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Abstract: Sampling is an important step in the machine learning process because it prioritizes samples
that help the model best summarize the important concepts required for the task at hand. The process
of determining the best sampling method has been rarely studied in the context of graph neural
networks. In this paper, we evaluate multiple sampling methods (i.e., ascending and descending)
that sample based off different definitions of centrality (i.e., Voterank, Pagerank, degree) to observe
its relation with network topology. We find that no sampling method is superior across all network
topologies. Additionally, we find situations where ascending sampling provides better classification
scores, showing the strength of weak ties. Two strategies are then created to predict the best sampling
method, one that observes the homogeneous connectivity of the nodes, and one that observes the
network topology. In both methods, we are able to evaluate the best sampling direction consistently.

Keywords: graph convolutional neural networks; social networks; network science; citation net-
works; community labeling

1. Introduction

From the general study of networks [1] it can be seen how they are ubiquitous in many
aspects of nature and even in the higher level networks of financial associations. Complex
processes that have been studied [2] display behaviors that are related to their network
structure (topology). One of the most famous mathematical investigations is one of the first
encounters with a problem statement derived from a network (graph structure), the ‘Seven
Bridges of Königsberg problem’ [3]. This question has spawned many intriguing questions,
such as that of the traveling salesman problem [4].

In many situations, the total number of nodes for a network can be very large and
treating each node as a unique ID does not allow for an investigation to reveal generaliza-
tions that can help in situations of inferring missing data, for instance. Simplifying these
network nodes into a smaller set of labels can be done in various ways and is typically
associated with community detection, where the connectivity of the nodes in the network
directs the community memberships. This labeling process assists in the effort to simplify
the node set. Each label applies some level of generalization with respect to aggregated
behaviors across the allocated group labels. Examples for the label application can cover
voting patterns that are pigeonholed into a small number of choices, consumer buying
patterns in respect to certain products, and even different psychological profiles. This
concept is applied in algorithms using collaborative filtering [5] (usually for retail), where
recommendation systems apply a customer’s interests to find the closest community set
to predict an affinity for new items. The principle underlying the ability to group nodes
together in this fashion relies upon a degree of homophily [6] in the groups. Examples of
this are found in the work of [7], which studies how social network connections created
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from friendships or interests can drive political engagements differently. For the growth
of a network where edges are constructed, nodes create connections or affiliations and it
becomes a question of determining the label for a node with which an edge is constructed.
Choosing these connections becomes an important issue for the originating node as it
produces label associations.

Methods such as logistic regression can infer the labels for nodes provided with the
features after a training phase but does not model the connectivity between nodes, which
provides extra information that can augment the feature information. This is important
for accuracy when there is not enough feature information for accurate label prediction.
Community detection algorithms such as the Louvain algorithm [8] take into account the
placement of a node in the network topology, but they do not take into account the node
features for allocating the labels. The methods of Graph Neural Networks (GNNs) [9]
provide a framework that combines both feature information and network information in
order to make inferences on the labels applied to nodes.

The methodology of the Simple Graph Convolutional Neural Network (SGC) [10]
(described in more detail in the Methodology) presents an intuitive, simple, and expressive
formulation for learning these latent representations of the node labels that builds upon
the general theory of graph convolutional networks [11]. This methodology is appealing
because the operations are linear between the adjacency matrix, the features, and the
parameters prior to the use of the softmax function. This makes it an ideal candidate to
work with in exploring different applications of its formulation as the feature projections
are linear and the adjacency matrix is clearly an operation aggregating feature information
of the vicinity of the nodes.

A machine learning pipeline usually consists of multiple parts: sample, explore,
modify, model, and assess [12]. As the data travels through the pipeline, error propagates;
a mistake in an earlier step may have resounding impacts on the pipeline’s performance.
Active learning focuses on the sampling step by prioritizing samples that are assumed to
be of more aid to the task [13]. Sampling the training corpus prior to training the model is
conducted to attempt to receive similar, if not better, accuracy while utilizing less data. This
process has shown to be successful in multiple domains, like natural language processing
and image data [14–17]. Recent work has been conducted on the performance of active
learning on graph data [18,19]. In general, deep learning has shown great advantages in
many fields [20–22] including spatial components for a complex object [23].

For graph data, there is a variety of node ranking algorithms such as pagerank [24]
and voterank [25] that can be utilized to select nodes in the active learning process. In this
paper, we look for optimal sampling methods for the node classification task across five real
graph datasets that span a large domain of network topologies. Our main contributions
is the discovery of the effect of the sampling method or direction (i.e., ascending versus
descending selection) on the results of a node classification task.

This paper looks at how the SGC can be used to arrive at correct label allocations of
nodes in networks (where nodes contain features) where the full set of network nodes is
not provided. The context is that often the full network is not visible to the investigator
and the set of nodes are actually sampled. From the investigation, it can be seen that
how these nodes are sampled can change the accuracy of labels trying to be predicted. It
could be assumed that nodes that have the largest number of edges would be the best
representatives of a community label as their label would propagate to other nodes for
whom it is the most central node. The investigation here counter-intuitively shows in the
results that low ranked nodes in terms of centrality can provide better information on
the labels. The fact that lower ranked central nodes contain more accurate information
for the label allocation supports the general idea that ‘weak-ties’ are valuable [26]. Two
strategies are proposed to predict the best sampling methods based on network topology.
First, we find that the skewness of homogeneous connectivity distribution is an accurate
predictor for sampling direction. Additionally, we empirically find a correlation between
the topology structure, consolidated by a single statistic, and the sampling direction.
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Section 2 delineates the methodology, including descriptions of the data, sampling
methods, and the employed graph convolutional neural network. Section 3 shows the
results along with a discussion of the results. Lastly, Section 4 describes the final takeaways
and some potential future work.

2. Methodology
2.1. Data

An attributed graph G = (X, A, y) is represented by three components: an adjacency
matrix A ∈ RN×N , a feature matrix X ∈ RN×D, and a node label vector y ∈ RN . Real
datasets were gathered from online resources; seven of the nine datasets were accessed
using open-source python libraries [27,28]. The other two, Lastfm-Asia and Deezer-Europe,
were downloaded from the Stanford Network Analysis Project’s repository [29].

2.2. Sampling Methods

Two procedures of sampling are considered in this study, namely, descending and
ascending. In the descending sampling, training instances are selected by gradually
acquiring them from the most important nodes to the least important ones. On the contrary,
ascending sampling gradually selects training samples starting from the least important
nodes to the most important ones.

Three different criteria are used to evaluate a node’s importance (centrality) for sam-
pling orders.

2.2.1. Degree

In degree sampling, we acquire nodes for training based on their corresponding
number of directly connected neighbors (i.e., node’s degree).

2.2.2. PageRank

The PageRank algorithm [24] derives a web page’s (node)’s rank by accumulating its
incoming neighbors’ ranks proportionally to their total number of outgoing connections.
The resulting ranking represents the relative importance of pages in the network. In this
study, we apply PageRank to rank all the nodes in our graphs and then sample them based
on their rankings.

2.2.3. VoteRank

The VoteRank algorithm [25] iteratively selects a set of important nodes called spread-
ers using voting scores given by the neighboring nodes. Once a node is selected as a
spreader, it is excluded from the next round of voting and its direct neighbors’ voting
abilities are also reduced. In this study, we employ VoteRank to all nodes in the graph (by
setting the number of spreaders as the total number of nodes) and then sample them based
on their rankings.

2.3. Simple Graph Convolution (SGC)

SGC [30] is a simplified GNN model developed from GCN [31] by removing nonlinear
activation functions between hidden layers and reparametrizing successive layers into one
single layer. This simplification reduces the superfluous complexity of the GCN while
retaining superb performance on many downstream tasks. The work of [32] illustrates
SGC’s expressive power on a node classification task and proposes a flexible regularization
methodology to reduce the number of parameters and highlight a sparse set of important
features. The SGC is a ‘one-shot’ learner, which simplifies the training procedure and
allows for the full set of data points to be used for the parameter inference.

In this section, we briefly present the original SGC. An attributed graph dataset
contains a graph G = (V; A) and a feature matrix X ∈ RN×D. The graph G composed
of V = (v1, v2, . . . , vN) is a set of N nodes (vertices); A ∈ RN×N is the adjacency matrix,
where each element aij represents an edge between node vi and vj (aij = 0 if vi and vj are
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disconnected). We define the degree matrix D = diag(d1, d2, . . . , dN) as a diagonal matrix
whose off-diagonal elements are zero and each diagonal element di captures the degree of
node vi and di = ∑j aij. Each row xi of the feature matrix X ∈ RN×D is the feature vector
measured on each node of the graph. Each node i receives a label from C classes and hence
can be coded as one hot vector yi ∈ {0, 1}C.

The GCNs and SGC add self-loops and normalize the adjacency matrix to get the
matrix S:

S = D̃−
1
2 ÃD̃−

1
2 , (1)

where Ã = A + I and D̃ = diag(Ã). This normalization allows successive powers of the
matrix to not influence the overall size of the projections. The SGC removes nonlinear
transformation from the k-th-layer of the GCN resulting in a linear model of the form:

Ŷ = softmax(S . . . SSXΘ(1)Θ(2) . . . Θ(K)). (2)

The SGC classifier is then achieved by collapsing the repetitive multiplication of matrix
S into the k-th power matrix SK and reparametrizing the successive weight matrices as
Θ = Θ(1)Θ(2) . . . Θ(K); its structure as a GNN is defined by

Ŷ = softmax(SKXΘ). (3)

The parameter k corresponds to the number of ‘hops’, which is the number of edge
traversals in the network adjacency matrix S. k can be thought of as accumulating infor-
mation from a certain number of hops away from a node (as described visually in [30]).
If k = 0, the methodology becomes equivalent to a logistic regression application, which is
known to be scalable to large datasets. Since the SGC introduces the matrix S as a linear
operation, the same scalability applies. The weight matrix Θ is trained by minimizing the
cross entropy loss:

L = ∑
l∈YL

∑
c∈C

Ylc ln Ŷlc, (4)

where YL is a collection of labeled nodes. This model allows for a very computationally
efficient exploration of the network-based datasets but this multilayer approximation may
not provide the full extent of deep learning generalizations.

2.4. Evaluation of Network Topology

The network topology was evaluated using the coefficient of variation of the node’s
degree distribution.

CVd =
µd
σd

, (5)

where µd = 1
N ∑N

i=1 di is the average degree and σd = 1
N−1 ∑N

i=1(di − µ)2 is the standard
deviation of degree.

A low value of CVd occurs for networks that have high variation in their degree
distributions compared to the mean degree. It indicates that important hubs (nodes) are
highly connected to other nodes. On the contrary, a high value of CVd results from relatively
low variation in degree distribution compared to the mean degree, where important nodes
tends to be less popular.

The node degree centrality is defined by

Di =
di

max(di)
, (6)

where di is the degree of node i. The homogeneous connectivity is the proportion of
homogeneous connections that a node has normalized by its total number of connections.
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Ωi =
hi
di

, (7)

where hi is the number of homogeneous nodes within one degree.

3. Results

Sampling the nodes from a graph causes a change in performance. Active learning [13],
as opposed to passive learning, selects a set of most-informative instances for training to
achieve the best performance while using minimal samples. This paper utilizes common
sampling methods (i.e., degree, PageRank, VoteRank) to select nodes in a graph for the
training corpus using an ascending (i.e., lowest to highest score) and descending (highest
to lowest score) fashion.

Two separate methods are formulated to predict the best sampling direction. A method
that utilizes the network topology looks for a partition in the CVd domain. A positive
to this method is it utilizes information that is readily available prior to classification,
excluding the requirement of knowing the ground truths. A second method is proposed
that compares the skewness of the homogeneous connectivity distributions to evaluate the
best sampling direction. This method utilizes the ground truth to explain why the best
sampling direction is, in fact, the best.

Two different types of plots are visualized for each dataset. The sampling result plot
shows the performance of the node classification task (measured by accuracy) on various
training sizes across multiple sampling techniques. The accuracy curves tends to improve
as more training samples are recruited. The box-plots show results of random sampling
with 10 replications. With further inspection, sampling methods (plotted as lines) can be
viewed to pass specific judgment regarding its performance. If these sampling methods
show better performance than random selection, it can be concluded that the method is
an improvement.

The degree centrality plot is composed of a scatter plot illustrating the relationship
between homogeneous connectivity, Ωi (Equation (7)) node centrality (Equation (6)) (on
the left panel), and a histogram showing distribution of homogeneous connectivity (on
the right panel). The purple points describe the nodes that are sampled following the
“degree ascending” method, when s = 0.5; likewise, the yellow points describe the nodes
sampled following the “degree descending” method, when s = 0.5. As the scatterplot
is visualized according to node degree centrality on the x-axis, a clear partition is found
between the purple and yellow points. It is also informative to look at the histogram, which
shows the distribution of homogeneous connectivity according to the sampling direction.
On this plot, some deductions can be made as to why the superior sampling direction was
more effective.

In the high CVd graph (i.e., Cora and Citeseer), all three descending methods almost
uniformly render higher accuracies than the ascending methods across training sizes
(Figure 1). The dominance of descending sampling in these graphs could be explained by
the fact that important (central) papers of certain disciplines are usually cited by many
papers in that same discipline. Consequently, the most important nodes contain crucial
information about the class label and hence, are beneficial for the node classification task.
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(a)

(b)

Figure 1. Here is presented the accuracy of the class predictions for the network node sample
ratio using different node selection strategies. The large values of CVd for the network (Cora (a),
Citeseer (b)) graph has higher accuracies when sampling nodes from the highest score to lowest score
(i.e., ‘descending’ methods), showing the effectiveness of the node-ranking algorithms on a node
classification task.

The distribution of homogeneous connectivity across the Cora and Citeseer data sets
are similar (Figure 2). Homogeneous connections of both data sets exhibit left-skewed
patterns, indicating the existence of clusters of informative nodes (high Ω) and noisy nodes
(low Ω). Nodes with low Ω mainly connect with neighbors across different categories
while nodes with high Ω mostly connect to neighboring nodes within the same category.

On Cora, the ascending and descending samplings possess a similar number of the
most informative nodes. However, the bottom 50% of central nodes shows higher left
skewness (Figure 2a). It indicates that less popular papers are noisier since they tend to get
cited by papers in different categories. Hence, recruiting these samples in the training step
is not desirable since they provide noisy representations of the corresponding categories
and deteriorate the performance of the classifier.

On Citeseer, a different pattern occurs where large numbers of noisiest nodes exist in
both sampling schemes. However, the descending samplings contain higher numbers of
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moderate to high informative nodes as the distribution of the top central nodes exhibits a
lower degree of left skewness (Figure 2b). Hence, descending sampling tends to work better
since recruiting popular papers provides a smoother representation of their categories.

(a)

(b)

Figure 2. These plots present the investigation of datasets Cora (a) and Citeseer (b) to see the
association of the centrality and the within or between edge class category edges contained. The left
panels here present scatter plots of node degree centrality, Di against node homogeneous connectivity
Ωi on the training data. The upper half of nodes according to their centrality are colored in yellow
while the lower half is presented in purple. The histogram on the right visualizes the distribution of
homogeneous connections. The skew for each subset’s distribution is annotated above the right graph.

Alternatively, we observe an opposite trend in low CVd graphs (i.e., Pubmed), where
ascending samplings prevail Figure 3. The Pubmed citation graph contains publications
about diabetes and hence, has a smaller scope compared with other citation data sets.
Important (central) papers might get cited by other papers across classes due to the close
nature of their categories. Therefore, important nodes contains a less differentiating factor
for classification tasks. On the other hand, less important nodes might contain unique
characteristics of the class and render useful information for the node classification task.

Pubmed’s homogeneous connectivity distributions are highly left-skewed (Figure 4).
Both sampling schemes contain a relatively high number of informative as well as noisy
nodes. Descending sampling has relatively higher skewness implying a heterogeneous
selection of high-quality and low-quality popular papers (in terms of their homogeneous
connectivity). Popular papers (high D) with a low amount of within-category citations (low
Ω) get cited by other papers from different categories. Hence, the descending strategy has
worse performance since these low-quality popular papers inevitably induce a confusing
representation of the category.
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Figure 3. Low CVd networks (Pubmed) graphs have lower accuracies when sampling nodes from the
lowest to highest score (i.e., ‘ascending’ methods), showing that the ranking algorithms are inversely
beneficial to the node classification task.

Figure 4. The left figure here presents scatter plots of node degree centrality Di against node
homogeneous connectivity Ωi on the training data. The upper half of nodes according to their
centrality are colored in yellow while the lower half is presented in purple. The histogram on the
right visualizes the distribution of homogeneous connections. The skew for each subset’s distribution
is annotated above the right graph.

The LastFM-Asia is a social media dataset that categorizes users based on their country
of origin (Table 1). Node classification results change dramatically with training size, s.
After s = 0.3, the ascending sampling methods consistently perform better than descending
methods. In this social media, nodes with smaller importance are more indicative of a
node’s label—the person’s country of origin. Users with smaller followerships are more
likely to be connected with people they know personally, within their real-life circle. How-
ever, people with more followers are more famous, and likely have more followers across
the globe, therefore causing the country to be hard to discern. Much like the other datasets,
the homogeneous connectivity distribution for LastFM-Asia is left-skewed. In other words,
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there exists a large set of edges that are interconnected within the community and fewer
connected to other communities. The skewness of the ascending selections is greater than
that of the descending selections, therefore, a conclusion is made towards the utilization of
ascending as the sampling direction, which matches with the node classification results.

Table 1. Dataset information, like network structure and domain-specific definitions.

Dataset Ref.
#Nodes
#Edges
#Classes

Description

Cora [33]
2708
5278
7

Scientific publications (nodes), defined by a
binary vector indicating the presence of
words in the paper (features), connected in a
paper citation web (edges), and categorized
by topic (labels).

Citeseer [34]
3327
4614
6

Scientific publications (nodes), defined by a
binary vector indicating the presence of
words in the paper (features), connected in a
paper citation web (edges), and categorized
by topic (labels).

Pubmed [35]
19,717
44,325
3

Diabetes-focused scientific publications
(nodes), defined by a binary vector
indicating the presence of words in the
paper (features), connected in a paper
citation web (edges), and categorized by
topic (labels).

Amazon-PC [36]
13,752
287,209
10

Computer goods sold at Amazon (nodes),
defined by a bag-of-words encoded vector
of the product’s reviews, connected with
groups of products that are frequently
bought together (edges), and grouped into
product categories.

Amazon-
Photo [36]

7650
143,663
8

Photos sold at Amazon (nodes), defined by
a bag-of-words encoded vector of the
product’s reviews, connected with groups of
products that are frequently bought
together (edges), and grouped into product
categories.

Coauthor-CS [27]
163,788
18,333
15

Authors (nodes) of computer science papers,
defined by a vector of keywords in their
published papers, connected by
coauthorship (edges), and categorized by
the author’s most active field of study.

Coauthor-
Physics [27]

34,493
495,924
5

Authors (nodes) of physics papers, defined
by a vector of keywords in their published
papers, connected by coauthorship (edges),
and categorized by the author’s most active
field of study.

Lastfm-Asia [33]
7624
27,806
18

Social network users (nodes) using LastFM,
defined by their artists-of-interest,
connected by their mutual followers (edges),
and categorized by the user’s location.

Deezer-
Europe [33]

28,281
92,752
2

Social media users (nodes) using Deezer,
defined by their artists-of-interest,
connected by mutual followers (edges), and
categorized by gender.
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The Deezer-Europe social media dataset shows varied results, Figure 5. Most of the
sampling methods, agnostic to the sampling direction, consistently perform better than
random. In other words, the more-popular and less-popular nodes are helpful in the
node gender-classification task, as opposed to users in the middle-ground. Intuitively,
less popular users’ networks are likely respond to gender homophily, as shown in certain
age groups in [37]. More popular users likely have growing followerships that can be
based on mutual interests, especially in this network’s musical context. The Deezer-Europe
dataset renders a unique homogeneous connectivity distribution, showing one that appears
Gaussian. The average value is centered near 0.50. The skew of the Ωi domain is in favor
of the descending sampling process, which is also the conclusion made by the CVd process.
This is shown in Figure 6 for the same datasets.

(a)

(b)

Figure 5. Here the accuracy of the model for the node percentages samples is presented using the
different node directions on LastFm data (a) and Deezer-Europe data (b). The performance of this
pipeline on the Deezer_Europe social media dataset (plot b) is unusual in that almost all sampling
methods are uniformly better than random selection.
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(a)

(b)

Figure 6. The left figure here presents scatter plots of node degree centrality Di against node
homogeneous connectivity Ωi on the training data. The upper half of nodes according to their
centrality are colored in yellow while the lower half is presented in purple. The histogram on the
right visualizes the distribution of homogeneous connections. The skew for each subset’s distribution
is annotated above the right graph. (a) LastFm; (b) Deezer-Europe.

In this paper, we have found a correlation between network topology and the optimal
sampling strategy. Interested readers are referred to the AppendixA section for results
of the remaining datasets that are not discussed here. This fact implies that machine
learning practitioners can deduce an optimal sampling strategy by (1) evaluating their
network topology and (2) observing its position on Figure 7. The results show that no
sampling method is superior in terms of accuracy; the logistic probability of a descending
sampling evaluation producing the best results increases with an increasing CVd. A high
CVd occurs for highly connected graphs (high µd) where all nodes have a similar number
of connections (low µd). Coauthor-cs, citeseer, and deezer_europe are among the highest
scorers in CVd. In these graphs, important nodes have relatively lower popularity, which
correlates with a descending sampling direction because these nodes contain defining
characteristics for their associated categories. A low CVd occurs for low connected graphs
where important nodes are highly connected, i.e., more popular, which correlates with an
ascending direction. Sampling less popular nodes are more beneficial since they contain
distinct characteristics to represent associated categories.

Network-topology-informed sampling methods (i.e., all methods except random)
seem to perform well on the node classification tasks, often resulting in similar accu-
racies while utilizing a smaller amount of data. Additionally, independent of the as-
cending/descending, we see across the board a higher number of cases where the more
complicated sampling procedures (i.e., Pagerank/Voterank) outperform Degree. While
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we see an increase in performance, there is a trade-off with computation time; nodes’ de-
gree distribution can be computed swiftly while Pagerank and VoteRank require complex
evaluation and hence, are more computationally expensive.

The skewness of the homogeneous connectivity Ωi distribution is indicative of the
better performing sampling direction. Left-skew distribution is more common because it is
expected that there is an association between network topology and nodes’ labels, in which
nodes with the same label tend to connect with each other. Graph neural networks utilize
message passing to learn expressive node embedding for a given task [38]. The mechanism
involves aggregating features of a node’s neighbors to produce a smoother representation,
where neighboring nodes tend to have a similar property such as belonging to the same
class. Therefore, a left skew of Ωi is suitable for graph neural networks to learn the effective
node embedding for a classification task.

Under the assumption that a Ωi is left-skewed, the sampling method that renders a
weaker skewness will be the one that performs better. A stronger left-skewed distribution
has an elongated tail, which recruits more noisy, low-information nodes. These samples
aggregate features of neighboring nodes belonging to other classes and provide a poor
representation of their own classes. Their noisy representations inevitably induce more
confusion to the model and degrade performance on the classification task. Table 2 demon-
strates the agreement between skewness of the homogeneous distribution and the best
sampling approaches.

Table 2. The sampling direction is predicted with a high accuracy by studying the skewness of the
homogeneity connectivity distribution. The misclassifications are likely caused by a lack of node
importance evaluators, which are robust to graph topology.

Dataset Prediction Actual

Cora Descending Descending
Citeseer Descending Descending
Pubmed Ascending Ascending

Amazon-pc Descending Ascending
Amazon-photo Ascending Ascending

Coauthor-cs Descending Descending
Coauthor-physics Ascending Descending

Lastfm_Asia Ascending Ascending
Deezer_Europe Descending Descending

Some graphs (i.e., amazon-pc, coauthor-physics) do not robustly fit the node impor-
tance evaluators utilized in this study, as indicated by the poor performance of informed
samplers compared to random sampling. Both examples show conflicting results when
utilizing our two sampling direction detection schemas; coauthor-physics concludes as-
cending via Ωi and descending via CVd and amazon-pc concludes descending via Ωi
and ascending via CVd. Future work will be required to observe the domain at which
this phenomena occurs as both examples of conflicting indications occur at the edges of
the CVd domain. Given that node degree is one of the measures of node centrality, we
would assume that using other centrality measurement (such as VoteRank) might render
harmonious conclusions of sampling schemes from Ωi and CVd.

In practice, obtaining homogeneous connectivity distribution prior to sampling is
impractical since it requires knowledge about the labels in the calculation process. Hence,
we developed an alternative criteria to help practitioners select the best sampling approach
based on the coefficient of variation of the node degree. Our experiments show a relation-
ship between the network topology (summarized by CVd) and the best sampling direction
(Figure 7).
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Figure 7. Logistic probability (blue line) shows an increasing likelihood of a descending sampling
procedure as the coefficient of variance of the degree (CVd) increases. Results show that a complete
separation is defined by CVd.

4. Discussion

The careful selection of nodes for a machine learning process helps increase the
accuracy of correct label prediction, enticing the study of different sampling methods. Two
sampling methods are evaluated, ascending and descending, in which samples are selected
based on node centrality as defined by three different measures (Voterank, Pagerank,
and degree). We conclude that there does not exist a uniformly best method for node
selection across all network topologies.

Prior to building a classification pipeline, it is useful for the practitioner to have an
estimate on which sampling direction is superior. An indicative measure of best sampling
strategy is the skewness of homogeneous connectivity distribution. A left-skewed distri-
bution is desirable since neighboring nodes tend to belong to the same class and, hence,
produce smoother representation for the node classification task. However, we found that
a strong left skewness—indicating a selection of more noisy and low informative nodes—is
detrimental to the performance of the classification task. However, rendering the homo-
geneous connectivity is impractical for practitioners due to its reliance on knowing the
node’s labels. Therefore, we present a second method that only requires network topology
information (CVd). This method is empirically proven.

Future work will apply these findings to large social media networks for tasks like
job searching. Further, applications to knowledge embedding in the natural language
processing domain will be pursued.
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Appendix A

(a)

(b)

Figure A1. Panel (a) shows degree centrality plots where the left figure presents scatter plots of node
degree centrality Di against node homogeneous connectivity Ωi on the training data of amazon-pc.
The upper half of nodes according to their centrality are colored in yellow while the lower half
is presented in purple. The histogram on the right visualizes the distribution of homogeneous
connections. The skew for each subset’s distribution is annotated above the right graph. Panel
(b) presents the sampling result on the training data of amazon-pc. Observing panel (b), random
sampling appears almost uniformly superior.
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(a)

(b)

Figure A2. Panel (a) shows degree centrality plots where the left figure presents scatter plots of node
degree centrality Di against node homogeneous connectivity Ωi on the training data of amazon-
photo. The upper half of nodes according to their centrality are colored in yellow while the lower
half is presented in purple. The histogram on the right visualizes the distribution of homogeneous
connections. The skew for each subset’s distribution is annotated above the right graph. Panel (b)
presents the sampling result on the training data of amazon-photo.
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(a)

(b)

Figure A3. Panel (a) shows degree centrality plots where the left figure presents scatter plots of node
degree centrality Di against node homogeneous connectivity Ωi on the training data of coauthor-cs.
The upper half of nodes according to their centrality are colored in yellow while the lower half
is presented in purple. The histogram on the right visualizes the distribution of homogeneous
connections. The skew for each subset’s distribution is annotated above the right graph. Panel (b)
presents the sampling result on the training data of coauthor-cs.
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(a)

(b)

Figure A4. Panel (a) shows degree centrality plots where the left figure presents scatter plots of node
degree centrality Di against node homogeneous connectivity Ωi on the training data of coauthor-
physics. The upper half of nodes according to their centrality are colored in yellow while the lower
half is presented in purple. The histogram on the right visualizes the distribution of homogeneous
connections. The skew for each subset’s distribution is annotated above the right graph. Panel (b)
presents the sampling result on the training data of coauthor-physics.
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