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Abstract: CNN is particularly effective in extracting spatial features. However, the single-layer
classifier constructed by activation function in CNN is easily interfered by image noise, resulting
in reduced classification accuracy. To solve the problem, the advanced ensemble model XGBoost is
used to overcome the deficiency of a single classifier to classify image features. To further distinguish
the extracted image features, a CNN-XGBoost image classification model optimized by APSO is
proposed, where APSO optimizes the hyper-parameters on the overall architecture to promote the
fusion of the two-stage model. The model is mainly composed of two parts: feature extractor CNN,
which is used to automatically extract spatial features from images; feature classifier XGBoost is
applied to classify features extracted after convolution. In the process of parameter optimization,
to overcome the shortcoming that traditional PSO algorithm easily falls into a local optimal, the
improved APSO guide the particles to search for optimization in space by two different strategies,
which improves the diversity of particle population and prevents the algorithm from becoming
trapped in local optima. The results on the image set show that the proposed model gets better
results in image classification. Moreover, the APSO-XGBoost model performs well on the credit data,
which indicates that the model has a good ability of credit scoring.

Keywords: figure classification; binary classification; hyper-parameters optimization; credit scoring

1. Introduction

Image classification which belongs to the main research content of image processing
has a broad application prospect in many sciences, such as object recognition, content
understanding and image matching. Support vector machine (SVM) [1], k-nearest neighbor
(KNN) [2] and decision tree (DT) [3] are all typical machine learning methods applied in
this field. These studies prove the effectiveness and reliability of machine learning applied
in image classification. In essence, process of the image classification is regarded abstractly
as the composition of feature extraction and feature classification: First, the model extracts
significant features and helps the latter classifier distinguish features better. Second, the
classifier accepts extracted features and identifies them effectively. Feature extraction is an
important part of image classification system. In image classification task, extracted feature
quality directly affects performance of classification. The previous classifications did not
fully extract information from image feature until neural network (NN) was applied to im-
age classification, and image classification quickly became an important research direction
in this field. Theoretically, NN can approximate any complex function and effectively solve
the problem of image feature extraction. Except for image classification, neural networks
have made continuous breakthroughs in target detection [4,5], face recognition [6,7] and
other fields. Among them, CNN is an efficient neural network learning model, whose
convolution kernel in the convolutional layer plays an important role in the extraction of
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features. The features of images are extracted automatically by convolution, and hierar-
chical structure of CNN can learn high-quality features at each layer. Although CNN is
considered as the one of most powerful and effective feature extraction mechanism, the tra-
ditional classifier lay of CNN cannot fully grasp the information of feature extracted, which
as single classifier cannot perform well in the face of diverse and complex data features. On
the basis of the “No Free Lunch” theorem [8], for different structures and characteristics of
changeable data, the prediction accuracy is greatly limited by a single classifier. Ensemble
learning combines multiple classifiers that process different hypotheses to construct a
better hypothesis and obtain excellent predictions. Dietterich [9] explained three basic
reasons for the success of ensemble learning from three mathematical perspective: statistics,
calculation and representativeness. In addition, the bias variance decomposition analyzes
the effectiveness of ensemble learning [10]. Kearns and Valiant [11] showed that weak
classifiers can generate high precision estimates by integrating, as long as data is sufficient.
These studies proved that ensemble learning has a better learning ability than a single
classifier. Furthermore, Chen [12] proposed an advanced gradient boosting algorithm, the
extreme gradient boosting tree (XGBoost), that has obtained good results in Kaggle data
competitions. XGBoost has been widely used in image classification [7,13] and has good
performance. Ren et al. [14] proposed an image classification method based on CNN and
XGBoost. In this model, CNN is used to obtain features from the input, and XGBoost as
a recognizer produces results to provide more accurate output. The experimental results
on MNIST and CIFAR-10 show that the performance of this method is better than other
methods, which verifies the effectiveness of the combination of CNN and XGBoost in
image classification.

Good performance of models depends on the proper hyper-parameter settings. The
hyper-parameters directly affect the structure of models and the performance of the model,
so it is particularly important to tune the hyper-parameters appropriately. Generally, mod-
els rely on artificial experience tuning, which consumes a great deal of time and computing
resources. Hyper-parameter optimization has been used to tune hyper-parameters to
overcome the shortage of manual tuning. Most optimization of hyper-parameters performs
in a continuous search space. Particle swarm optimization (PSO), originally proposed
by Kennedy and Eberhart [15], is a computational intelligence technique. The original
PSO algorithm was mainly designed for the optimization of a continuous space owing
to the quantities describing the particle state and its motion laws being continuous real
numbers. Song and Rama [16] proposed a XGBoost model combining the improved PSO
algorithm to determine the relationship between tensile strength and plasticity and their
influencing factors. The experimental results prove the effectiveness and reliability of the
method. Le et al. [17] proposed a building thermal load forecasting and control model
PSO-XGBoost. PSO optimizes the XGBoost model as predictor. The experimental results
show that the proposed model is the most robust method for comparing the average abso-
lute percentage error (MAPE), variance analysis (VAF) and other indicators of other models
(XGBoost, SVM, RFE, GP and CART) on the survey data of buildings. These studies prove
the effectiveness of PSO to improve the performance of XGBoost learning algorithm. There-
fore, PSO is more suitable for the hyper-parameter optimization. PSO finds the optimal
solution through iteration, and it has a fast convergence speed. However, its disadvantage
is that the states of the particles fall into a local optimum easily, thereby causing premature
convergence. In response to this problem, we purpose the adaptive PSO (APSO). It uses the
idea of clustering to adaptively divide the particle swarm into different populations and
guide the populations by applying different update strategies. This enhances the diversity
of particles and helps particles jump out of a local optimum. APSO is more suitable for the
parameter optimization, and it improves the model prediction accuracy.

Based on the above, we propose a CNN-XGBoost based on APSO optimization for
image classification. CNN is used as a feature extractor to automatically obtain features
from the input, and the feature recognizer XGBoost receives the image features and then
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produces results; the parameter optimizer APSO is applied to optimize the structure of
model to match feature, so the model gets accurate results.

The contributions of this paper are as follows:

Firstly, a novel two-stage fusion image classification CNN-XGBoost based on APSO is
proposed. It both ensures CNN can extract image features fully and makes use of XGBoost
to distinguish features effectively, so as to ensure high accuracy of image classification as
a whole.

Secondly, bidirectional optimization structure is adopted, both CNN and XGBoost are
optimized by APSO at the same time. For one thing, optimizing the CNN to extract deep
features, so that the extracted features are more suitable for the decision trees XGBoost,
and for another, optimizing XGBoost makes the structure of the model match the extracted
features, so as to better understand the image features. Bidirectional optimization main-
tains the characteristics of the two parts themselves meanwhile allowing the two parts to
combine more closely together, making the features of the image fully extracted to be used
for classification.

Thirdly, the PSO algorithm is improved based on adaptive subgroup division. Two
different learning strategies are adopted to update different types of particles, enhance
the diversity of particle population and avoid the algorithm falling into local optimal
which improves adaptive processing capability of model for image features and increases
accuracy of classification.

The rest of the paper is organized as follows: Section 1 explains the related work on
the methods used. Section 2 introduces the principle of the CNN-XGBoost based on APSO
model. Section 3 describes the experimental setup. Section 4 reports the experimental
analysis results. Section 5 describes supplementary experiment in detail. Finally, Section 6
concludes the paper and discusses future work.

2. Materials and Methods

In this section, we introduce the related content and principles about CNN, XGBoost
and parameter optimization.

2.1. CNN

CNN was first proposed by Professor Yann LeCun et al. used for recognition and
classification of handwriting digital images [18]. The two most important processes of CNN
are convolution and down-sampling. Convolution is to extract features from data, while
sampling is to reduce dimension of data. Compared with other neural networks, CNN has
the characteristics of Local Connectivity, Weight Sharing and Pooling. Local Connectivity
is inspired by characteristic of image space, which is the local pixel spatial connection
that is relatively close while the pixel correlation far away is weak. Local Connectivity
is achieved by convolution operations. Each neural unit processes only one part of the
image and then summarizes the results of each part. Local Connectivity is equivalent to
constructing a number of spatial localized filters which can obtain some salient features of
the input. Computation and training difficulty of model are reduced through convolution.
Weight Sharing is based on the reasonable assumption: “if a batch feature is valid for
computation at one space location, it should be valid for computation at other locations”.
Because the picture has its own inherent characteristics, some statistical characteristics
should be roughly the same as others. It is made by each convolution filter (convolution
kernel) sharing a matrix with the same weight. Weight sharing reduces the number of
parameters and reduces the difficulty of calculation. The Pooling is the process of feature
mapping. The input image is divided into a set of non-overlapping rectangles, and output
is the maximum value based on these subregions by pooling. The pooling layer operates
independently on each depth slice of the input and adjusts their spatial size. It reduces
the size of the representation space gradually to reduce the number of parameters, thus
reducing the memory footprint, the computation and controlling overfitting. A typical
CNN consists of alternating convolution and sub-sampling layers and then turns into fully
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connected layers when approaching the last output layer. It usually adjusts all the filter
kernels by back-propagation algorithm [19], which is based on stochastic gradient descent
algorithm, to reduce the gap between the network output and the training labels. Overall,
the convolution layer obtains the local features by connecting with local receptive fields.
The pooling layer is a mapping feature layer which is used for pooling operation and
completing the secondary extraction calculations. Each convolution layer is followed by a
pooling layer, and the special twice feature extraction structure makes CNN have strong
distortion tolerance on the input images.

2.2. XGBoost

XGBoost, developed by Chen and Guestrin [20], is a powerful methodology for re-
gression as well as classification. It is applied as a group of winning programs from Kaggle
machine learning competitions. XGBoost, based on the gradient boosting framework,
constantly adds new decision trees to fit a value with residual multiple iterations and
improves the efficiency and performance of learners. Unlike gradient boosting, proposed
by Friedman [21], XGBoost uses a Taylor expansion to approximate the loss function, and
the model has a better tradeoff bias and variance, usually using fewer decision trees to
obtain a higher accuracy. Details of XGBoost are described below.

Suppose a given sample set has n samples and m features; it can be expressed as
D = {(x;,yi) }(|D|=nx; € R™y; € R), where x is the eigenvalue, and y is the true value.
The algorithm sums the results of K trees as the final predicted value, which is expressed as

K
vi=)Y_ fi(xi), fx € F 1
k=1
F is the set of decision trees, as follows:

F= {f(x) :wq(x)}(q:Rm — T,weRT)

where f(x) is one of the trees, and wy ) is the weight of the leaf nodes. T is the number
of leaf nodes, and g represents the structure of each tree, which maps the sample to the
corresponding leaf node. Therefore, the predicted value of XGBoost is the sum of the value
of the leaf nodes of each tree. The goal of the model is to learn these k trees, so we minimize
the following objective function:

n K

LY =Y Iy, y) + Y Q(f) 2)

i=1 k=1

[ is the loss of the difference between the estimated values ?i and the true value y;; common
loss functions include the logarithmic loss function, square loss function, and exponential
loss function. () regularization is used to set the penalty of the decision tree, which can
prevent overfitting. () is expressed as follows:

O(f) = 1T+ A ] ©)

In the regular term, v is a hyper-parameter that controls the complexity of the model,
and T is the number of leaf nodes. A is the penalty coefficient for the leaf weight w, which
is usually constant. ¢ and A determine the complexity of the model and are usually given
empirically. During training, a new tree is added to fit the residuals of the previous round.
Therefore, when the model has ¢ trees, it is expressed as follows:

~(t ~(t—1
yf) = y§ )+fk(xi) 4)

Substituting (4) into the objective function (2) yields the function
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n

= ; ! (yi, ?EH) +ft(xi)) +Q(fx) (5)

Then, XGBoost carries out the Taylor expansion of the objective function, takes the
first three terms, removes the high-order small infinitesimal terms, and finally transforms
the objective function into

L (

~ Z [Z(yi//]}i

i=1

UV b i) + L f2 ()] + Q) ®)

where g; is the first derivative, and /; is the second derivative of loss function respectively.

~t—1
The residual between the prediction score y; ~ and y; does not affect the optimization of
the objective function, so it is removed.

n

=Y [gifi(x) + hft< D]+ Q(fi) )

i=1

The iteration of the tree model is transformed into the iteration of the leaf nodes, and
I J;

the calculated optimal leaf node score is w? H +1- Where G; is Z gjand H; is Z h;,
i=

i~
by substituting the optimal value into the objective function, the flnal objective funct10n
is obtained:

b=ty A ®
Y

Overall, XGBoost adds regularization to the standard function as a result of the
reduced model complexity. The first and second derivatives are applied to fit the residual
error. This method also supports column sampling in both reducing overfitting and
reducing computation. Therefore, more improvements lead to more hyper-parameters
than the gradient boosting decision tree (GBDT). However, it is difficult to reasonably
tune the hyper-parameters. A reasonable setting requires not only the prior knowledge
of researchers and their experience in parameter tuning but also a great deal of time.
Hyper-parameter optimization is an effective solution to this problem.

2.3. Parameter Optimization

The parameter is one of the most significant concepts in machine learning, and the
training model essentially finds the appropriate parameters to achieve better results. The
parameters are divided into model parameters and hyper-parameters. The model parame-
ters are obtained by learning the distribution of training data, without the need for human
experience. The definition of a hyper-parameter is that it is a higher-level concept about the
model, such as its complexity or ability to learn. Having a set of good hyper-parameters
improves the performance of learning models, so tuning is important for hyper-parameters.
However, hyper-parameter tuning is subjective and relies on empirical judgement and trial-
and-error approaches [22]. The hyper-parameter optimization algorithm overcomes the
dependence of manual search on experience and trial and error. Common hyper-parameter
optimization algorithms include grid search, random search and Bayesian optimization.
Below is a brief introduction to them.

Grid search (GS): GS is, within a specified range for the hyper-parameters, a method
that uses one step at a time to adjust the hyper-parameters through training and is found
to be best with all validation methods. However, a GS cannot widely explore a hyper-
parameter space because by increasing the iterations of the algorithm to give more oppor-
tunities for the number of hyper-parameters, the computational complexity of GS grows
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exponentially. Therefore, GS is not suitable for the optimization of models with many
dimensions [23].

Random search (RS): RS samples a certain number of sets from a specified distribution
by randomly sampling within a search range. The theoretical basis is that if the set of
random sample points is large enough, the global optimal value or its approximation will
be found.

Bayesian optimization [24] in tuning hyper-parameters was intended to optimize the
objective function of sample points by being added to the objective function to update the
posterior distribution; the calculation process of this algorithm is Gaussian and considers
the information of the last hyper-parameter, then adjusts the hyper-parameter to improve
the joint posterior distribution slowly. Bayesian hyper-parameter optimization assumes
that there is a real distribution, and the noise of the hyper-parameter is mapped to a
specific target function. Xia et al. [25] proposed the tree-structured Parzen estimator (TPE),
which is a Bayesian optimization method of tuning the hyper-parameters of XGBoost;
the results show that the model outperforms other models according to the evaluation
measures. Guo et al. [26] used the improved gradient boosting machine (GBM) combined
with advanced feature selection and Bayesian hyper-parameter optimization to establish
the fitness evaluation model. The experimental results show that the model has higher
evaluation accuracy than other models. Putatunda et al. [27] used Bayesian optimization
tools Hyperopt, RS and GS to adjust the hyperparameters of XGBoost algorithm on six real
data sets. The performance of these three hyper-parameter optimization techniques was
compared in the experiment. The results show that Bayesian optimization performs better
in precision and time than GS and RS. However, Bayesian optimization is established
on the basis of the distribution of the independent prior and the idealized hypothesis
that properties are independent of each other. This condition is difficult to attain in
practical applications; the number of properties may be large, or the correlation between
the properties may be high, thereby causing performance degradation.

2.4. PSO

PSO simulates a bird in a flock by designing a massless particle that has only two
properties: the speed, which represents how fast it moves, and position, which guides the
direction in which it moves. Each particle determines the optimal solution in the search
space of an individual and stores it as the current individual extremum. According to
the current individual extremum of all the particles, to obtain the current global optimal
solution, the whole particle swarm adjusts its speed and position. The process of PSO is
as follows: First, initialize the particle swarm; then, evaluate the particles, calculate the
adaptive value, search for individual extrema and find the global optimal solution. Finally,
modify the speed and position of the particles.

The standard PSO algorithm is as follows: Suppose that in a d-dimensional search
space, there is a population of m particles represented as {x1, X2, ..., X }, where the par-
ticles are expressed as x; = (x}, xiz,. ., x? ). At a set time ¢, the characteristic information
of x; is the position X; = [xil, xl.z,. .., xﬂ , speed Vit = [vl.l, vlz, .., v?], personal best position
pi = [p}, p?,...,pf], and global optimal position py = [Py P3r-- pg] Then, the speed and
position information of the particle can be updated at time ¢ + 1 by the following formula:

Uf-H

x§+1

= wo; +cr' (pi — xj) + card (pg — i)

t+1
i

©)

=xl+v

w is the inertia weight that maintains an effective balance between global exploration and
local exploration, and ¢ and c; are the learning factors (random numbers in a uniform
distribution function) that adjust the step length of the direction of motion to the position
of the particle and the direction of the global best position, respectively. To avoid a
blind search by the particle, its speed and position are generally limited to [—Vmax, Vinax]
and [_Xmax/ Xmax] .
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3. CNN-XGBoost Based on Apso Model

In this section, the image classification CNN-XGBoost based on APSO is shown in
detail (see Figure 1). The model is divided into two parts: feature extractor, feature classifier.
First, feature extractor CNN extracts features from the image data set. Second, XGBoost
takes the features to train and classify. Then, according to the fitness value obtained from
the model, the improved optimizer APSO is used to optimize the overall framework of
CNN and XGBoost. Finally, when termination conditions are met, the optimal value of the
hyper-parameter obtained by APSO is used to establish the image classification model. The
process is described below: Section 2.1 describes the image feature extractor. Section 2.2
states the feature classifier XGBoost. Section 2.3 introduces the hyper-parameter optimizer
APSO. Finally, the overall framework of the model is summarized.

- ™

APSO

7‘—;
SN

I’ Learning > Dropout A
rate S N rate S

- " Maximum
“.__deltadepth -

I/'“‘JI'EPIa)(imun;-'-'"“\I
“_ treedepth

/ Min;um T \
“.__childweight -
SRR

I

@ > Fitness value

—> Output

_________________ - /

Figure 1. CNN-XGBoost based on APSO image classification model.

3.1. Feature Extractor

Since CNN once again led the development of artificial intelligence, the AlexNet
proposed by Krizhevsk et al. [28] has greatly improved the accuracy of image recognition.
While the performance of these algorithms is improved, the calculation time is longer and
longer with the increase of the model depth. This paper aims to explore the better combina-
tion between feature extraction ability of neural network and classification of decision tree;
we design the lightweight model. Considering the model calculation, the specific structure
of CNN for image classification consists of 7 layers: 1 input layer, 3 convolution layers,
2 pooling layers, 1 full connection layer. Configuration of feature extractor architecture is
shown (see Table 1).

Steps of feature extractor as follow:

1.  Initialize the parameters of network.

2. After convolution calculating, feature data obtained though each activation layer and
pooling layer.

3.  The feature map forms a one-dimensional vector being processed by a fully con-
nected layer.

4. Vectors initialized into a new training data set which is used for predicting by subse-
quent classifier.
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Table 1. Configuration of feature extractor architecture.

Layer Type Kernel Stride Padding  Channels

Data Input N/A N/A N/A N/A
CONV 1 Convolution 5x5 2 SAME 64
POOL 1 Average pooling 3x3 2 VALID 64
CONV 2 Convolution 3x3 2 SAME 128
CONV 3 Convolution 3x3 2 SAME 256
POOL 2 Max pooling 2x2 2 VALID 256
Mapping Fully connected 1x1 N/A N/A 128

3.2. Feature Classification

In this section, XGBoost uses BP algorithm to train the features extracted by CNN, to
obtain a tree structure suitable for feature classification.

The tree structure directly affects classification performance of XGBoost. Objective
function formula (8), also known as structure score. The value of the function represents
the quality of the tree structure. In order to minimize the value of the objective function,
one of the key tasks of tree learning is to find the best node partition. By using the score in
the instance sets of left nodes and right nodes after the split, the candidate segmentation is
evaluated. Based on the evaluation, the optimal node is found to be divided, and finally, a
tree with the optimal structure suitable for the data classification is found.

3.3. Adaptive PSO

In this section, we introduce PSO improved by adaptive learning strategies. In the
process of searching, groups are adaptively divided into subgroups according to the particle
distribution. In each subgroup, we use two different learning strategies to guide the search
directions of two different types of particles. The search process stops when a global
optimal value is found or a termination condition is met.

Relevant studies have shown that the diversity of the population is the key to avoid-
ing the premature convergence of PSO; the core guiding principle of the algorithm is
clustering [29]. According to the distribution of each particle, the fast search clustering
method [30] is adopted to perform the adaptive division of the population into several
subgroups. This method can automatically discover the data set samples’ class cluster
centre. The basic principle is that the centre of the class cluster has two basic features: The
first is that it is surrounded by points with lower local density, and the second is that it has
a greater distance from points with a higher local density. Therefore, for a population of
N particles S = {x;}} |, the two properties p; and J; are defined for each particle. p;, the
distance between the local density of the particle and a higher local density of particles, is
defined as follows:

pi =Y exp(—(—-)) (10)
j#i ¢

where dl-]- is the Euclidean distance of particles between x;, and X; and d. is the truncation
distance. The truncation distance is d. = dr.p;, where R represents the proportion and
M indicates that the matrix d;; contains M = %N (N — 1) values, where N represents the
number of particles. It can be seen that d. is the distance corresponding to the R * Mth
value of dj;. (11) gives the expression of the distance J;, representing the minimum distance
from particle 7 to other particles that have a higher p;:

6; = min (dj;) (11)
J0j>pi

For the maximum local density p of the sample, J; = maxd;;.

According to Equation (10), if the density of particle x; is the maximum, ¢; is much
larger than the distance J of its nearest particles. Therefore, the centre of the subgroup
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consists of particles that have an unusually large distance ¢ and a relatively high density as
well. In other words, the particles with larger p and J values are selected as the centre of the
cluster. According to the above idea from [30], the formula 7; = p; * J; is used to filter out
particles that may become cluster centers. We arrange the ; values in descending order,
then use the truncation distance to filter out the cluster centers from the order. Because
the v value of the top particle is more likely to increase exponentially than those of the
other particles, it is distinguished from the < value of the next particle. Referring to [30], R
is set to be between 0.1 and 0.2. Through a parameter sensitivity analysis, we found that
the value of the distribution parameter has no effect on the performance of the particle
swarm algorithm. The default value in this article is 2. The cluster centre is obtained by
dividing by the truncation distance after placing the other particles x; in subgroups where
the denser p is larger than the p of x; and the 4 is the closest to the ¢ of x;.

The particles of each subgroup are divided into ordinary particles, and local optimal
particles based on the result of the division of subgroups. Under the primary guidance of
the optimal particles, the ordinary particles exert their local search ability, and the updated
formula is given as (12).

x? = wx? + cyrandd (pbestd — x4) + corandd (cgbest? — x7) (12)
where w is the inertia weight, ¢; and ¢, are the learning factors, randﬁi and mndg are
uniformly distributed random numbers in the interval [0, 1], pbest‘ii is the best position of
particles, and cgbestf is the current best position of particle in the subgroup c. To enhance
the exchange of information between subgroups, the local optimal particles are mainly
updated by integrating the information of each subgroup. The update formula is as follows
(see (13)), where C is number of subgroups.

x;’l = wx;27 + c1mnd‘f(pbest‘f — xf) + czrandg(% Y, cgbest? — x?) (13)
c=1
Ordinary particles search for local optimality, but more importantly, they are used
as the medium for information exchange between subgroups to modify the direction of
population search and further improve the population diversity. In the same subgroup,
unlike a learning strategy that causes too many particles to be gathered locally, the learning
strategy integrates the information of the locally optimal particles from different subgroups
to obtain more information and help avoid local optima. In addition, learning too much
information may lead to the direction of the update being too fuzzy, which may counteract
the convergence of particles. Considering that the local optimal particles have the maximum
probability of finding the optimal solution in the subgroup, valuable guidance for the
optimal solution is provided by their information. Therefore, the gbestf of each subgroup
uses the average information to guide the local optimal particle update (see (13)). The
transmission of the optimized information in the subgroups can be improved by this
approach, the population diversity can be further increased, and particles can be prevented
from falling into local optima.

3.4. Training the Model

First, the hyper-parameters of CNN (including the learning rate, batch_size, dropout)
and the hyper-parameters in the XGBoost model (including the maximum tree depth,
subsample ratio, column subsample ratio, minimum child weight, maximum delta step and
gamma-delta) are the optimization targets, and the position of each particle is randomly
initialized in the hyper-parameter search space. Second, the particles are divided into
adaptive populations. This step is achieved by calculating the local density of the particles
and the distances to the particles whose local density is higher. According to the value
determined by the position of the particle, we assign the hyper-parameters of the model
and bring the verification data into the model for prediction. Finally, the loss function on
the verification data set is the fitness function of the particles. The simplified description of
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credit scoring is a two-category problem. If the labels of the positive and negative samples
of credit data are defined as +1/—1, the logistic loss function is defined as

Liogistic = log(1 +exp(—yp)) (14)

where p is the predictive value, and y represents the actual value. In this paper, because
our model labels are 0 and 1, the logistic loss is as follows:

N
Liogistic = —% ) (vilog(p:) + (1 —yi) log(1 — py)) (15)
i=1
The particles are divided into ordinary particles and optimal particles in accordance
with the fitness value. Different update strategies update the information of the correspond-
ing particles, and the algorithm checks whether the termination condition is reached; if so,
we obtain the optimized value. If not, based on the positions of the particles, the model
reclassifies the population again, calculates the fitness value, and updates the position
information of each particle until the termination condition is reached. Finally, the optimal
hyper-parameters are used to construct the model, and the training and prediction are
carried out through the data.
The algorithm steps are as follows:

1.  Divide the data sets, train the data for the training model, verify the data for prediction.
Initialize the adaptive PSO algorithm. Subgroups of the particle swarms are divided
according to Equations (10) and (11).

2. Take the logistic loss function as the fitness value, and calculate the fitness value
of each particle according to (15). Build the model with the corresponding hyper-
parameters determined by current best particle. Training and prediction of data sets,
and the fitness value is updated by the loss function given.

3.  Determine the position of the global optimal particle pbest and the local optimal
particle gbest according to the result of the population division and the fitness values
of the particles.

4. According to (12) and (13), update the positions of the ordinary particles and locally
optimal particles, respectively.

5. Judge whether to terminate. If the termination condition that iterations is met, return
the optimal value of the hyper-parameter; otherwise, return to 2.

6.  Obtain the optimal hyper-parameters to build the CNN-XGBoost model and calculate
the indexes.

4. Experimental Setup

In this section, we evaluate the performance of CNN-XGBoost model by experiment.
First, image sets are introduced. Second, we describe the structure setting parameters of
the CNN. Finally, the experimental results are analyzed.

4.1. Image Sets

In the image classification experiment, experiments were carried out on three data
sets: MNIST [31] and CIFAR-10 [32]. CIFAR-100. These three data sets are widely used and
are specifically used to study the performance of image classification methods. MNIST is
a classified dataset of handwritten numbers 0 to 9. The images in the CIFAR-10 data set
contain ten categories of natural objects. In CIFAR-10, there are significant differences in the
positions and proportions of objects within categories, as well as in the colors and textures
between categories. The CIFAR-100 data set is similar to CIFAR-10; it has 100 classes, each
containing 500 training images and 100 test images. The 100 classes in CIFAR-100 are
divided into 20 superclasses. Each image comes with a tag which is “fine” tag or “thick”
tag (superclass) (see Table 2).
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Table 2. Description of the image data set.
Data Set Size Category Training Set Test Set
MNIST 28 x 28 10 60,000 10,000
CIFAR-10 32 x 32 10 50,000 10,000
CIFAR-100 32 x 32 100 50,000 10,000

4.2. Model Setting

This section mainly describes the optimized hyperparameters in the framework model
and their optimization space (see Table 3).

Table 3. Search space set of CNN and XGBoost by APSO.

Model Hyper-Parameter Range
CNN Learning rate 0.1, 0.01, 0.001
batch size 16,32, 64,128
Dropout (0.1,0.9)
XGBoost Learning rate 0.1, 0.01, 0.001
Number of boosts (60-100)
Maximum tree depth (1,12)
Subsample ratio 09,1
Column subsample ratio 09,1
Minimum child weight 0, 4)
Maximum delta step 0, 1)
Gamma (0,0.01)
5. Results

Average accuracy (ACC) is one of the most widely used evaluation indexes for classifi-
cation evaluation. It represents the overall performance of the model and reflects the overall
level of classification ability. In order to test the performance of the image classification
model proposed in this paper, we evaluate it on the above three databases. All methods
are trained on the original training data set. The classification accuracy results are shown
in Table 4.

We first compared the MNIST dataset with advanced methods. It includes three
combination methods, DLSVM [33], SAE-CNN, CNN-SVM, and two control methods,
CNN, PSO-CNN-XGBoost. PSO-CNN-XGBoost represents the CNN-XGBoost model
optimized by ordinary PSO, and the other two represent high-performance methods:
CIDBM [34], PCAnet [35]. It can be seen from the table that the performance of our model
is better than other methods on MNIST. Compared with CNN, it reflects the superiority
of the two-stage model. Compared with the combination method, our model shows
obvious advantages. The reason is that the ensemble classifier XGBoost understands image
features better than other classifiers, and it is more compatible with CNN due to stronger
classification performance. Compared with the control model PSO-CNN-XGBoost, our
model has a significant improvement. It shows that APSO optimizes the hyperparameters
of the overall framework to promotes the integration of the two parts, which enables
the model to adaptively adjust the framework to grasp image features and improves
classification accuracy. Our performance is also better than CDBM and PCAnet, further
showing the good performance of the model.

We also compared the image classification methods on the more complex CIFAR-10
dataset. Those compared models include 2 combined models mentioned, 2 control models
and 4 high-precision models: DLSVM, Maxout Networks [36], NIN [37] and ML-DNN [38].
It shows from the table that compared with other models, our model has the highest
accuracy on CIFAR-10, reaching 91.98%, but its advantages are not obvious from the most
advanced model: Our test result is only 0.10 higher than ML-DNN. Ours is significantly
improved compared with the control PSO-CNN-XGBoost. It shows that the improvement
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of APSO parameter optimization is obvious, which due to the effectiveness of bidirection
optimization form makes the two parts more closely integrated. The optimization mecha-
nism optimizes the two parts of the model as a whole, integrates the learning objectives,
and makes the whole model more suitable for image classification tasks. Compared with
the combined method CNN-SVM, our model has a huge lead over other models, which
further demonstrates the combination of CNN, and XGBoost is even more powerful in
image classification. In general, our model is also competitive on the more complex image
data set CIFAR-10.

Table 4. Classification accuracy (%) on image set.

Data Set Model ACC(%)
MINST CNN 98.80
SAE+CNN 98.84
CNN-SVM 99.15
DLSVM 99.13
CDBM 99.18
PCANet 99.38
PSO-CNN-XGBoost 99.41
Ours 99.60
CIFAR-10 CNN 76.28
SAE+CNN 62.74
CNN-SVM 78.06
DLSVM 88.10
Maxout Networks 90.62
NIN 91.19
ML-DNN 91.88
PSO-CNN-XGBoost 91.21
Ours 91.98
CIFAR-100 CNN 53.32
Stochastic Pooling 57.49
Learned Pooling 56.29
Maxout Networks 61.43
NIN 64.32
ML-DNN 65.82
PSO-CNN-XGBoost 64.58
Ours 66.35

In order to explore the performance of our model on more complex data sets and
further illustrate the generality of ours, it is compared with other representative methods
on the CIFAR-100. It can be seen from the Table 4 that PSO-CNN-XGBoost is slightly better
than NIN on ACC. The CNN-XGBoost model under APSO tuning surpasses other methods
and achieves the highest accuracy rate, which indicates that APSO adopts an adaptive
strategy to guide the particle search well, to avoid falling into the local optimal situation
to a certain extent. The APSO makes the framework extracts and utilizes image features
fully to improve the classification accuracy. In general, our model architecture can meet the
needs of more complex data sets and perform well. The model has good generality.

6. Additional Experiments

To further explore the performance of the model in terms of classification, we use
XGBoost model optimized by APSO to build credit scoring model. First, to eliminate the
errors caused by data that have self-variation or large differences in values, we preprocessed
the original credit data. Then, we carried out feature engineering, which aims to extract
the features from the original data that are maximally useful. In the final step, the model is
built with the selected features and optimized hyper-parameters tuned by adaptive PSO,
and test data tokens are used to evaluate the trained models.
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The model is divided into three parts: data preprocessing, feature engineering and
model training. First, the data preprocessing involves standardized data sets and marked
missing values. Second, the feature engineering is based on the score of feature importance
that is obtained from the initial hyper-parameter model. According to the rank of the
feature importance, redundant features are removed. Finally, according to the selected
features and hyper-parameters tuned by APSO, the model is built. The flow chart is shown
in Figure 2. The process is described in detail below.
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Figure 2. APSO-XGBoost credit scoring model.

6.1. Data Sets

In this section, the performance of the model is verified by UCI credit data sets. Two
credit data sets, German and Austrian, from the UCI machine learning repository are used.
In addition to the above data sets, P2P credit data from two platforms (Lending Club in
the US and We.com in China) were also used to verify the effectiveness of our model in
providing decision support for P2P lending businesses and to verify the generalization of
the model (see Table 5).

Table 5. Description of the experimental data sets.

Data Set Samples Features Training Set Test Set  Good/Bad
German 1000 24 800 200 700/300
Australian 690 14 552 138 307/383
P2P-LC 2642 11 2114 528 1322/1320
P2P-We 1421 17 1137 284 1072/349

6.2. APSO-XGBoost
6.2.1. Data Preprocessing

Data preprocessing is divided into two steps: data standardization, namely, 0-1
scaling, and missing value processing. Although the tree-based algorithm is not affected
by scaling, feature normalization can greatly improve the accuracy of classifiers, especially
those based on distance or edge calculations. Therefore, the standardization of data sets
in data preprocessing makes the model more accurate and persuasive. The training set
is described as D = {X,Y}, where X = {x1,x2,..., Xy} represents an m-dimensional
eigenspace, Y = {0,1} represents the target value, Y = 0 represents poor application, and
Y = 1 represents good application. If x is a certain feature, it is calculated by 0-1 scaling
as follows:

,  x—min(x)

e max(x) — min(x)

(16)
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where x’ expresses the standardized value. Credit data often have missing values. XGBoost
comes with its own sparsity segmentation algorithm, which can learn the best way to
deal with missing values and is more suitable for modeling than traditional methods of
dealing with missing values. If there are outliers and noise in the data, standardization can
indirectly avoid the influence of outliers, and centralization can deal with extreme values.

6.2.2. Feature Selection

At first, the score of the relative feature importance with the initial hyper-parameter is
calculated, and the redundant features are discarded by the feature selection algorithm.
The importance of feature selection lies in eliminating redundant features, highlighting
effective features, improving the calculation speed and eliminating the influence of adverse
features on the prediction results. An example as shown in Figure 3, it is the relative feature
importance of the German credit dataset on XGBoost model.

Feature Importance

Housing

Telephone

Present employment since

Other debtors | guarantors

Installment rate in percentage of disposable income
Other installment plans

Foreign worker

Property

Present residence since

feature

Savings account/bonds

Personal status and sex

Age inyears

Purpose
Credit amount

Number of people being liable to provide maintenance for
Duration in month

Credit history

Job

Number of existing credits at this bank

Status of existing checking account

T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12
relative importance

Figure 3. Relative feature importance on German credit dataset.

6.2.3. Feature Engineering

Feature engineering selects important characteristics and removes irrelevant features
to build a model. It can greatly reduce the dimension disaster problem, improve the
operational efficiency, reduce the difficulty of learning tasks, make the model simpler and
reduce the computational complexity.

By calculating the importance of the features, features that are more favorable to the
model are selected. We choose the gain as the feature importance property as normal.
XGBoost adopts the stochastic fractal search (SFS) algorithm according to the rank of the
importance of the features and adds features into the data set to form subsets one by one.
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Under the default hyper-parameter of XGBoost, the subset that minimizes the logistical
loss is selected as the subset of the features after 10-fold cross-validation.

6.2.4. Training the Model

To make the hyper-parameter accord with the training data set as much as possible,
we use cross-validation on the data set. We tested several cross-validation methods.
From many experimental results, we ultimately decided to use 10-fold cross-validation
to divide the data sets. Except the feature extractor, the model is consistent with the
image classification model steps: First, the hyper-parameters in the XGBoost model are
the optimization targets, and the position of each particle is randomly initialized in the
hyper-parameter search space. Second, the particles are divided into adaptive populations.
This step is achieved by calculating the local density of the particles and the distances
to the particles whose local density is higher. According to the value determined by the
position of the particle, we assign the hyper-parameters of the XGBoost model and bring the
verification data into the model for prediction. Finally, the loss function on the verification
data set is the fitness function of the particles.

6.2.5. Baseline Models

To verify the performance of the model, we divided the baseline models into three
groups: the traditional machine learning group, the integrated learning group, and the
XGBoost group. The traditional machine learning group is DT, LR, NN, SVM, and RF;
the ensemble learning group is AdaBoost, AdaBoost-NN, Bagging-DT, Bagging-NN, and
GBDT; the XGBoost group is XGBoost-GS, XGBoost-RS, XGBoost-TPE, PSO-XGBoost and
APSO-XGBoost. The baseline models are described in Appendix A.

6.2.6. The Evaluation Scale

When the label of sample is 0, the loan application is judged as a default state, indicat-
ing that the borrower failed to pay off the loan in time, and his credit is not good; when the
sample label is 1, the loan application is non-default, indicating that the borrower fulfills
the repayment agreement and he has good credit. In credit scores, the average accuracy is
one of the most popular evaluation indices and represents the overall performance of the
model. To better explore the ability of the model to distinguish between non-default and
default applications, type I errors and type II errors in the confusion matrix are often used
to evaluate the models to predict their performance in detail. A type I error is a default
loan application being wrongly classified as a non-default. Conversely, a type Il error is
when a non-default is misclassified as default. TP and TN in the confusion matrix (see
Table 6) represent the numbers of correctly classified good borrowers and bad borrowers,
respectively. FP and FN represent the numbers of misclassified loan applications.

Table 6. Confusion matrix.

Predicted Value Actual Value Total
Non-default Default
Non-default TP FN TP+ FN
Default FP TN FP+ TN
TP+ FP FN+ TN TP+FP+FN+TN

The formulas are defined as follows:
The average accuracy (ACC):

TP+ TN (17)
TP+ FP+ TN+ FN
The type I errors:
FP
(18)

TN+ FP
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The type II errors:
FN

TP+ FN
The Brier score (BS) measures the accuracy of the predicted probability and is the

calibration of the prediction performance. The BS ranges from 0 to 1, and the interval value
represents probabilistic predictions from perfect to poor. The BS is defined as follows:

(19)

1

BS =—
S N

(i — i) (20)

™M=

I
—

where N is the number of samples. p; and y; denote the probability prediction and the true
label of sample i, respectively.

The F1-score takes into account both precision and recall of classification models. It is
the harmonic average of these two indicators, and it ranges from 0 to 1.

1—9. precision - recall

F —
precision + recall

(21)

where precision is the proportion of positive samples in positive cases, it is defined as

TP

TP+ FP @2)

precision =
And recall is the proportion of predicted positive cases in the total positive cases; it is

defined as P
recall = TP+ EN (23)

6.3. Comparisons among Hyper-Parameter Optimization Methods

To demonstrate the performance of the tuning strategies, Figure 4 shows the con-
vergence curves of average loss function of parameter optimization methods over four
credit data. The ordinate represents average minimum value of loss function; the abscissa
represents number of iterations. It can be seen from the figure that the convergence speed
of GS and RS is slower. TPE converges faster, and its result is better than GS and RS. The
value of the loss function of PSO is slightly lower than that of TPE, but the convergence
speed of PSO is much faster. PSO and APSO have the fastest convergence speed among
the parameter optimization methods. PSO has entered the convergence state early, which
leads to its unsatisfactory final error rate and failure to find the global optimal value. APSO
gets the best performance among all the converging performance. APSO still continues to
decline after some iterations, indicating that the optimization mechanism helps subgroups
increase diversity, prevents local particles from clustering, and helps particles to find the
local optimal value.
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Figure 4. APSO-XGBoost credit scoring model.

6.4. Discussion

The ACC is one of the most mainstream and intuitive indicators. The ACC indicates
the overall prediction ability of the model. In the German data set (see Table 7), the APSO-
XGBoost model obtained the best value, 77.48%, on ACC, which is 1.37% higher than the
best performance of the single classifier LR and is 1.37% and 1.16% higher than the best
ensemble classifier GBDT in the group. APSO-XGBoost model has obvious improvement
over PSO-XGBoost in each indicator. The reason is that when the APSO optimizes the
hyper-parameter of XGBoost, the particle swarm easily jumps out of the local optimum
and continues to find better values. Hyper-parameters that better match the fitness value
give XGBoost a better tree structure, which makes the model prediction accuracy higher.
Although the single classifier NN and Bagging-NN perform best in terms of type I error,
our model has better results in terms of the other three indicators. APSO-XGBoost performs
better in F1-score than other models, indicating that the model can still have more accurate
prediction performance than other models under data imbalance.

For the Austrian data set (see Table 8), the ACC of APSO-XGBoost is 1.15% higher
than the best-performing single classifier LR and 0.51% higher than the best-performing
ensemble classifier RF. Because the numbers of positive and negative samples in the data
set are very close, the error distribution of most models is balanced in general, and a
few models have an uneven situation. In credit scoring, a high type I error rate guides
institutions to adopt a more stringent mechanism to identify more applicants who have a
possible default risk and reject them to reduce the risk of bad debt. The XGBoost group
performs best in terms of the balance of the error distribution. This shows that the XGBoost
classifier is well optimized. The type I error rate of our model ranks second only to that of
the single classifier LR model, 11.80%. However, the error distribution of LR is uneven,
and its type II error rate is the worst. The model evaluates more good applicants as bad,
resulting in a higher type II error rate. In contrast, the error distribution of our method
is more balanced than LR because the adaptive particle swarm can optimize multiple
hyper-parameters at the same time, which ensures that the tree structure of the model
screens both false positive rates and false negative rates. In terms of the BS, our model
achieves the best score, 0.086.
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Table 7. Results of the measured performance of models on the German data set.

Model ACC (%) Type I Error (%) Type II Error (%) Brier Score F1-Score
DT 72.65 59.37 13.63 0.2257 0.5763
LR 76.43 52.26 11.28 0.1627 0.6195
NN 72.54 50.13 17.75 0.2363 0.6571
SVM 76.07 63.73 6.88 0.1631 0.5762
AdaBoost 73.61 56.57 13.46 0.1779 0.5994
AdaBoost-NN 73.75 49.95 16.09 0.2237 0.6375
Bagging-DT 75.19 58.19 10.51 0.1718 0.5943
Bagging-NN 76.01 49.67 12.98 0.1738 0.6075
RF 75.92 58.59 9.29 0.1646 0.6122
GBDT 76.59 51.37 11.42 0.1615 0.7246
XGBoost-GS 76.83 49.79 11.76 0.1176 0.7651
XGBoost-RS 77.18 53.73 9.57 0.0957 0.7561
XGBoost-TPE 77.34 53.71 9.35 0.0935 0.7574
PSO-XGBoost 77.36 53.01 10.15 0.1170 0.7621
APSO-XGBoost 77.48 52.06 9.98 0.1070 0.7796

Table 8. Results of the measured performance of models on the Australian data set.

Model ACC (%) Type I Error (%) Type II Error (%) Brier Score F1-Score
DT 84.51 17.41 13.95 0.1359 0.8543
LR 86.77 8.67 16.88 0.1019 0.7865
NN 85.27 12.06 16.87 0.1111 0.8612
SVM 85.54 15.35 13.74 0.1012 0.3961
AdaBoost 85.64 174 11.93 0.1034 0.8644
AdaBoost-NN 84.59 14.22 16.36 0.1174 0.8615
Bagging-DT 86.42 13.33 13.78 0.0987 0.4926
Bagging-NN 85.62 11.83 16.42 0.1062 0.8683
RF 87.41 13.26 12.05 0.0971 0.7571
GBDT 86.14 13.43 14.19 0.0991 0.6026
XGBoost-GS 87.81 13.92 10.8 0.0915 0.8756
XGBoost-RS 87.82 12.64 11.82 0.0893 0.8768
XGBoost-TPE 87.92 12.67 11.61 0.0890 0.8799
PSO-XGBoost 87.98 12.58 11.90 0.0875 0.8701
APSO-XGBoost 88.20 11.80 11.78 0.0860 0.8743

For the P2P-LC data set (see Table 9), the performance of the XGBoost optimization
group members was similar. The ACC of our method improved by 0.82% compared to
that of the second-ranked XGBoost-RS, which is 4.46% and 2.08% higher than the best-
performing single classifier LR and ensemble classifier GBDT, respectively. PSO-XGBoost
has few improvement over XGBoost-TPE. The improved APSO-XGBoost achieved good
performance in terms of the type I error rate. In terms of type Il errors, the best score is
in the XGBoost optimization group. Although LR is best, its type I error rate is high. This
shows that the error distribution is unbalanced. As far as the BS is concerned, XGBoost-
APSO has the best performance, indicating that the model is more accurate in its prediction
probability than the other models.

On the unbalanced P2P-We data set (see Table 10), the ACC of APSO-XGBoost reached
the best value, 84.72%, which was 11.46% higher than the ACC of the DT, which performed
best in the single classifier group, and 1.43% higher than that of the best classifier, GBDT, in
the ensemble learning group. The XGBoost group generally had a smaller type I error rate
than the other models, indicating that models based on XGBoost are less affected by an
unbalanced distribution than the classifier models. PSO-XGBoost has a small improvement
over XGBoost optimized by other hyper-parameters optimization methods. APSO-XGBoost
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also reached the lowest score of 39.65%. This shows that APSO can find hyper-parameters
that are more suitable for reducing the type I error than other hyper-parameter optimization
methods. Regarding type II errors, the other models have very low values, such as
AdaBoost and SVM, but their type I error rates reach 90%. These models have a weak
ability to distinguish between the two types of errors and tend to classify applicants as
bad. This means that the company will bear the risk of applicant default. APSO-XGBoost
also obtained the highest BS, showing a better probability prediction accuracy performance
than the other models. The proposed model performs best in F1-score, indicating that the
model performs better in dealing with unbalanced data than other models.

Table 9. Results of the measured performance of models on the P2P-LC data set.

Model ACC (%) Type I Error (%) Type II Error (%) Brier Score F1-Score
DT 60.11 46.03 33.74 0.2549 0.3796
LR 64.74 41.37 29.14 0.2247 0.6023
NN 63.65 32.22 40.49 0.2279 0.6011
SVM 60.67 41.29 37.36 0.2331 0.6083
AdaBoost 61.25 40.18 37.32 0.2336 0.6102
AdaBoost-NN 64.09 33.61 38.22 0.2251 0.6483
Bagging-DT 62.43 37.43 37.71 0.2328 0.4857
Bagging-NN 65.34 34.07 35.25 0.2198 0.6082
RF 63.2 35.72 37.88 0.2277 0.5601
GBDT 66.25 30.9 36.59 0.2166 0.4784
XGBoost-GS 66.31 31.8 35.58 0.2143 0.6559
XGBoost-RS 67.08 29.78 36.06 0.2096 0.6560
XGBoost-TPE 66.97 29.82 36.23 0.2095 0.6563
PSO-XGBoost 66.99 29.85 35.97 0.2104 0.6578
APSO-XGBoost 67.63 29.15 35.56 0.2092 0.6601

Table 10. Results of the measured performance of models on the P2P-We data set.

Model ACC (%) Type I Error (%) Type II Error (%) Brier Score F1-Score
DT 76.01 63.27 11.21 0.1941 0.7986
LR 75.07 92.3 2.99 0.1637 0.8155
NN 75.4 69.01 10.14 0.1599 0.8023
SVM 75.17 97.18 1.27 0.1813 0.8025
AdaBoost 75.75 94.99 1.22 0.1728 0.6523
AdaBoost-NN 75.25 64.79 11.72 0.1703 0.8072
Bagging-DT 79.42 66.87 551 0.1465 0.7783
Bagging-NN 75.83 76.99 6.97 0.1504 0.8145
RF 80.59 60.49 6.03 0.1355 0.7911
GBDT 83.52 42.2 8.1 0.1212 0.8168
XGBoost-GS 83.83 41.19 8.03 0.1105 0.8265
XGBoost-RS 84.46 40.57 7.39 0.1070 0.8227
XGBoost-TPE 84.65 39.68 7.43 0.1067 0.8302
PSO-XGBoost 84.66 39.66 7.40 0.1066 0.8710
APSO-XGBoost 84.72 39.65 7.20 0.1060 0.8708

7. Conclusions

The traditional classification layer in CNN cannot fully understand the feature infor-
mation. In order to further improve the model’s ability to understand image features and
then improve the accuracy of image classification, a novel CNN-XGBoost based on APSO
image classification model is proposed. The model is mainly composed of feature extractor
CNN and feature classifier XGBoost. The two-stage model not only ensures that CNN can
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fully extract image features but also uses XGBoost to overcome the shortcomings of a single
classifier and effectively distinguish features, and APSO optimizes the hyperparameters of
the overall architecture. APSO uses two different learning strategies to update information
of particles, enhance the diversity of particle populations and avoid the algorithm from
falling into local optimality. Thereby, the adaptive processing capability of the model to
image features was improved, and the classification accuracy got better. APSO optimizes
both CNN and XGBoost. On the one hand, CNN is optimized to extract deep features so
that the extracted features are more suitable for decision tree XGBoost. In addition, XG-
Boost is optimized to make the structure of the model better match the extracted features,
so as to better understand the image features. Bidirection optimization structure to fully
extract the features of the image and fully used for classification. Our model has the best
results on the image data set compared to other models, which shows the effectiveness of
the model. In addition, the experimental results on the additional data set show that the
proposed APSO-XGBoost credit scoring model also achieved good results on credit data,
indicating the model has strong generalization ability.

Future work may modify the proposed credit scoring model, optimizing deeper
models with the novel hyper-parameter optimization methods.
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Appendix A

NN: A neural network (NN) refers to neural principles, where each neuron can be
regarded as a learning unit. The NN is constructed on the basis of many neurons, which
are composed of an input layer, hidden layer, and output layer. These neurons take certain
characteristics as input and obtain output according to their own model. For the NN model
of credit scoring, its input is the applicant’s attribute vector, and the output is the default or
non-default category, +1 or—1. The weight assigned to each attribute varies according to
its relative importance, and the weight is adjusted iteratively to make the predicted output
closer to the actual target.

SVM: By mapping the feature vector of an instance to a point in space, the purpose
of the SVM is to draw a line to best distinguish the two types of points. In credit scoring,
the data are correctly divided into default and non-default types. The SVM finds the
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hyperplane that separates the data. To best distinguish the data, the sum of the distances
from the closest points on both sides of the hyperplane is required to be as large as possible.

DT: This is commonly used in credit scoring. DT is a process of classifying instances
based on features, where each internal node represents a judgement on an attribute, each
branch represents the output of a judgement result, and finally each leaf node represents a
classification result. The classification result in credit scoring is default or non-default. The
decision-making algorithm loops all splits and selects the best-partitioned subtree based
on the error rate and the cost of misclassification.

RF: The principle of random forest is to generate multiple decision tree models, where
each tree learns and makes predictions independently on the bootstrap sample. By adding
the results of each decision tree, the result with the most votes is selected as the final
prediction result.

LR: The statistical technique of logistic regression is usually used to solve binary clas-
sification problems, and it is regarded as the benchmark of credit scoring. First, regression
analysis is used to describe the relationship between the independent variable x and the
dependent variable Y and to predict the dependent variable Y. LR adds a logistic function
on the basis of regression. In credit scoring, the probability of future results is predicted by
the performance of the historical data from applicants. The goal of LR is to judge whether
the feature vectors of customers belong to a certain category, default or non-default.

Bagging and AdaBoost are two popular methods in ensemble learning.

Bagging: This method randomly samples and substitutes a training set with m samples
to generate multiple new data sets and then builds models for each bootstrap sample. These
models are merged through a certain strategy, such as majority voting.

Among the boosting methods, the most important include AdaBoost and GBDT.

AdaBoost: The misclassified samples in the training set are assigned greater weights.
AdaBoost sequentially combines weak learners into strong learners to boost the model.
Based on the error of the previous classifier, AdaBoost adjusts the weight of the sam-
ple. Through the iterations, it gives larger weights to the misclassified samples in the
training set.

GBDT: This is an iterative decision tree algorithm. The conclusions of all trees are
added to obtain the final answer. The core of the algorithm is to use the most rapidly
descending approximation, which is the negative gradient value of the loss function, as an
approximate value of the residual of the algorithm to fit a regression or classification tree.
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