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Abstract: Ensuring the security of IoT devices and chips at runtime has become an urgent task as they
have been widely used in human life. Embedded memories are vital components of SoC (System on
Chip) in these devices. If they are attacked or incur faults at runtime, it will bring huge losses. In
this paper, we propose a run-time detection architecture for memory security (RDAMS) to detect
memory threats (fault and Hardware Trojans attack). The architecture consists of a Security Detection
Core (SDC) that controls and enforces the detection procedure as a “security brain”, and a memory
wrapper (MEM_wrapper) which interacts with memory to assist the detection. We also design a low
latency response mechanism to solve the SoC performance degradation caused by run-time detection.
A block-based multi-granularity detection approach is proposed to render the design flexible and
reduce the cost in implementation using the FPGA’s dynamic partial reconfigurable (DPR) technology,
which enables online detection mode reconfiguration according to the requirements. Experimental
results show that RDAMS can correctly detect and identify 10 modeled memory faults and two types
of Hardware Trojans (HTs) attacks without leading a great performance degradation to the system.

Keywords: SoC; memory; security; detection architecture; detection mode

1. Introduction

The rapid development of IoT applications has led to the widespread use of IoT
devices. People’s life becomes convenient by using IoT devices. McKinsey & Company
forecasts that the worldwide number of IoT-connected devices will increase to 43 billion by
2023 [1]. IoT devices widely use system on chip (SoC), and embedded memories occupies
more than 50% of the chip area [2]. As the important components of SoC, memories
are more prone to fault than other circuit logic due to limitations in design structure,
manufacturing technology and production time. Moreover, they hold a large amount
of user information and critical data, which increase the risk of them being targets for
malicious attacks [3]. The security threats can be software-based attacks occurring at the
application of IoT devices, but in recent years, increasing attention has been directed to the
potential threat posed by hardware-based attacks [4–6]. Once a fault or an attack occurs,
it could change the function of the device, leak critical data, even bring loss of property
and life to the user [7–10]. Therefore, detecting security threats in memories has become an
urgent task in hardware security.

Nowadays, memory faults are mainly tested by March algorithm [11,12]. The March
algorithm has been modified into many improved versions for different test needs, which
either improve fault coverage or reduce detection time [13,14]. Most of these works focus
on the SoC testing phase. However, faults can also occur during operation due to aging and
abrasion of the device. Such faults often disrupt memory read/write functions, making the
chip work incorrectly [15].
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Most memory attacks are achieved by implanting Hardware Trojans (HTs) [16,17].
HTs are defined as malicious circuits inserted in an electronic system, which enable the
adversary to spy confidential contents, destroy kernel functions or denial of service in sys-
tems. Researchers have proposed sufficient works to conduct HTs detection for embedded
memory before deployment [18]. However, stealthy HTs can be more sophisticated, some
are specifically designed to evade pre-deployment detection, to trigger and launch attacks
at runtime [6,19]. Thus, efficient memory HTs detection methods in the post-deployment
phase should be considered.

Some researchers have proposed methods that detect memory faults and HTs. Tang
et al. [15] proposed an online test method for run-time memory faults achieved by BIST
(Built-in Self-Test), but the method can only detect faults. De et al. [16] found that
Read/Write Followed by Validating Read method can detect a CPU-level system attack of
HT, but the method cannot detect other types of HTs. Bolat et al. [17] designed a security
protection architecture for microprocessor systems to detect HTs embedded in instruction
memory and data memory. The architecture can effectively detect HTs that use malicious
software to make the microprocessor run irregular instructions and read/write data in
illegal memory areas. Palmiero et al. [20] designed a hardware dynamic information flow
tracking (DIFT) architecture for RISC-V processor cores. DIFT supports a policy that de-
tect memory corruption attacks. However, neither of these two architectures can flexibly
configure detection mode when facing different detection requirements. Yan et al. [21]
proposed a security checking architecture which is applied to the embedded chip for
run-time inspection, but the architecture can only detect Stuck-at fault for memory. When
memory is being detected, it cannot respond to access requests from the system bus. In
addition, the detection mode in the architecture cannot be flexibly updated during runtime.
Ray et al. [22] proposed an SoC security architecture that uses a formal verification method
to detect hardware threats, and implemented an update of the detection mode during
operation. However, the architecture does not specifically perform detection for memory
and does not design a diagnostic process to distinguish between memory faults and attacks.

In this paper, we propose a detection architecture for memory security (RDAMS)
that can effectively detect both run-time faults and attacks. The kernel function of our
architecture is a dedicated, centralized IP block, referred to as SDC (Security Detection
Core). It is an FSM-based (Finite State Machine) firmware-upgradable module that realizes
memory detection of various modes. Once the SDC detects a memory threat, it will
report the problem to system and user, which provides information for further defensive
operations. The SDC interfaces with the constituent memory block in a SoC using a
“memory wrapper” integrated with the memory. The memory wrapper collects memory
state and reports it to the SDC. During detection, memory wrapper assists the SDC in
completing the detection. We demonstrate how to use the proposed architecture to detect
run-time memory security threat through several memory fault models and memory
attack models. Memory detection at runtime can also be achieved by BIST, but to our
current knowledge, there is still no BIST technique that can detect both faults and HTs
attacks [15,23,24].

Additionally, unlike traditional pre-deployment testing, run-time detection systems
could increase the cost in terms of power, area, and resources of the SoC [22,25]. How
to reduce the impact of detection towards SoC performance and maintain the original
throughput of system is another challenge. Thus, we design a checking mechanism which
minimizes the effect of original performance by providing a low latency response to
CPU access requests during detection; in order to reduce the cost, we propose a block
detection approach and design four detection modes with different granularity. RDAMS is
implemented using the FPGA’s dynamic partial reconfigurable (DPR) technology [26–29],
which enables flexible updates of the detection mode during operation and configures
suitable a mode according to the detection requirements.

The RDAMS mainly contributes to:
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(i). Extend the March C- algorithm and innovatively present a diagnosis process of
the algorithm, which enables the detection of both run-time memory faults and
HT attacks.

(ii). Design a low latency detection control scheme that can handle the memory access
collision between regular bus operation and security detection.

(iii). Propose a block-based memory detection approach and implement four modes with
different detection granularity. Users can flexibly configure the most applicable
memory detection mode online according to their detection requirements.

The remainder of this paper is organized as follows. Section 2 introduces fault and
attack models for RDAMS. Section 3 presents the design of RDAMS, including: detection
algorithm, diagnosis process and detection architecture. Section 4 presents the optimization
of RDAMS, including: processing of access collision and Multi-granularity detection mode.
The results are discussed in Section 5. We conclude the paper and describe future works
in Section 6.

2. Fault and Attack Models
2.1. Fault Models

Based on the functional behaviors, the memory faults can be classified into various
types. Table 1 introduces the types of faults that frequently occur in memory [14].

Table 1. Ten types of memory faults.

Type Name Behavior

Stuck at Fault (SAF)
SAF 0 The value of cell is stuck at 0
SAF 1 The value of cell is stuck at 1

Transition Fault (TF)
TF 0→1 The value of cell cannot

transition from 0 to 1

TF 1→0 The value of cell cannot
transition from 1 to 0

Inversion Coupling Fault
(CFin)

CFin(↑, l) 1 When writing a cell, the value
of another cell is invertedCFin(↓, l) 2

Idempotent Coupling Fault
(CFid)

CFid(↑, 0) 3 When writing a cell, the value
of another cell is fixed at 0CFid(↓, 0)

CFid(↑, 1) 4 When writing a cell, the value
of another cell is fixed at 1CFid(↓, 1)

1 ↑ means the address of the written cell is higher than the address of the inverted/fixed cell. l means invert. 2 ↓
means the address of the written cell is lower than the address of the inverted/fixed cell. 3 0 means the fixed cell
is fixed to 0. 4 1 means the fixed cell is fixed to 1.

2.2. Attack Models

The memory Hardware Trojan is a redundant circuit maliciously implanted by an
attacker, including a trigger and a payload circuit [9]. Once the trigger circuit is activated,
the payload circuit will launch a certain attack. Therefore, unlike memory faults that always
perform fault behavior, memory Hardware Trojan attacks are episodic in nature and are
only launched when the trigger conditions are met.

In the application of the IoTs, a typical scenario is that the sensing device encrypts the
collected data and stores it into the memory. If there is an HT in the memory, and the HT is
triggered at this time, it will damage the normal function of the device and interfere with
the user’s use of the device.

We refer to [30–32] to design highly concealed Hardware Trojan circuit. Huang
et al. [30,31] designs a HT attacking the functional integrity of AES when AES is running.
Once the HT is triggered, the encrypted result of the AES will be a fault. Kanet al. [32]
proposes an HT attacking the availability of memory during memory is working. Once the
HT is triggered, the memory will not output data.
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In this paper, we design two types of memory HTs: HT1 for functional integrity
destruction and HT2 for availability disruption. Figure 1 depicts how HT1 and HT2 are
triggered and attacked. As shown, the trigger circuits of the two HTs are the same ( 1©), the
payload circuit of HT1 is 2©, and the payload circuit of HT2 is 3©.

The trigger circuit consists of a judgment circuit and a Trojan enable counter (TEC).
When the data D and address A meet certain requirements (The second part of A and
the fifth and sixth parts of D are both 1), the judgment circuit outputs a counting enable
(CntEn) and the TEC starts counting. Once the TEC counts to a threshold, such as 10 or
50, the threshold can be determined by the user. the Trojan enable signal (TjEn) is output
to activate the payload circuit. Then, TEC returns to initial value, and the TjEn is pulled
down, waiting for the next trigger.

HT1 payload circuit: The payload circuit of HT1 performs an XOR operation on the
last part of D and TjEn. In this way, D is tampered and HT1 destroys the functional integrity
of memory.

HT2 payload circuit: The payload circuit of HT2 performs an XOR operation on the
write enable signal (Write_en) and TjEn. In this way, D cannot be written to memory and
HT2 destroys memory availability.
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3. Design of RDAMS

We introduce the RDAMS into three aspects. (1) we introduce the detection algorithm
of the RDAMS–March C- algorithm. (2) we propose the diagnosis process for distinguishing
memory run-time faults and HTs attacks. (3) we describe the architecture of the RDAMS in
detail, and focus on the internal implementation details of MDM and MEM_wrapper.

3.1. Detection Algorithm

The RDAMS use March C- algorithm to detect memory. By implementing March
C- algorithm in a form of a finite state machine (FSM) and adding the flag register for
identification, the RDAMS can detect and identify memory faults listed in Table 1.

Nowadays, there are many detection algorithms to detect memory fault, such as
Memory Scan (MSCAN), Checkboard, Galloping Pattern (GALPAT) and March algorithm.
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March algorithm has strong scalability, according to the fault types, its verification and
traversal methods can be changed. Therefore, the March algorithm has many versions,
such as MATS, MATS+, MATS++, March A, March C- etc. [12,14,15]. Table 2 lists the
fault coverage (FC) and time complexity Ω(n) of the various memory testing algorithms
introduced above, where “A” is fully supported, “P” is partially supported, and “N” is not
supported. As can be seen from the Table 2, March C- algorithm has superior performance,
such as lower time complexity and higher fault coverage [13]. Therefore, we choose March
C-algorithm as the detection algorithm of RDAMS.

Table 2. Performance comparison of memory testing algorithms.

Algorithm Ω(n) SAF TF CFin CFid

MATS 4n N N N N
MATS+ 5n A N N N

MATS++ 6n A A N N
March A 15n A A A A
March C- 10n A A A A
MSCAN 4n A N N N
GALPAT 4n2 A A A A

The testing process of the March C- algorithm is as follows.
1©↑(w0); 2©↑(r0,w1); 3©↑(r1,w0); 4©↓(r0,w1); 5©↓(r1,w0); 6©↓(r0);

In the process, “w” stands for write operation; “r” stands for read operation. “w0”
means write 0 to memory cell; “w1” means write 1 to memory cell; “r0” means read 0 from
memory cell; “r1” means read 1 from memory cell. “↑” means operate from low address to
high address; “↓” means operate from high address to low address.

RDAMS use FSM to implement the March C- algorithm. In order to identify memory
faults, the architecture collects the testing results of each step of the March C- algorithm
and stores them in the flag register. Where “1” means read data is in error, “0” means
read data is right. After the six testing steps of the March C- algorithm are completed, the
RDAMS compares the testing result with the standard result listed in Table 3. If it is the
same as the standard result of a certain type of fault, it proves that there is such a memory
fault in the memory. Table 3 lists the testing results of the ten types of faults in Table 1.

Table 3. Standard testing results of the fault model.

Fault ↑(w0) ↑(r0,w1) ↑(r1,w0) ↓(r0,w1) ↓(r1,w0) ↓(r0) Results

SAF0 0 0 1 0 1 0 01010
SAF1 0 1 0 1 0 1 10101

TF 0→1 0 0 1 0 1 0 01010
TF 1→0 0 0 0 1 0 1 00101

CFin(↑,l) 0 1 1 0 1 0 11010
CFin(↓,l) 0 1 1 0 1 1 11011
CFid(↑,0) 0 0 1 0 1 0 01010
CFid(↑,1) 0 1 0 1 0 0 10100
CFid(↓,0) 0 0 1 0 1 0 01010
CFid(↓,1) 0 1 0 0 0 1 10001
No Fault 0 0 0 0 0 0 00000

Some Other
Fault 0 1/0 1/0 1/0 1/0 1/0 Other

SAF0 cannot be distinguished from TF 0→1, CFid(↑,0) and CFid(↓,0), because their
testing results are the same. For some other faults, like read/write logic fault, neighborhood
pattern sensitive fault (NPSF), etc., RDAMS can detect but cannot identify it, because there
is no specific testing result corresponding to them.
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3.2. Diagnosis Process

The RDAMS use the March C- algorithm and diagnosis process to detect and identify
memory faults and HTs at runtime. The detection range for the RDAMS is:

(a) We limit the potential HTs types in memory into functional integrity destruction and
availability disruption only (HT1 and HT2). Because they have covered the most
typical types of the run-time attack, others involving information leaking can be
prohibited by designing a side channel-resisted circuit [33].

(b) The memory faults that RDAMS can detect and identify are limited to the ten types of
faults in Table 1. For some other faults, RDAMS can also detect but cannot identify it.

In order to make the RDAMS available to detect memory attacks, we innovatively de-
sign a diagnosis process which enriches a more accurate identification of faults and attacks
by analyzing the two rounds detection results of RDAMS operation. Before introducing
the diagnosis process, it is important to list the rational assumptions in the architecture.

1. Each potential fault and HT1 in memory only affects one part in each cell (32 bit),
HT2 affects 32 parts in each cell. The case that one cell has multiple bits with faults is
not considered.

2. Fault and HTs will not appear in the same cell at the same time.
3. HTs attacks are episodic, so HT will not be triggered at the same cell in two consecu-

tive detections.

Figure 2 shows the diagnostic process of the RDAMS for both malicious attacks and
faults. For a 32 bit-wide cell, once a security threat is alerted, the results of this and the next
round of detection are collected to provide a diagnosis of the kind of security threat. The
following is a description of the diagnostic process for each type of memory security threat.

Detectable Faults: In the first round of detection, If the result equals the standard
result of the ten types of memory faults introduced in Table 1, we can determine that the
memory threat existing in the cell is a memory fault, and identify the type of the fault.
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HT2: In the first round of detection, if more than a single bit error is found in the cell,
we can infer that the threat is the attack-HT2 due to assumption 1.

Undetectable Faults: Because memory faults are not episodic, there will be a 1-bit
error in the result of the first round of detection; in the second round, there will also be a
1-bit error in the same position, but March C- algorithm cannot identify the fault because
the result does not equal the standard result listed in Table 3. So, we can only determine
that the memory threat existing in the cell is a memory fault.

HT1: For HT1, if in the first round of detection, there is a 1-bit error in the cell, while
in the second round of detection, the error does not happen in the cell due to assumption 3.
We can determine that the memory threat existing in the cell is HT1.
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If in the first round of detection, we detect a memory threat in the cell due to HT1,
and in the second round, a memory fault just happens in the same cell at this moment, the
process will incorrectly conclude that there is a threat to memory fault. In other words,
there will be a misjudgment under this situation. However, the runtime memory fault
should occur just at the time gap between the first and second detection procedures. The
probability of this scenario occurring is too low to be considered in our architecture.

3.3. Detection Architecture

The RDAMS designs a generic control flow that enables the detection of both memory
faults and HTs attacks. Figure 3 shows an overall figure of the RDAMS in an embedded
SoC. The detection architecture mainly contains two parts: SDC (Security Detection Core)
and MEM_wrapper.
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The functions of SDC and MEM_wrapper are as follows:
SDC: The Core that secures the SoC controls and enforces the detection of memory.

The SDC can update the detection mode (in Section 4) using DPR technology through
the Detection Mode Configuration Port based on the Off-chip Trigger Signal input by the
user to perform different modes of detection. Memory State Sense collects the status of
Memory and reminds SDC to initiate detection when Memory is found to be idle. Memory
Detection Module (MDM) that is implemented by an FSM executes the detection based on
the March C- algorithm. It initiates detection after receiving the Detect Enable signal and
writes the detection result to Error Log Reg after detection is finished.

MEM_wrapper: Memory is wrapped by MEM_wrapper. MEM_wrapper is controlled
by SDC and assists SDC to complete the detection. MEM_wrapper collects the status of
Memory and reports it to SDC. Before SDC tests Memory, MEM_wrapper assists SDC to
back up the detected memory cell; after SDC tests Memory, MEM_wrapper assists SDC
to writes the backed-up data back to cell. During testing, MEM_wrapper receives control
signals from SDC, detection signals from SDC, and access signals from bus, and sends
detection signals or access signals to memory according to whether there is an access
collision (introduced in Section 4). If no detection is running, MEM_wrapper will input the
memory access signal from the system bus into the memory.

Figure 4 shows the workflow of the RDAMS performing memory detection. When the
user inputs an off-chip trigger signal, the RDAMS configures the corresponding detection
mode. Then, when the MEM_wrapper finds that the memory is idle, it will report it to SDC;
the SDC starts to back up the detected cell and initiate testing. After testing is finished, the
backed-up data are written back to memory cells. After one round of detection, the timer
starts timing and initiates the next round of detection when a user-defined time threshold
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is reached, such as 10 min or 30 min or others. In this period, if an off-chip trigger signal is
activated, the RDAMS will update the detection mode and execute another detection.
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3.3.1. MDM

MDM is an FSM-based firmware-upgradable module that realizes memory detection
of various mode. Figure 5 shows the FSM of MDM, the FSM jumps to different detection
phase according to memory state. When the FSM completes one circle, one round of
detection is realized. These states mean:

(1) IDLE: Waiting for enabling detection;
(2) COPY_MEM & WRITE_REG: Copy the memory cells under detection into MEM_wrapper’s

back up registers;
(3) UP_W0→DOWN_R0: From UP_W0 to DOWN_R0, Executing the March C- algorithm

to test memory;
(4) RECOPY_REG &WRITE_MEM: Write the value of MEM_wrapper’s register back to

the detected cell.
(5) ERROR_LOG: Write the detection results to Error Log Reg.
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3.3.2. MEM_Wrapper

MEM_wrapper is controlled by SDC and assists SDC to detect memory. It contains
two parts, Wrapper Controller and Signal Selector as shown in Figure 6. The Wrapper
Controller consists of a state machine for outputting Select Signal based on the SDC control
signal and its own state, and registers set (Addr_Reg) storing the address of the detected
cells. The Signal Selector consists of a select circuit for selecting the bus access signal or
SDC detect signal to memory or Data_Reg based on the Select Signal, and registers set
(Data_Reg) storing the data of the detected cells.
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4. Optimization of RDAMS
4.1. Processing of Access Collision

During detection, the detection signal will occupy the channel for accessing memory,
causing the system signal to temporarily fail to access the memory, thereby delaying the
memory access speed of the system and reducing the efficiency and performance of the
SoC. In order to reduce the impact of detection on SoC performance and maintain the
original efficiency of system, the RDAMS designs a processing of access collision. An
access collision is defined as the CPU (or other masters) trying to access an unbacked up
memory cell under testing phase, which causes a confliction between detect operation and
bus requirement. When there is an access collision, RDAMS can stop detection in a short
time and switch to response the access request from the bus.

Because of the processing of access collision, RDAMS will not degrade SoC perfor-
mance too much. The Algorithm 1 shows the detail of processing of access collision during
all phases of detection. The detection contains four phases: Backup, Testing, Write Back,
Error Log.

In the Backup phase, SDC writes the address of the detected cell into Addr_Reg of
MEM_wrapper, and writes the data of detected cell into Data_Reg of MEM_wrapper. If
bus has access to memory, the access is deferred to the Testing phase.

In the Testing phase, SDC sends a test signal to memory based on the March C-
algorithm. If bus has access to memory, the MEM_wrapper will determine whether the
bus access address is equal to the address saved in Addr_Reg. If it is equal, there will
not be an access collision, MEM_wrapper will let the bus access Data_Reg, and the test
signal is sent to memory at the same time. If it is not equal, there will be an access collision,
MEM_wrapper will inform the SDC and SDC will stop the testing, then MEM_wrapper
lets the bus access memory; until the bus access is finished, SDC continues the testing.
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Algorithm 1. Processing of Access Collision.

1:Backup phase.
2: if bus access memory then
3: The access is processed in testing phase. end if
4: Testing phase.
5: if bus accessmemory then
6: if axi_addr_i = Addr_Reg[i] then
7: Bus access Data_Reg[i] and testing continues.
8: else
9: Record testing status, testing pause and bus access memory.
10: if bus accessing is over then
11: Testing continues. end if
12: end if
13: else
14: testing continues.
15: end if
16: Write Back phase.
17: if bus access memory then
18: The access is processed in Error log phase end if
19: Error Log phase.
20: Log detection result and process bus access.

In the Write Back phase, SDC writes the data saved in Data_Reg back to the corre-
sponding cell. The proposed approach backs up and writes back the data of the targeted
cell before and after the Testing phase, respectively, which ensures the correctness and
availability of the data in the memory after the Testing phase is finished. If the bus has
access to memory, the access is deferred to the Error Log phase.

In the Error Log phase, the detection result is written to Error Log Reg. The testing is
finished, so bus access signal is sent to memory.

The timeline of access collision processing in every phase is depicted in Figure 7. TCA
is the time of bus accessing; TS is the time when SDC stores the detection state before bus
accesses memory; TE is the time when SDC restarts the detecting. In the entire timeline,
RDAMS provides five bus accessing modes. including:
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Access 1: Before the detection starts (IDLE), the bus access Access 1 is processed
without delay, and the processing time of Access 1 is TCA.

Access 2: In the Backup phase, if the bus access Access 2 arrives, it will be processed
until the Testing phase. Since Access 2 occurs an access collision (the access address of
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Access 2 is not equal to the address in Addr_Reg), the detection needs to be suspended;
once the bus accessing is finished, the detection continues; the processing time of Access 2
is TS + TCA + TE.

Access 3: The bus access Access 3 arrives in the Testing phase. Since Access 3 does not
occur an access collision, the processing time of Access 3 is TCA, which can be executed in
parallel with the detection.

Access 4: The bus access Access 4 arrives in the Testing phase. Since Access 4 incurs
an access collision, the detection needs to be suspended; once the bus accessing is finished,
the detection continues; the processing time of Access 2 is TS + TCA + TE.

Access 5: In the Write Back phase, if a bus access Access 5 arrives it will be processed
until the Error Log phase. There is no need to consider whether there is an access collision,
because all data have been written back to memory cell in the Write back phase. The
processing time of Access 5 is TCA.

Compared with the processing bus access after detection is completed, the processing
of access collision has a low influence towards the performance of system. It can be seen
from Figure 7 that the performance degradation occurs due to two reasons: (1) Bus accesses
the memory in the Backup or Write back phase, then the access is processed until the
Testing phase or Error Log phase; (2) Access collision occurs in the Testing phase, then the
access is processed until the detection is suspended. In other situations, detection does
not degrade the performance. Therefore, RDAMS can maintain the original efficiency of
system to some extent.

4.2. Multi-Granularity Detection Mode
4.2.1. The Meaning of Multi-Granularity Detection

In order to make the detection architecture scalable for memories in different depths
and further reduce the cost of power and area, we propose a block-based sampling ap-
proach. Firstly, memory cells are grouped as fixed size blocks. In each group, four modes
are available with different sampling rates (or called detection granularity) for the tester
to select and replace in runtime based on current constraints or detection requirements.
Figure 8 shows an example of the mentioned approach, in which one group has eight cells,
and the four modes are defined as:

• Mode 1: Randomly select one cell to detect in each group. If no security threat is
reported in result, all eight cells are considered secure.

• Mode 2: Randomly select two cells to detect in each group. If no security threat is
reported in result, all eight cells are considered secure.

• Mode 3: Randomly select four cells to detect in each group. If no security threat is
reported in result, all eight cells are considered secure.

• Mode 4: All eight cells are detected in each group. If no security threat is reported in
result, all eight cells are considered secure.

It should be noted that although the example uses eight as the base number for each
mode, the number is modifiable. We suggest using power-of-2 as the base number.
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4.2.2. Cost Analysis for Multi-Granularity Detection

Different detection modes have different impacts on the cost of the architecture. We ana-
lyze these impacts from a qualitative or quantitative perspective on three aspects—resource
cost, detection time cost, detection coverage.

Resource cost: Based on the presented approach, the more detected cells are picked
out, the more register should be used to back up, so from mode 1 to mode 4, the resource
cost near-linearly increases.

Detection time cost: The detection time in this section does not include the pause time
when the architecture is processing an access collision. It is the sum of time to execute a
round of detection. The time (T) consists of three parts—Tbw represents the time of backing
up, writing back and logging results, Tm represents the time of executing testing and Ttr
represents the time of changing state in the SDC.

T = Tbw + Tm + Ttr (1)

The detection time T of mode 1, mode 2, mode 3 and mode 4 are set as T1, T2, T3 and
T4, respectively. The time for one cell to be backed up, written back, and logged is tc, and
the time for one cell to be tested by algorithm is tm, and the switching time of mode 1,
mode 2, mode 3 and mode 4 are Ttr1, Ttr2, Ttr3 and Ttr4, respectively.

T1 = tc + tm + Ttr1 (2)

T2 = 2(tc + tm) + Ttr2 (3)

T3 = 4(tc + tm) + Ttr3 (4)

T4 = 8(tc + tm) + Ttr4 (5)

When Ttr is small, T1, T2, T3 and T4 are roughly linear. As the number of detected cells
in a group increases, the detection time T increases.

Detection coverage: The detection coverage C is the ratio of the detected cells to all
memory cells. The value is related to the number of detected cells in one group. The
detection coverage C of mode 1, mode 2, mode 3 and mode 4 are 0.125, 0.25, 0.5 and 1. It
should be noted that since mode 1 only chooses one cell to detect in one group, it cannot
detect coupling faults.

5. Results and Discussion

To validate the RDAMS, we design the fault and attack module by Verilog HDL, and
implant them in the architecture. The RDAMS with fault and attack modules has been
functionally verified by Modelsim SE-64 10.4. We discuss the impact of RDAMS to the SoC
performance based on synthesis and implementation results from vivado 2019. The overall
RDAMS along with the fault and attack models are implemented on an experimental
test-bed environment which contains a field programmable gate array (FPGA, XC7Z020-
CLG484) [34], static random access memory (SRAM) and various interfaces.

5.1. Fault Detection Results

The detected memory depth is 36 and the width is 32 bit. The address space is
32′H40000000–32′H4000008c. Table 4 list the address and the position of fault model
implanted in the memory.

Figure 9 shows the detection result by Modelsim SE-64 10.4. The “STCC” means the
fault may be SAF0, TF 0→ 1, CFid (↑, 0), or CFid (↓, 0). The “CFinD” means the fault is
CFin (↓,l). The “CFidD1” means the fault is CFid (↓, 1). According to the result and the
diagnosis process proposed above, the architecture can correctly identify the type of faults
in Table 4. This indicates the RDAMS can accurately detect and identify memory faults
listed in Table 1.
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Table 4. Fault model implanted in memory.

Fault Model Address Depth

SAF0 32′H40000004 1
SAF1 32′H40000010 4

TF 0→ 1 32′H40000028 10
TF 1→ 0 32′H40000034 13
CFin (↓,l) 32′H40000050 20
CFid (↓,1) 32′H40000058 22
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5.2. Attack Detection Results

According to the assumption 3 in Section 3.2, the memory attacks (HT1 and HT2) will
not be triggered at the same cell in two consecutive detections. Figure 10 shows the two
rounds detection result of HT1. In the first round, the security threats occurred at 4 and 22;
in the second round, the security threats occurred at 14 and 20. The cells that had security
threats in the first round do not have security threats in the second round, according to the
diagnosis process and detection range, we can determine that the hardware Trojan is HT1.
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Figure 10. Detection result for HT1.

Similar to HT1, Figure 11 shows the two rounds detection result of HT2. According to
the diagnosis process, we can determine that the Hardware Trojan is HT2 just by the result
of the first-round detection.
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5.3. Verification on FPGA

We implanted memory faults and HT attacks into the RDAMS, respectively, and used
Vivado SDK to sending write and read signals to the memory in order to verify whether
the faults and HT attacks acted as designed. Figure 12 shows that the RDAMS reads and
writes to the memory implanted with SAF0 and SAF1.

Information 2021, 12, x FOR PEER REVIEW 14 of 18 
 

 

 

Figure 10. Detection result for HT1. 

Similar to HT1, Figure 11 shows the two rounds detection result of HT2. According 

to the diagnosis process, we can determine that the Hardware Trojan is HT2 just by the 

result of the first-round detection. 

 

Figure 11. Detection result for HT2. 

5.3. Verification on FPGA 

We implanted memory faults and HT attacks into the RDAMS, respectively, and 

used Vivado SDK to sending write and read signals to the memory in order to verify 

whether the faults and HT attacks acted as designed. Figure 12 shows that the RDAMS 

reads and writes to the memory implanted with SAF0 and SAF1. 

 

Figure 12. Read result of RDAMS implanted with stuck at fault (SAF)0 and SAF1. 

In Figure 12, the memory cell whose address is 32′H40000004 is implanted with SAF0. 

After writing 32’Hffffffff to the memory cell, the data read out are 32’Hfffffffe. The 

memory cell whose address is 32′H40000010 is implanted with SAF1. After writing 

32’H00000000 to the memory cell, the data read out are 32’H00000001. 

Figure 12. Read result of RDAMS implanted with stuck at fault (SAF)0 and SAF1.

In Figure 12, the memory cell whose address is 32′H40000004 is implanted with SAF0.
After writing 32’Hffffffff to the memory cell, the data read out are 32’Hfffffffe. The memory
cell whose address is 32′H40000010 is implanted with SAF1. After writing 32’H00000000 to
the memory cell, the data read out are 32’H00000001.

Figure 13 is a picture of the RDAMS implanted with SAF0 and SAF1 performing
detection. There are two LEDs on the board. The bottom one indicates that the detection
has been completed, and the top one indicates that listed security threats have been detected.
We performed the similar tests with the ten types of faults in Table 1, and attacks of HT1
and HT2. The results show that RDAMS can correctly detect faults and HTs attack models.
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Figure 13. RDAMS performing detection.

5.4. Verification of Access Collision Processing

Figure 14 shows the Processing of access collision. The red signal is the SDC detect
signal; the purple signal is the bus access signal, and the green signal is input to memory.
During the memory testing, the CPU wants to write 32′h20202020 to the eighth cell. At
the same time, the SDC detection signal wants to read the second cell. Because RDAMS
prioritizes the execution of bus accesses, the memory testing is suspended. When the bus
access is finished, the testing is turned on and RDAMS lets SDC read the second cell.
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Table 5 shows the delay time of processing bus access in the testing phase. In testing,
if there is no access collision, the bus access can be processed timely; if there is an access
collision and the request is a write operation, the request can be processed without latency,
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but RDAMS needs two clocks to turn on testing after the request is processed completely;
if the request is a read operation, the request will be processed after one clock, and RDAMS
needs two clocks to turn on testing after the request is processed completely.

Table 5. The delay time of processing bus access in testing phase.

Collision (Yes/No) Request(W/R) TS (/clk:100 MHz) TE (/clk:100 MHz)

Yes
W 0 2
R 1 2

According to the analysis in Section 4.1 and the experimental results listed in Table 5,
we can learn that the architecture performance is related to the number of cells detected
in a group. If there are fewer detected cells in a time, there will be more collisions in the
testing phase; if we increase the number of detected cells, the probability of collision will
be reduced, but the backup and write back phase time will be longer, and it may lead to
more bus accessing delay in the testing phase. Moreover, the areas and resource cost will
also rise with the increase in detected cells. Therefore, the number of detected cells should
have an optimal solution n1, which has the least impact on the performance.

5.5. Cost of Detection Architecture

The resource cost and the time to perform a round of detection on the memory with a
depth of 36 for four modes are shown in Table 6. From mode 1 to mode 4, the cost increases.
The results prove the correctness of the prediction of resource cost in Section 4.2.2. In the
absence of access collisions, from mode 1 to mode 4, the detection time increases, which
basically conforms to the mathematical model constructed in Section 4.2.2.

Table 6. The time and resource cost for four detection mode.

Mode
Resource Cost Time (/clk: 100

MHz)Slices LUT FF

Mode 1 147 448 164 243
Mode 2 174 532 208 453
Mode 3 222 624 292 869
Mode 4 281 776 440 1545

6. Conclusions

In this paper, we propose an architecture, RDAMS, to efficiently detect runtime threats
in embedded memory circuits by:

(i). The RDAMS can correctly detect and identify all the ten types of memory faults
listed in Table 1 and two types of HTs triggered at runtime—HT1 (for functional
integrity), HT2 (for availability). The diagnosis process ensures that the architecture
can detect faults after one round of detection, and diagnose HTs attacks after two
rounds of detection.

(ii). The RDAMS is designed with a collision handling mechanism which enables a lower
latency response to bus access requests during detection (For read requests: TS = 1 clock,
TE = 2 clock; for write requests: TS = 0 clock, TE = 2 clock).

(iii). The block-based sampling approach and DPR-based implementation make the archi-
tecture scalable for different memories and online reconfigurable for detection modes,
which occupies fewer resources.

The future work will focus on two aspects. One is to optimize the memory detection
algorithm to cover more faults and attack models; the other is to design an automatic tool
for RDAMS, so that users can conveniently implant it in their own SoC in IoT devices and
configure suitable detection content.
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