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Abstract: In this journal, we proposed a novel method of using multi-task learning to switch
the scheduling algorithm. With multi-task learning to change the scheduling algorithm inside the
scheduling framework, the scheduling framework can create a scheduler with the best task execution
optimization under the computation deadline. With the changing number of tasks, the number of
types of resources taken, and computation deadline, it is hard for a single scheduling algorithm
to achieve the best scheduler optimization while avoiding the worst-case time complexity in a
resource-constrained Internet of Things (IoT) system due to the trade-off in computation time and
optimization in each scheduling algorithm. Furthermore, different hardware specifications affect the
scheduler computation time differently, making it hard to rely on Big-O complexity as a reference.
With multi-task learning to profile the scheduling algorithm behavior on the hardware used to
compute the scheduler, we can identify the best scheduling algorithm. Our benchmark result shows
that it can achieve an average of 93.68% of accuracy in meeting the computation deadline, along with
23.41% of average optimization. Based on the results, our method can improve the scheduling of the
resource-constrained IoT system.

Keywords: Internet of Things; scheduling; machine learning; sort and fit; optimization

1. Introduction

A resource-constrained Internet of Things (IoT) system is heterogeneous in nature [1]
due to the interconnection of different types of IoT devices consuming limited resources in
the system [2]. The limitation in resources is due to the ways in which the system designer
planned the system design according to the client’s budget and needs [3]. These resources
sometimes are shared with other IoT devices, increasing the computation time as the
number of resources increases along with the number of tasks to schedule hardware with
different computation power to compute the scheduler. Depending on these parameters,
the scheduling algorithm that can achieve the best task execution sequence optimization
under the computation deadline will also change [4]. The task execution sequence opti-
mization refers to the duration it takes for the scheduler to complete all the tasks compared
to a scheduler that schedules based on First Come First Serve (FCFS) principle [5], where
the shorter the duration is when compared to a scheduler created with FCFS, the higher
the optimization is.

For example, let us consider a smart office system where the resource constraints are
the electricity and the data bandwidth between the internal and external servers shown
in Figure 1. Based on the sensors’ reading, the task creation dictates the active devices
and creates the tasks based on the predefined rule. Then, the scheduling framework
creates a scheduler that dictates the time for the sensors and actuators to execute the
tasks while ensuring the total resources taken do not exceed the resource constraints.

Information 2021, 12, 150. https://doi.org/10.3390/info12040150 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-6457-7728
https://orcid.org/0000-0003-0579-8501
https://doi.org/10.3390/info12040150
https://doi.org/10.3390/info12040150
https://doi.org/10.3390/info12040150
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12040150
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12040150?type=check_update&version=1


Information 2021, 12, 150 2 of 18

The scheduling framework stores the value of the resources available to keep track of the
remaining resources taken by the tasks. The number of active devices and the scheduler’s
computation deadline changes according to the number of people inside the building.

Sensors Actuators

Resources

Scheduling
framework

Data transfer Resources movement

Task
crea�on

Tasks execu�on

Figure 1. Overview of the smart office system.

In a situation where the number of active devices is not changing, the system designer
can implement a scheduling algorithm with high optimization such as Octasort and Fit
(OnF) or Sort and Fit (SnF) when the computation deadline is longer. Opposite to this,
the system designer can implement a scheduling algorithm with fast computation time
such as FCFS or Shortest Job First (SJF) when the computation deadline is shorter. However,
in a smart office system where the number of tasks and computation deadline are always
changing, OnF or SnF scheduling algorithms cannot meet the computation deadline when
scheduling a large number of tasks and resources with a shorter computation deadline.
It is the same for the FCFS or SJF, where it cannot create an optimized scheduler when
scheduling a large number of tasks and resources with a prolonged computation deadline.

The reason why multiple scheduling algorithms are needed is because each has its
trade-off in scheduler optimization and computation time. Inability to meet the requirement
will lower down the user satisfaction [6]. This journal proposes a method of Task Scheduling
Switcher (TSS)-based multi-task learning (MTL) that is shown in Figure 2 to pick the
scheduling algorithm on the fly for the scheduling framework to create a scheduler with
the best task execution sequence optimization under the computation deadline.

Mul�-task
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Number of tasks

Computa�on 

deadline

Number of
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Chosen scheduling 

algorithm
List of scheduling 

algorithms

Figure 2. Overview of the task scheduling switcher.

What makes our proposal better is the MTL’s ability to maintain high accuracy in
classifying the best scheduling algorithm by profiling each of the scheduling algorithm’s
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computation times on the hardware used to compute the scheduler for the system. The pre-
vious research [7,8] proved the MTL model’s ability in extracting useful features to increase
the classification accuracy in a heterogeneous environment. High classification accuracy
in a heterogeneous system is crucial because the system designer cannot guarantee the
next IoT system will use the same number of devices, resources, and hardware specifica-
tions used to create the scheduler due to the difference in IoT system planning. With the
MTL-based TSS implementation on the scheduling framework, we can create a scheduling
method with a flexible optimization that is proven to have better optimization, due to the
adaptability, than the fixed scheduling algorithm method [9]. With an optimized scheduler
available under the computation deadline, it can guarantee quick handling against anoma-
lies in Multiple IoT scenarios (MIoT) [10], and user’s preferences and satisfaction in Social
IoT (SIoT) [11].

The main challenge we met in developing the TSS is finding the parameters to observe
in deciding the scheduling algorithm, creating a machine learning model that can operate
in real time while providing high accuracy and a countermeasure when TSS picked a
wrong scheduling algorithm. We settle on the number of tasks and resources taken because
it hugely affects the scheduler computation time, and it is the only values that are readily
available without analyzing the content of the tasks to reduce the TSS processing time.
Then, we use an MTL model due to high classification accuracy in identifying the suitable
scheduling algorithm in real time compared to a feedforward neural network (FNN)
model [12]. Meanwhile, to ensure that a scheduler is available before the computation
deadline, even if the TSS chooses the wrong scheduling algorithm, we implemented a
fallback scheduling algorithm to run parallel to TSS.

After the introduction in Section 1, in Section 2, we give the preliminary on the schedul-
ing algorithms and MTL and compare our research with previous research performed
on real-time scheduling. In Section 3, we define the task scheduling switcher problem,
introduce our proposed design for the MTL model, and the scheduling framework im-
plementation. In Section 4, we evaluate the post-trained MTL model and the scheduling
framework on the synthetic benchmark. In Section 5, we implement the scheduling frame-
work on a smart office simulation to simulate near real-life IoT system implementation.
Finally, we conclude the works we have carried out and our future planning for this
research.

2. Related Work
2.1. Scheduling Algorithm

In this journal, we only implemented four existing scheduling algorithms that show
various trade-offs. Although we can use more than four scheduling algorithms depending
on the hardware computation specification, we focus on well-known algorithms with our
previously proposed algorithm to demonstrate the TSS effectiveness.

Table 1 shows the performance of the four algorithms, i.e., First Come First Serve, Short-
est Job First, Sort and Fit and Octasort and Fit observed from our experiment. For example,
SJF has fast computation time with low optimization, OnF has slow computation time with
high optimization, SnF [13] has a good balance in computation and optimization. In this
journal, the scheduling algorithms applied in the experiment are non-preemptive versions.

Table 1. Comparison between each scheduling algorithm in computation and optimization.

Scheduling Algorithm Computation Time when
Compared to Octasort and Fit

Task Execution Optimization when
Compared to First Come First Serve

First Come First Serve 91.76% 0.00%
Shortest Job First 95.67% 8.29%
Sort and Fit 50.87% 40.76%
Octasort and Fit 0.00% 42.56%
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The scheduler’s computation time and the task execution optimization were calculated
by using the Equations (1) and (2). The x represents the computation time to create the
scheduler, and on f CompTime represents the OnF’s computation time. Meanwhile, the y
represents the scheduler duration to finish all the tasks, and f c f sDuration represents the
FCFS’s scheduler duration.

Computation time improvement =
(

1− ∑ x
∑ on f CompTime

)
× 100% (1)

Scheduler optimization improvement =
(

1− ∑ y
∑ f c f sDuration

)
× 100% (2)

FCFS is a scheduling algorithm based on the First In First Out method where the tasks
are scheduled based on the task’s scheduling request that arrived first [14]. Although it has
fast computation time, it has no task execution optimization.

SJF is a scheduling algorithm that prioritizes the task with the shortest burst time to
be executed first. The advantage of this scheduling algorithm is it has a short amount of
process average waiting time and turnaround time. It has a slightly faster computation
time than FCFS with medium optimization. It is due to our implementation of the SJF
scheduling function that needs to check the available resources less frequently than FCFS.

SnF is a scheduling algorithm that sorts the tasks in ascending order based on the
burst duration and the number of types of resources taken. Then, based on the sorted order,
it executed as many tasks as the resources available allow. If the next one cannot run given
the resources available, the algorithm will skip the task. It has medium computation time
and high optimization.

OnF is an expanded version of SnF where it sorts the tasks in ascending and de-
scending order and performs the fit operation to create the scheduler. It has the slowest
computation time but the highest optimization.

2.2. Multi-Task Learning

MTL works by sharing representations between layers to take advantage of the
domain-specific information contained in the training signals of related tasks to ease
the classification [15]. MTL is useful in several applications. Zhang et al. [16] proposed
the use of MTL for feature extraction. MTL was utilized for feature extraction for down-
stream tasks such as processing power settings or logarithmic orders of machining stages.
Han et al. [17] proposed a rapid sorting method based on multi-task deep learning. They
showed that for complex sorting such as visual-sorting, they can improve the efficiency
of time while ensuring accuracy and reliability in complex scenarios. Therefore, MTL is
a promising method for conducting multiple learning tasks applicable to the sorting and
scheduling approach.

In this journal, we use hard parameter sharing for MTL to identify the best scheduling
algorithm. Figure 3 illustrates the multi-task learning consists of different layers such as
shared layers and task-specific layers. The learning task was separated into different tasks,
i.e., Task A, Task B, and Task C.
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Figure 3. Deep neural network implementation of a hard parameter sharing for the multi-task
learning.

2.3. Previous Research

In [13], we proposed a new scheduling algorithm called Sort and Fit as part of an
IoT platform called Elgar platform, which adopts the concept of “Design Once, Provide
Anywhere” [18]. It supports the implementation of heterogeneous devices based on
one universal service design where any device that is compatible with the configuration
can process the task according to the scheduling algorithm. Although SnF has a better
balance in average computation time and optimization, the brute force or FCFS scheduling
algorithm yields better results in certain situations. For this reason, it makes SnF less viable
when the number of tasks and resources taken along with the computation deadline are
always changing.

Heger et al. [19] proposed an online-scheduling approach that utilizes the past and
real-time data to improve the performance of the manufacturing system. Their result shows
that their approach can improve the system performance that has higher fluctuations.

Jiang et al. proposed a new method based on federated scheduling that can perform
better when scheduling the parallel task under a tight deadline [20]. Their experiment
result shows it can outperform the previously proposed methods, specifically for the task
sets consisting of tasks with a tight deadline.

Wu et al. proposed real-time scheduling based on deep reinforcement learning to
schedule a large production number of medical masks [21]. Their randomized simulation
results show their method can solve the scheduling problem within 1–2 s.

As shown in Table 2, although all the scheduling algorithms can compute in real time,
not all can optimize the task execution inside the scheduler. Furthermore, no algorithm
offers flexible optimization according to the computation deadline. Our proposed TSS
gives the edge against the previously proposed scheduling algorithm by switching the
scheduling algorithm with higher optimization with a prolonged computation deadline.

Table 2. Comparison between previous research conducted in real-time scheduling.

Scheduling Algorithm Computation Time Task Execution
Optimization

Flexible
Optimization

Sort and Fit X X

Online Scheduling X

Federated Scheduling X

Deep Reinforcement
Learning X X

Task Scheduling
Switcher X X X
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3. Modeling the Task Scheduling Switcher
3.1. Task Scheduling Switcher Problem

As previously shown in Figure 2, which shows the overview of the TSS, the MTL
selects an algorithm selectedAlgorithm ∈ {FCFS, SJF, SnF, OnF} from the set of scheduling
algorithm A={FCFS, SJF, SnF, OnF} for the scheduling algorithm to choose based on the
normalized value of the number of tasks n′, the number of resources taken r′, and the
computation deadline d′ using the min–max normalization method. From there, we can
define the input and output problem for the TSS as shown in Problem 1.

Problem 1 (Problem in Choosing the Scheduling Algorithm).
Input: A={FCFS, SJF, SnF, OnF} and the parameters to schedule the tasks n′, r′, d′.
Output: selectedAlgorithm∈{FCFS, SJF, SnF, OnF} expected from the TSS.

3.2. Multi-Task Learning Model

We implement the TSS as an MTL model where the input consists of the normalized
value of n′, r′, and d′ using the min–max normalization method to rescale the values in the
range of 0 to 1 to improve the learning rate [22]. As shown in Figure 4, the smaller box
represents the layer inside the model, the number inside the box represents the number
of the node, the text under the boxes represents the activation function for each layer.
The first three layers connected to the input act as a shared layer; the rest of the branched
layers act as a task-specific layer. Although the first two of the task-specific layers have
an activation function of a rectified linear unit (ReLU), the final layer has an activation
function of Sigmoid. We implement the MTL model on the TensorFlow machine learning
library [23] shown in Listing A1. To compile the model, we use Adam as an optimizer,
binary cross-entropy with a similar loss weight value, as combined loss and accuracy, as
the metric shown in Listing A2.

First Come First Serve

Shortest Job First

Sort and Fit

Octasort and Fit

Input

�′

�′

�′

3 2 1

3

3 2 1

3 2 1

3 2 1

ReLU ReLU Sigmoid

ReLU ReLU Sigmoid

ReLU ReLU Sigmoid

ReLU ReLU Sigmoid
Mul�class classifica�on

3 3

Figure 4. Multi-task learning (MTL) with a hard parameter sharing approach is used to choose the
best scheduling algorithm.

The MTL model compiled with TensorFlow with 3000 epoch and 1000 batch size
for training the dataset with 100,000 labeled data split to 70% for training and 30% for
the test following the parameters shown in Table 3. We used the TensorFlow’s built-in
"ModelCheckpoint" callback function [24] to save the MTL model with the lowest validation
combined loss and the "EarlyStopping" callback function [25] to stop the training when the
model could no longer improve the accuracy.
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Table 3. Parameters used to train the task scheduling switcher model.

Training Parameters Value

Dataset size 100,000

Epochs 3000

Batch size 1000

Training/Test 7:3

After the training and the MTL model are deemed to have good accuracy when
validated on the test dataset, we optimize the MTL model using a post-training quanti-
zation [26] to reduce the model size and interfacing latency, albeit with a little trade-off
in model accuracy. Quantization of the MTL model works by converting the weight that
controls the signal between the two nodes from 32-bit float precision to a type with lower
precision (16-bit floats or 8-bit integers) for faster arithmetic operation. The reason for the
trade-off of using quantization is due to lower accuracy in the floating-point arithmetic.

In this journal, we use dynamic range quantization to optimize the model by quan-
tizing the weights to an 8-bit integer. TensorFlow quantizes the MTL model activations
dynamically based on their range to 8-bit and computes the weights and activations with
8-bit precision [27]. Although the interfacing latency is fast, the speed is still less than a
fully fixed-point inference due to the outputs that are stored in floating point.

3.3. Scheduling Framework Implementation

Figure 5 shows an overview of our proposed TSS in the scheduling framework in
which Process 1 and Process 2 are the child process of the Main process. In other words,
Process 1 and Process 2 are running in parallel. Referring to Process 1, the TSS recom-
mends selectedAlgorithm chosen from A={FCFS, SJF, SnF, OnF} based on the n′, r′, d′.
Then, from the set of scheduling algorithms A, the scheduling framework will switch the
scheduling framework with the recommended one and schedule the tasks to be sched-
uled T={t1, t2, t3, · · · , tn} to create a scheduler Spr1={spr11 , spr12 , spr13 , · · · , spr1n} where
s1<i<n=(ti, execution time ei). From there, we can define the input and output problem for
the TSS implementation shown in Process 1.

Task 

scheduling

switcher

Number of tasks

Computa�on 

deadline

Number of 

resources taken

List of scheduling 

algorithms Scheduler

Schedule 

the tasks

Fallback scheduling 

algorithm

Timer

Process 1

Main process

Process 2

Chosen scheduling 

algorithm

Tasks to be 

scheduled

Figure 5. Implementation of the task scheduling switcher on the scheduling framework.

Process 1 (Task Scheduling Switcher Based Scheduling Framework).
Input: n′, r′, d′, A={FCFS, SJF, SnF, OnF}, T={t1, t2, t3, · · · , tn}.
Output: Process 1 scheduler Spr1={spr11 , spr12 , spr13 , · · · , spr1n}.
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If TSS on Process 1 cannot create the scheduler under the computation deadline,
the scheduling framework will use the scheduler from the fallback scheduling algorithm
on Process 2. The fallback scheduling algorithm uses a scheduling algorithm with the
lowest computation time for ensuring high chances of meeting the computation deadline.
By referring back to Table 1, the scheduling algorithm with the shorter computation time is
SJF. From there, we can define the input and output for the fallback scheduling algorithm
shown in Process 2.

Process 2 (Fallback Scheduling Algorithm to Backup the Process 1).
Input: T={t1, t2, t3, · · · , tn}.
Output: Process 2 scheduler Spr2={spr21 , spr22 , spr23 , · · · , spr2n}.

In the Main process, the Timer chooses the scheduler either from Process 1 or Process
2 based on the remaining time before the computation deadline. If Process 1 manages to
compute the scheduler before the deadline, the Timer chooses the scheduler from Process 1.
Otherwise, if Process 1 cannot complete the computation before the computation deadline,
the scheduler from Process 2 is used. Otherwise, if both processes could not compute the
scheduler under the computation deadline, the first process that completed the scheduler
computation is used instead.

4. Evaluation
4.1. Hardware Specification

In this journal, we use the notebook computer with the specification shown in Table 4
where the programming environment used is Anaconda Individual Edition 2020.02 [28]
with preinstalled base environment which holds Python 3.7.9. Then, we added TensorFlow
GPU version 2.1.0 and CUDA Toolkit 10.1.243 [29] to the base environment.

Table 4. Notebook specification used in this evaluation.

Type OS CPU GPU RAM

Specification Windows 10 Pro
10.0.19042 Build 19042

Intel i7-7700HQ
4 Cores (8 threads) 2.807GHz

GeForce GTX 1050 Ti
Mobile variant 12 GB

4.2. Classification Accuracy
4.2.1. Dataset Creation

To test our proposed MTL model, we must create a large dataset with equal labeling
on the scheduling algorithm chosen. To prevent bias, we created a large dataset where the
labelings for the scheduling algorithms are balanced.

Algorithm 1 shows the pseudocode to create the dataset with 100,000 of equally
labeled data. The seednumber represents the random seed value to get a replicable result,
and the seed() is the function to initialize the pseudorandom number generator. Meanwhile,
randRanges represents the randomization ranges for the number of tasks, resources to be
taken, and the amount taken. After initializing the value of loop and the empty list of
datasetlist to store the dataset, the program will call the dataCreation() function for 25,000
times where each time the dataCreation() was called, it will create four labeled data to be
saved temporarily in the templist before being saved in datasetlist. The reasoning for four
labeled data is due to each of the data corresponding to the scheduling algorithm used in
this journal.
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Algorithm 1 Creating a dataset for training the MTL model.

Input: seedNumber, randRanges
Output: datasetlist

1: loop← 25,000

2: datasetlist ← ()

3: seed(seedNumber)

4: for i = 0 to (loop− 1) do
5: templist ← datasetCreation(randRanges)

6: for j = 0 to 3 do
7: datasetlist[i · 4 + j]← templist[j]

8: end for

9: end for

Figure 6 shows the context diagram of dataCreation() operation. Based on the
randomization ranges randRanges={tasksR, resourcesTakenR, resourcesConstraintR},
the range for the tasks is tasksR=[3, n], range for the number of resources taken by
the tasks resourcesTakenR=[1, r], and range for each resource constraint
resourcesConstraintR={l1, l2, l3, · · · , lr} where l1≤j≤r=[value0j , value1j ] dictate the
controlled randomization of the tasks to be scheduled. Then, the randomized tasks are
computed by each of the scheduling algorithms in sequence to get the computation time
C={c0, c1, c2, c3} where c0 is the computation time for FCFS, c1 is SJF, c2 is SnF, and c3 is
OnF. Based on the recorded computation time, the set of the computation deadline D is
randomized following Property 1.

Tasks 

randomizer

First Come 

First Serve

Shortest Job 

First

Sort and Fit

Octasort 

and Fit

Computa�on 

�me �

Computa�on 

�me �1

Computa�on 

�me �2

Computa�on 

�me �3

Labeler
Randomiza�on 

ranges

dataCrea�on()

����

����1

����2

����3

Tasks

to be

scheduled

Figure 6. Overview of how the dataCreation() function works to create the set of data.

Property 1 (Set of computation deadline D).
Consider a set of recorded computation time C={c0, c1, c2, c3} where the values are c0 < c1 < c2 <
c3. Set of computation deadline D={d0, d1, d2, d3} can be defined as c0 < d0 < c1, c1 < d1 < c2,
c2 < d2 < c3, and c3 < d3.

Finally, we can define the dataCreation() function as dataCreation(randRanges)={data0,
data1, data2, data3} where the data0<j<3={training([3, n], [1, r], d0≤j≤3),
target(selectedAlgorithm)}. While training() represents the input data to be fed into the
MTL model, target() represents the data that the MTL model is expected to output. We
generated the dataset by using the randomization ranges specified in Table 5.
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Table 5. Randomization ranges to generate the set of tasks to be scheduled.

Randomization Ranges Values

Number of tasks [3, n] 3∼100

Number of resources [1, r] 1∼10

Resource constraint [value0j , value1j ] 10∼100

4.2.2. Post-Training Log

After training the MTL model on epoch 182, it gets 0.563, 0.168, 0.164, and 0.026 of loss
in choosing FCFS, SJF, and SnF. Meanwhile, for the evaluation loss, the model gets 0.561,
0.164, 0.162, and 0.028 as shown in Figure 7a. The combined loss for the model is 0.920.
Moving on, the MTL model gets 0.750, 0.939, 0.938, and 0.994 of accuracy in choosing FCFS,
SJF, SnF, and OnF. Meanwhile, for the evaluation accuracy, the model gets 0.752, 0.941,
0.940, and 0.993 as shown in Figure 7b.

The figures that recorded the post-training log of the MTL model represent the learning
curves of the exponential fall and rise to limit for Figure 7a,b. From there, we know the MTL
model effortlessly retains the necessary information to classify the scheduling algorithm
during the initial epochs before the rate falls into a constant. In other words, the MTL
model requires shorter epoch numbers to have high accuracy in classifying the correct
scheduling algorithm. Based on the shape of the learning curves and how the training and
evaluation lines overlap each other for loss and accuracy, the MTL model does not suffer
from the overfitting problem [30].
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Figure 7. Plotted loss and accuracy from the post-training log on the generated dataset.
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4.2.3. Cross-Validation Results

We performed cross-validation on ten new datasets not used to train the MTL model
to validate the model’s accuracy in classifying the scheduling algorithm. Figure 8 shows
that the model has an accuracy of 84.500% above in choosing the scheduling algorithm
with the best optimization plausible under the computation deadline. On average, it has
an average accuracy of 85.140%, which shows how effective the model is.

84.885%

85.148%
85.034%

85.294%
85.367%

85.145%
85.249%

85.004%
85.136% 85.134%

84.700%

84.900%

85.100%

85.300%

85.500%

Dataset
0

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Dataset
5

Dataset
6

Dataset
7

Dataset
8

Dataset
9

Figure 8. Trained MTL model accuracy in classification with ten different datasets.

4.3. Benchmarking the Scheduling Framework
4.3.1. Benchmark Configuration

To evaluate our implementation of the scheduling framework, we create a benchmark-
ing program to perform a stress test shown in Figure 9. Firstly, the benchmarking program
creates a new set of tasks to be scheduled and process it with scheduling framework
and dataCreation() in sequence. Then, the Comparator judges the accuracy of scheduling
framework in meeting the computation deadline and the optimization percentage and
compare it with the labeled data. This process repeats for 2500 times.

Tasks 

randomizer

Scheduling 

framework
Comparator

Benchmark 

result

Randomiza�on 

ranges

Benchmark

Tasks

to be

scheduled
dataCrea�on()

Figure 9. Overview on the benchmarking program we used to test the scheduling framework.

4.3.2. Benchmark Result

Figure 10 shows the relationship between Process 1 and Process 2 analyzed by the
Comparator. From the result shown, we know the scheduling framework has an average
of using the scheduler from Process 1 for 81.13% and Process 2 for 12.55%. In other words,
Process 1 was able to meet the computation deadline to create the scheduler for an average
of 81.13%, while in the cases where Process 1 failed to meet the computation deadline,
the scheduling framework used the scheduler generated by Process 2 where Process 2 has
an average of meeting the computation deadline for an average of 66.51%.

Comparing the scheduler generated by Process 1 that was able to meet the compu-
tation deadline with the result shown in Figure 8, we confirmed the average processing
latency added by the TSS is negligible, which is 30.891 µs as measured by our benchmark-
ing program. Our model has low processing latency, albeit the computational complexity
for MTL is higher than FNN due to the fact that the proposed MTL model design has fewer
nodes connecting between each layer. Furthermore, the dynamic range quantization also
speeds up the computation by performing the calculation with lower precision.
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Figure 10. Average percentage of the framework processes able to meet the computation deadline.

Although with the implementation of Process 2 as the fallback scheduling algorithm
to ensure a backup scheduler is available when Process 1 failed to meet the computation
deadline, the benchmark result shows that our scheduling framework implementation
has an average of 6.32% for both processes unable to meet the computation deadline.
In other words, in a situation where Process 1 is unable to create the scheduler under the
computation deadline, there is a 33.49% chance of Process 2 being unable to provide a
backup scheduler. In this situation, the scheduling framework uses the scheduler from
either Process 1 or 2 that completed the scheduler creation first. This behavior is due to
Process 2 being assigned on the CPU core where the background tasks running on it affect
the computation time.

Figure 11 shows that our implementation has an average accuracy in meeting the
computation deadline of 93.68%. The only scheduling algorithm with the highest average
accuracy in meeting the computation deadline is SJF, followed by our implementation,
FCFS, SnF, and OnF. Although the result shows that SJF is better than our implementation
in meeting the computation deadline, Figure 12 shows that SJF has the worst average
optimization with FCFS as a base reference. Meanwhile, our implementation has an
average of 23.41% of optimization. Our results show that our implementation has good
accuracy in meeting the computation deadline and scheduler optimization compared to
the scheduling framework that only uses a single scheduling algorithm.
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Figure 11. Average accuracy in meeting the computation deadline against previously proposed
scheduling algorithms.
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Figure 12. Average scheduler optimization when compared against the First Come First Serve as base.
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5. Validation
5.1. Simulating the Resource-Constrained Smart Office

To validate the effectiveness of our proposed TSS implementation on the scheduling
framework, we simulate a medium-sized smart office building [31] system that is in the
middle of upgrading the electrical power delivery with the internet connection. The system
resources became constrained due to a decrease in system infrastructure. It makes single
scheduling algorithm harder to find the best task execution arrangement to fit the available
system resources under the computation deadline. With the increases in complexity of
the scheduling problem, we expect that the TSS can optimize the scheduler before the
computation deadline by switching the scheduling algorithm depending on the number
of people inside the building. To ensure that the simulation model is close to the real-
world problem, we only randomized the number of tasks and their duration. Meanwhile,
the maximum number of active types of devices, the resources taken to execute the tasks,
resource constraints, and the number of people inside the building follow the simulation
rule defined in the next section.

5.2. Simulation Configuration

We simulated a smart office building system to schedule the IoT device units shown
in Table 6, where a different number of units are installed and the number of resources
consumed. The resources that act as a bottleneck in this system are the electricity and
connectivity bandwidth for the local area network (LAN) and the wide area networks
(WAN). For this simulation, the electricity constraint is 5000 W, the LAN constraint is
50 MB/s, and the WAN constraint is 100 MB/s. We configured the resource constraints
large enough where only a small degree of optimization is plausible to make it hard to
optimize the scheduler without choosing the correct scheduling algorithm. Based on the
hourly number of people shown in Figure 13, the number of active device unit changes
according to the activation rule shown in Figure 14.

Table 6. Device parameters used in the simulation.

Type of Device Number
of Unit

Resource Taken by One Unit

Electric [W] Local Area Network [MB/s] Wide Area Network [MB/s]

Air conditioner 10 400 12 12

Temperature sensor 10 15 4 6

Motion sensor 8 20 6 8

Smoke sensor 13 16 10 15

Security door 8 100 3 5

Security camera 6 100 10 12

Lighting_0 40 20 1 1

Lighting_1 5 10 1 1

Meanwhile, we dictate the computation deadline to change according to the number
of people inside the building to provide a satisfying service. In Equation (3), bestTime
represents the best-case time complexity of the fastest scheduling, worstTime represents the
worst-case time complexity of the slowest scheduling algorithm, and people represents the
number of people. In the simulation, the value of the bestTime is 7.9182µs and the value of
the worstTime is 0.0831s. Based on these parameters, a new training dataset is randomized
and used to train the same MTL model with no changes in training parameters previously
used in the evaluation.

d=bestTime +
worstTime

people
(3)
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Finally, the unit’s task duration is randomized in the range of 0.1s to 100s, while the
number of scheduled device units needed is randomized between 0 and the max active
number of device units.
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Figure 13. The number of people inside the office for one day.
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Figure 14. The number of device units activation rule based on the number of people.

5.3. Simulation Result
5.3.1. Sampled Scheduling Algorithm Switching

Figure 15 shows the comparison between the TSS-based scheduling framework with
the correct scheduling algorithm switching called scheduling reference. To simplify the
Gantt chart representation, we sampled the hourly result of the scheduling algorithms
switching to five times from the original 1000 simulation data in one hour. As we can see,
TSS leans toward the OnF scheduling algorithm with a low number of people, while TSS
leans toward the FCFS with a high number of people. In other words, as the number of
people inside the building increases, the scheduling algorithm chosen by the TSS changes
from the longest computation time to the shortest computation time.

Although the Gantt chart for the scheduling framework and scheduling reference is
almost similar, the plotted chart is slightly different at the peak hours. As we can see the
chosen scheduling algorithm at 0800, the scheduling framework picked SnF 2 times out
of 5 instead of FCFS. Referring back to Table 1, this is due to the close computation time
taken by the OnF and SnF. By taking the average 24,000 scheduling result for one day, TSS
classification accuracy is 74.788%, which is lower than the classification accuracy we had
from the benchmark result.
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Figure 15. Comparison between the sampled scheduling framework and the scheduling reference.

5.3.2. Deadline Accuracy and Optimization

Figure 16 shows the average deadline accuracy and optimization degree calculated
from 24,000 scheduler data. With the help of fallback scheduling algorithm implementation
in the scheduling framework, it guaranteed almost 100% of computation deadline accuracy.
Furthermore, with resource constraints on the electricity and bandwidths not being small
enough, the optimization degree on scheduling reference and scheduling framework is
low, matching our configuration.
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0.000%

20.000%

40.000%

60.000%

80.000%

100.000%

Deadline accuracy Op�miza�on degree

Scheduling framework Scheduling reference

Figure 16. Average deadline accuracy and optimization degree for one day.

5.4. Discussion

Referring to the hourly number of people inside the building shown in Figure 13,
the behavior of the TSS in picking the scheduling algorithm matches our expectation;
whereas the number of people increases, TSS leans more toward the scheduling algorithm
with the shortest computation time to meet the computation deadline. The computation
deadline window shown in Equation (3) is not as tight as the benchmark program, where
the computation deadline is randomized in a small margin. With more room in the com-
putation deadline, SJF picked less than FCFS due to SJF has faster computation time than
the FCFS. This result aligns with our expectations, where TSS prioritizes the computation
deadline accuracy before the scheduling optimization.

Meanwhile, the TSS accuracy of identifying the correct scheduling algorithm would
be low compared to the accuracy we obtained in Figure 8. With a system configuration
with a low number of resource constraints, it becomes harder for the MTL to classify the
correct scheduling algorithm due to the small number of resources that do not significantly
affect the computation time. Furthermore, the noise added from the background operating
system processes running during the simulation also influences the computation time,
making things worse.
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6. Conclusions

We explore the viability of using MTL to switch the scheduling algorithm in real time
to achieve the best optimization plausible under the computation deadline. In case MTL
makes a wrong decision, the implementation of the fallback scheduling algorithm can
guarantee an average of 93.68% of computation deadline accuracy based on our benchmark
result. Moreover, our results show that the MTL model has 85.140% accuracy in classifying
the best scheduling algorithm for scheduling the tasks based on the parameters given.
Although our smart office simulation shows a minuscule gain in optimization, we got an
average of 99.963% computation deadline accuracy; there was 0.016% difference compared
to the scheduling reference.

For future works, we aim to expand the TSS capability to tackle large-scale distributed
scheduling, such as smart city for efficient city resources management, especially during a
natural disaster where resources are not only limited to consumables but human resources
as well.
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Appendix A

Listing A1. Proposed MTL model implementation on the TensorFlow machine learning library.

1# define the shared layers of the model

2scdlParameters = tf.keras.layers.Input(shape=(3,))

3sL1 = tf.keras.layers.Dense(3)(scdlParameters)

4sL2 = tf.keras.layers.Dense(3)(sL1)

5sL3 = tf.keras.layers.Dense(3)(sL2)

6# define the task specific layers to identify FCFS

7tSL30 = tf.keras.layers.Dense(3, activation="relu")(sL3)

8tSL31 = tf.keras.layers.Dense(2, activation="relu")(tSL30)

9FCFS = tf.keras.layers.Dense(1, activation="sigmoid")(tSL31)

10# define the task specific layers to identify SJF

11tSL20 = tf.keras.layers.Dense(3, activation="relu")(sL3)

12tSL21 = tf.keras.layers.Dense(2, activation="relu")(tSL20)

13SJF = tf.keras.layers.Dense(1, activation="sigmoid")(tSL21)

14# define the task specific layers to identify SnF

15tSL10 = tf.keras.layers.Dense(3, activation="relu")(sL3)

16tSL11 = tf.keras.layers.Dense(2, activation="relu")(tSL10)

17SnF = tf.keras.layers.Dense(1, activation="sigmoid")(tSL11)

18# define the task specific layers to identify OnF

19tSL00 = tf.keras.layers.Dense(3, activation="relu")(sL3)

20tSL01 = tf.keras.layers.Dense(2, activation="relu")(tSL00)

21OnF = tf.keras.layers.Dense(1, activation="sigmoid")(tSL01)

22

23# define the input and output for the model

24model = tf.keras.models.Model(

25inputs=scdlParameters ,

26outputs=[FCFS, SJF, SnF, OnF])
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Listing A2. Parameters used to compile the MTL model.

1# define the combined losses parameter for each classification output

2lossCon = tf.keras.losses.binary_crossentropy

3multitaskLoss = {"0": lossCon, "1": lossCon, "2": lossCon, "3": lossCon}

4multitaskLossWeights = {"0": 1.0, "1": 1.0, "2": 1.0, "3": 1.0}

5

6# compile the model using accuracy to measure the performance

7model.compile(

8optimizer=tf.keras.optimizers.Adam(learning_rate=0.001, decay=0.001 / 3000),

9loss=multitaskLoss ,

10loss_weights=multitaskLossWeights ,

11metrics=["accuracy"])
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