highly susceptible individu-
als might be especially in need of support during the adaptation to L4 (and L5). Therefore,
developing a countermeasure to MS for AVs is predicted to increase the inclusivity of
AVs for all demographics. This may be an important step towards the societal acceptance
of AVs.
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