
 information

Article

Unsupervised DNF Blocking for Efficient Linking of
Knowledge Graphs and Tables †

Mayank Kejriwal

����������
�������

Citation: Kejriwal, M. Unsupervised

DNF Blocking for Efficient Linking of

Knowledge Graphs and Tables.

Information 2021, 12, 134. https://

doi.org/10.3390/info12030134

Academic Editors: Pierpaolo Basile

and Annalina Caputo

Received: 15 February 2021

Accepted: 16 March 2021

Published: 19 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Information Sciences Institute, University of Southern California, 4676 Admiralty Way, Ste. 1001,
Marina del Rey, CA 90292, USA; kejriwal@isi.edu
† This research was conceived when the author was a graduate student at the University of Texas at Austin

under the supervision of Daniel P. Miranker. It has since been completed and updated.

Abstract: Entity Resolution (ER) is the problem of identifying co-referent entity pairs across datasets,
including knowledge graphs (KGs). ER is an important prerequisite in many applied KG search and
analytics pipelines, with a typical workflow comprising two steps. In the first ’blocking’ step, entities
are mapped to blocks. Blocking is necessary for preempting comparing all possible pairs of entities,
as (in the second ‘similarity’ step) only entities within blocks are paired and compared, allowing for
significant computational savings with a minimal loss of performance. Unfortunately, learning a
blocking scheme in an unsupervised fashion is a non-trivial problem, and it has not been properly
explored for heterogeneous, semi-structured datasets, such as are prevalent in industrial and Web
applications. This article presents an unsupervised algorithmic pipeline for learning Disjunctive
Normal Form (DNF) blocking schemes on KGs, as well as structurally heterogeneous tables that may
not share a common schema. We evaluate the approach on six real-world dataset pairs, and show
that it is competitive with supervised and semi-supervised baselines.

Keywords: entity resolution; knowledge graphs; blocking; DNF blocking; heterogeneous linking;
table-graph linking

1. Introduction

Entity Resolution (ER) is the identification of co-referent entities across datasets.
Different communities refer to it as instance matching, record linkage, and the merge-
purge problem [1,2]. Scalability indicates a two-step solution [1], as illustrated in Figure 1.
The first step, blocking, mitigates brute-force pairwise comparisons on all entities by clus-
tering entities into blocks and then comparing pairs of entities only within blocks [3]. For
example, let us assume two knowledge graphs (KGs) describing customers (containing
details, such as names, addresses and purchase histories) that must be linked. A blocking
key, such as ‘Tokens(LastName)’, could first be applied to each node in the two KGs, as
shown in the figure. In essence, this is a function that tokenizes the last name of each
customer, and it assigns the customer to a block, indexed by the last-name token. According
to the figure, this would lead to five overlapping blocks. One reason why blocks could
overlap is that some customers may have multiple tokens in their last name e.g., Michael
Ann-Moss .

Blocking results in the selection of a small subset of pairs, called the candidate set,
which is input to a second step (called the ‘similarity’ step) to determine co-reference
using a sophisticated similarity function. A good blocking key can lead to significant
computational savings, as shown in the figure, while leading to minimal (or even no) loss
of recall in the similarity step. While we exclusively address blocking in this work, we
emphasize that it is only one part of a complete ER workflow. Pointers to the literature on
the similarity step (that can often be applied independently of blocking) are provided in
Section 2. We also provide background on the overall ER process, to place this work in
context, in Section 3.

Information 2021, 12, 134. https://doi.org/10.3390/info12030134 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-5988-8305
https://doi.org/10.3390/info12030134
https://doi.org/10.3390/info12030134
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12030134
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12030134?type=check_update&version=2

Information 2021, 12, 134 2 of 31

Figure 1. A basic illustration of the two-step Entity Resolution (ER) workflow on two heterogeneous datasets (shown
here as graphs with nodes and relations). Brute force comparisons would require quadratic time, even given a similarity
function. The blocking step uses an inexpensive function (e.g., tokenizing and indexing on the last name, assuming the
nodes represent people), called a blocking key, which is similar to traditional hashing, but (in the general case) can lead to
overlapping blocks. The similarity function is now only applied to pairs of entities sharing blocks, leading to seven unique
entity pairs. Based on the output of the similarity function, these pairs of entities will be determined to refer to the same
underlying entity (or not).

Blocking methods use a blocking scheme to assign entities to blocks. In some cases,
blocking scheme and key are used interchangeably, but, typically, the former builds on the
latter in a manner that we detail more formally in Section 4. Over the last two decades,
Disjunctive Normal Form (DNF) Blocking Scheme Learners (BSLs) were proposed to
learn DNF blocking schemes using supervised [4,5], semi-supervised [6], or unsupervised
machine learning techniques [7]. DNF-BSLs have emerged as state-of-the-art, because
they operate in an expressive hypothesis space and have demonstrated excellent em-
pirical performance on real-world data [4]. Examples of DNF-BSLs will be provided in
Section 4. However, despite their advantages, current DNF-BSLs assume that input datasets
are tabular and have the same schemas. The latter assumption is often denoted as structural
homogeneity [1]. Taking the earlier example of the customer domain, both of the datasets
may rely on the same schema or ontology (also called a T-Box), which contains concepts
such as Name, Address, Date, Credit Card Number, and so on, as well as properties such
as name_of, lives_in, identified_by, and so on.

The assumption of tabular (or in the more general case of KGs, ontological) structural
homogeneity restricts application of DNF-BSLs to other data models. The recent growth of
heterogeneous KGs and ecosystems, such as the Linked Open Data [8] (in the Semantic Web
community), motivates the development of a DNF-BSL for an arbitrary KG represented
using the Resource Description Framework (RDF) data model. These graphs are often
published by independent sources and are structurally heterogeneous [9]. Such KGs can make
important contributions to multiple downstream search and recommendation applications,
especially in e-commerce [10–12], but also in non-commercial domains, like building better
systems for managing COVID-19 information overload, as evidenced by the success of the
Google Knowledge Graph and the ongoing development of efforts such as the Amazon
Product Graph [13–15]. However, without well-performing, efficient ER that works on
structurally heterogeneous data, limited use can be made of publicly available KGs that are
inexpensive to acquire and download, but have many redundancies and entity-overlap.

Information 2021, 12, 134 3 of 31

In this paper, we present a generic algorithmic pipeline for learning DNF blocking
schemes on pairs of RDF KGs. The formalism of DNF blocking schemes relies on the
existence of a schema. KGs, including RDF datasets published on the Web, may not
have accompanying schemas [8], or in cases involving multiple KGs, may have different,
independently developed schemas. Our proposed approach builds a dynamic schema
using the properties in the KG. The KG dataset can then be logically represented as a
property table, which may be populated at run-time. Previously, property tables were
defined as physical data structures that were used in the implementation of triplestores [16].
By using a logical (rather than physical) property table representation, our approach admits
the application of a DNF-BSL to RDF datasets, including KGs.

As a further special case, the pipeline also admits structurally heterogeneous tabular
inputs. That is, the pipeline can be applied to tabular datasets with different schemas.
Thus, previous DNF-BSLs become special cases of the pipeline, since they learn schemes
on tables with the same schemas. As a second special case, the pipeline accommodates
RDF-tabular heterogeneity, with one input, RDF, and the other, tabular. The utility of
RDF-tabular heterogeneity is particularly apparent when linking datasets between Linked
Open Data and the relational Deep Web [8,17]. The proposed method allows for us, at least
in principle, to build efficient ER systems for doing so.

1.1. Contributions

Specific contributions in this article include:

1. We formalize the problem of learning DNF blocking schemes on structurally hetero-
geneous datasets, including KGs and different-schema tabular dataset pairs.

2. By way of an algorithmic solution, we present a generic pipeline for learning DNF
blocking schemes. We also present an unsupervised instantiation of the generic
pipeline by strategically employing an existing instance-based schema matcher called
Dumas [18]. In addition to schema mappings, Dumas also generate noisy duplicates,
which we recycle and pipe to a new DNF-BSL. The new DNF-BSL only uses two
parameters, which may be robustly tuned for good empirical performance across
multiple domains. The BSL is also shown to have a strong theoretical guarantee.

3. We evaluate the full unsupervised pipeline on six real-world dataset pairs against
two extended baselines, one of which is supervised [4,7]. Our system performance
is found to be competitive, despite training samples not being manually provided.
Given that unsupervised methods exist for the second ER step in both the Semantic
Web and relational communities [1,2], this first unsupervised heterogeneous DNF-BSL
enables, in principle, fully unsupervised ER in both communities.

1.2. Structure of the Article

The rest of the article proceeds, as follows. First, Section 2 describes some related
work in the area, followed by background on the entire entity resolution process in
Section 3. Preliminaries on blocking itself, as well as formalism, are covered in
Section 4. Section 5 describes the generic pipeline, followed by an unsupervised instan-
tiation in Section 6. Section 7 describes the experiments, with results and discussion in
Sections 8 and 9, respectively. The paper concludes (with some guidance on future work)
in Section 10. A table with abbreviations and corresponding expanded forms, as well as an
appendix with supplementary information, are also provided at the end of the work.

2. Related Work

Elmagarmid et al. comprehensively surveyed ER [1], with a generic approach repre-
sented by Swoosh [19]. Swoosh comprises a family of ER algorithms, including G-Swoosh,
R-Swoosh, and F-Swoosh, with different theoretical guarantees and levels of expressiveness.
However, Swoosh does not directly address the blocking problem.

A fairly recent survey on ER was provided in [20]. Within the ER community, block-
ing has separately witnessed much specific research, with Christen surveying numerous

Information 2021, 12, 134 4 of 31

blocking methods [3], including traditional blocking and Sorted Neighborhood. In the
specific research area of learning blocking schemes, which is what this work also builds
on, Bilenko et al. [4] and Michelson and Knoblock [5] independently proposed the first
supervised DNF-BSLs in 2006. Since then, a semi-supervised adaptation of the BSL pro-
posed by Bilenko et al. has been published [4,6], as well as an unsupervised system [7].
The four systems assume structural homogeneity. We discuss their core principles in
Section 5.3, and subsequently detail how the proposed approach generalizes them.

Since the advent of large knowledge graphs (KGs) on the Web [13,21,22], the problem
of ER has taken on new urgency [23–26]. Recently, similarity techniques have become
quite advanced, especially due to the rise of language representation models, such as BERT,
GPT-3, and T5 [27–29], as well as so-called knowledge graph embeddings [30–32]. These
models can be used to automatically ‘embed’ data items (including nodes, edges, words,
or even sentences, depending on the model and input) into a continuous, low-dimensional,
and real-valued vector space. Even using simple techniques, like logistic regression or
cosine similarity (in the vector space), the vectors can be used to decide when two entities
refer to the same underlying entity. Hence, the problem of feature engineering has largely
been solved. However, because of the size of these KGs, blocking continues to be an
important step, and research on blocking has lagged behind that of developing advanced
similarity techniques. This paper is an attempt in that direction.

Heterogeneous blocking may be performed without learning a DNF scheme. One
example is Locality Sensitive Hashing (LSH) [33,34], employed by the Harra system, for
instance [35]. LSH is an algorithmic method that hashes similar inputs into the same
‘buckets’ with high probability. The efficacy of the algorithm depends on the precise
definition of ‘similarity’ applied, and how high the similarity should be. With these caveats
in place, an LSH ‘bucket’ could be thought of as a block. While LSH is promising, it
only applies to specific distance measures, such as Jaccard and cosine distance (although
recently, a measure was also proposed for the edit distance [36]). It is not clear how one
would apply LSH to more complicated similarity functions, including machine learning
classifiers.

Another good application of LSH for instance-based matching of large ontologies
is [37]. The Typifier system by Ma et al. is an example that relies on type inferencing
and it was designed for Web data published without semantic types [38]. In contrast,
DNF-BSLs can be applied generally, with multiple studies showing strong empirical
performance [4–7]. Other more recent blocking methods include methods, such as sky-
blocking [39], on top of which some recent work has also been developed [40]. In the
skyblocking framework, each blocking scheme is mapped as a point to a multi-dimensional
scheme space. The authors present efficient algorithms for learning such schemes. Finally,
although related, clustering is technically treated separately from blocking in the litera-
ture [3]. However, recent approaches involving micro-clustering may show more promise
for applying clustering methodologies to ER [41].

In the Semantic Web, ER is simultaneously known as instance matching and link
discovery, and it has been surveyed by Ferraram et al. [2]. Existing work in the Semantic
Web tends to restrict inputs to RDF. Also, most techniques in the Semantic Web do not
learn schemes, but instead present graph-based blocking methods, with a good example
being Silk [9]. Another recent method by Zhu et al. [25] uses unsupervised methods on
multi-type graphs. Unfortunately, this method suffers from high complexity, and would
likely benefit from the blocking methods described in this paper. In our own prior work,
we have separately presented blocking methods for RDF graphs and for tables [7,26], but
this is the first work to attempt to combine both types of inputs in a unified framework
and demonstrate viable empirical performance on a range of datasets. A more theoretical
treatment on graph-theoretic blocking schemes can be found in [42]. This article also
significantly combines and builds on non-archival work by the author [42–46].

The framework in this paper also relies on schema mapping. Schema mapping is
an active research area, with a good survey provided by Bellahsene et al. [47]. Gal notes

Information 2021, 12, 134 5 of 31

that it is a difficult problem [48]. Schema matchers may return 1:1 or n:m mappings (or
even 1:n and n:1). An instance-based schema matcher relies on data instances to perform
schema matching [47]. A good example is Dumas [18], which relies on an inexpensive
duplicates generator to perform unsupervised schema matching [18]. We describe Dumas in
Section 6. An example of a related, and very recent, work that uses metadata (such as
matching dependencies) to enhance the ER process is [49]. In principle, this work is similar
to ours. The work by Caruccio et al. [50], while not directly about entity resolution, tackles
the related problem of mining relaxed functional dependencies from data.

The property table representation used in this paper is a physically implemented
data structure in the Jena triplestore API (https://jena.apache.org/, accessed on 18 March
2021), [16]. In this paper, it is used as a logical data structure. We note that the concept of
logically representing one data model as another has precedent. In particular, literature
abounds with proposed methods on how to integrate relational databases (RDB) with
the Semantic Web. Sahoo et al. extensively surveyed this topic, called RDB2RDF [51].
A use-case is the Ultrawrap architecture, which utilizes RDB2RDF to enable real-time
Ontology-based Data Access or OBDA [52]. We effectively tackle the inverse problem by
translating an RDF graph to a logical property table. To our knowledge, this is the first
application to devise such an inverse translation for heterogeneous ER.

3. Background: Two-Step Entity Resolution (ER)

In this section, we begin with a conceptual background on ER. As defined earlier,
ER is the problem of identifying pairs of entities across databases that refer to the same
underlying entity. While an abstract example was provided earlier in Figure 1, a more
concrete example is provided in Figure 2.

Given n entities and a boolean link specification or similarity function that determines
whether two entities are equivalent, a naïve ER application would run in time O(n2). Even
if we only limited comparisons between entities of the same type (e.g., Person-type entities
would only be compared to other Person-type entities), there are still many unnecessary
comparisons between the entities in Graphs 1 and 2 in Figure 2. If these graphs each
contained thousands, or even millions of entities (which is not uncommon), the total
number of pairwise comparisons would number in the trillions (106 × 106). Of course,
in the worst case, if all entities were duplicates of one another, such comparisons are
theoretically unavoidable. In practice, an entity in one knowledge graph is only linked to a
small number (typically, far less than five even) of entities in the other knowledge graph.
Therefore, for a million-node KG, the optimal number of similarity comparisons would be
on the order of millions (the size of the KG), not trillions (the quadratic complexity). The
question is, how do we discover most or all of the duplicate relationships while minimizing
the number of comparisons, such that the number is closer to the optimal (≈ O(n)), rather
than the exhaustive O(n2) number of necessary comparisons?

The ER community has converged on a set of techniques, called ‘blocking’, as an
answer to this question. Early in the relational database community, for example, an
algorithm called Sorted Neighborhood (SN) [53] would accept a rigidly structured tabular
database as input, and sort the table by using a sorting key. For example, the table may
be sorted on the basis of the ‘last name’ column, or even the date of birth. The idea was
that records that were truly duplicates would be close to one another in the sorted table,
assuming that the sorting key (also called a ‘blocking key’) was appropriate to begin with.
A window of constant size is then slid over the records, and records sharing a window
are paired and become candidates for the second ER step. This provably leads to an O(n)
complexity without significantly sacrificing the recall of duplicate detection.

In several studies, SN was verified to have excellent theoretical run-time guarantees
and good empirical performance [3,53]. It had also been scaled to MapReduce and other
highly parallel architectures [54]. However, it is not clear how the method can be obviously
applied to graphs; another major problem is that the method assumes the provision of
a sorting key, which is difficult to design from scratch, with guarantees. This paper is

https://jena.apache.org/

Information 2021, 12, 134 6 of 31

primarily concerned with the learning of such a blocking key, or its more generalized
counterpart, called a blocking scheme. While previous work has shown how an expressive
scheme can be learned given training data, our attempt relies on self-supervision to avoid
the need for perfectly labeled training data. An added benefit is that the method also
works for structurally heterogeneous datasets. In contrast, the majority of previous work
in the blocking literature has tended to rely on the assumption of structural homogeneity,
as we described earlier in Section 2, although more recent work has started lifting this
assumption [26]. In the next section, we provide more formalism on blocking schemes and
blocking scheme learning.

Figure 2. An instance of the Entity Resolution (ER) problem on two Resource Description Framework
(RDF) knowledge graphs. In Semantic Web terminology, the ‘duplicate’ entities between the two
graphs would need to be interlinked using a special property called owl:sameAs.

Information 2021, 12, 134 7 of 31

4. Preliminaries and Formalism

We present blocking-specific definitions and examples to place the remainder of the
work in context. Consider a pair of datasets R1 and R2. Each dataset individually conforms
to either the RDF or tabular data model. An RDF dataset may be visualized as a directed
graph or equivalently, as a set of triples. A triple is a three-tuple of the form (subject, property,
object). Note that a property is also called ‘predicate’ although we will continue to use
‘property’ for the purposes of uniformity. A tabular dataset conforms to a tabular schema,
which is the table name followed by a set of fields. The dataset instance is a set of tuples,
with each tuple comprising field values.

Example 1. Dataset 1 (in Figure 3) is a more simplified version of the running example introduced
earlier in Figure 2. It is an RDF dataset visualized as a directed graph G = (V, E), and it can be
equivalently represented as a set of |E| triples. For example, (Mickey Beats, hasWife, Joan Beats)
would be one such triple in the triples representation. Datasets 2 and 3 are tabular dataset examples,
with the former having schema Emergency Contact(Name, Contact, Relation). The first tuple of
Dataset 2 has field values Mickey Beats, Joan Beats, and Spouse, respectively. The keyword null is
reserved. We will use the data in Figure 3 as the basis for our running examples in this section.

Figure 3. Three example datasets exhibiting various kinds of heterogeneity. Dataset 1 is a knowledge
graph (KG) that could be represented using RDF (for example), while the other two datasets form a
pair of structurally heterogeneous tables.

Information 2021, 12, 134 8 of 31

According to the RDF specification (http://www.w3.org/RDF/, accessed on 18 March
2021), subjects and properties must necessarily be Uniform Resource Identifiers (URIs),
while an object node may either be a URI or a literal. URI elements in RDF files typically
have associated names (or labels), obtained through de-reference. For ease of exposition, we
henceforth refer to every URI element in an RDF file by its associated name. Additionally,
note that in the most general case, RDF datasets do not have to conform to any schema.
This is why they are commonly visualized as semi-structured datasets, and not as tables. In
Section 5.1, we show how to dynamically build a property schema and logically represent
RDF as a tabular data structure.

An entity is defined as a semantically distinct subject node in an RDF dataset, or as
a (semantically distinct) tuple in a tabular dataset. The entity referring to Mickey Beats
is shown in red in all datasets in Figure 3. In this context, ER is the process of resolving
semantically equivalent (but possibly syntactically different) entities. As earlier described,
the majority of ER research has traditionally assumed structural homogeneity, an example
of which would be identifying that the two highlighted tuples in Dataset 3 are duplicates.

In the Semantic Web, ER is operationalized by connecting two equivalent entities
with an owl:sameAs (http://www.w3.org/TR/owl-ref/, accessed on 18 March 2021),
property edge. For example, the two nodes referring to Mickey Beats in Dataset 1 should
be connected while using an owl:sameAs edge. Easy operationalizing of ER (and more
generally, ‘link specification’ [9]) explains in part the ongoing interest in ER in the Semantic
Web [2]. In the relational setting, ER is traditionally operationalized through joins or
mediated schemas. It is less evident how to operationalize ER across RDF-tabular inputs,
such as linking Datasets 1 and 2. We return to this issue in Section 5.1.

In order to introduce the current notion of DNF blocking schemes, tabular structural
homogeneity is assumed for the remainder of this section. In later sections, we generalize
the concepts as a core contribution of this paper.

The most basic elements of a blocking scheme are indexing functions hi(xt) [4]. An
indexing function accepts a field value from a tuple as input and returns a set Y that
contains 0 or more blocking key values (BKVs). A BKV identifies a block in which the tuple
is placed. Intuitively, one may think of a block as a hash bucket, except that blocking is
one-many while hashing is typically many-one [3]. For example, if Y contains multiple
BKVs, then a tuple is placed in multiple blocks.

Definition 1. An indexing function hi : Dom(hi)→ U∗ takes as input a field value xt from some
tuple t and returns a set Y that contains 0 or more Blocking Key Values (BKVs) from the set of all
possible BKVs U∗.

The domain Dom(hi) is usually just the string datatype. The range is a set of BKVs
that the tuple is assigned to. Each BKV is represented by a string identifier.

Example 2. An example of an indexing function is Tokens. When applied to the Last Name field
value of the fourth tuple in Dataset 3, the output set Y is {W., Beats, Jr.}.

This leads to the notion of a general blocking predicate (GBP). Intuitively, a GBP
pi(xt1 , xt2) takes as input field values from two tuples, t1 and t2, and uses the ith indexing
function to obtain BKV sets Y1 and Y2 for the two arguments. The predicate is satisfied if
Y1 and Y2 share elements, or equivalently, if t1 and t2 have a block in common.

Definition 2. A general blocking predicate pi : Dom(hi)× Dom(hi)→ {True, False} takes as
input field values xt1 and xt2 from two tuples, t1 and t2, and returns True if hi(xt1) ∩ hi(xt2) 6= Φ,
and returns False otherwise.

Each GBP is always associated with an indexing function.

http://www.w3.org/RDF/
http://www.w3.org/TR/owl-ref/

Information 2021, 12, 134 9 of 31

Example 3. Consider the GBP ContainsCommonToken, associated with the previously introduced
Tokens. Suppose that it was input the Last Name field values from the first and fourth tuples in
Dataset 3. Because these field values have a token (Beats) in common, the GBP returns True.

A specific blocking predicate (SBP) explicitly pairs a GBP to a specific field.

Definition 3. A specific blocking predicate is a pair (pi, f), where pi is a general blocking predicate
and f is a field. A specific blocking predicate takes two tuples t1 and t2 as arguments and applies pi
to the appropriate field values f1 and f2 from both tuples. A tuple pair is said to be covered if the
specific blocking predicate returns True for that pair.

Previous DNF research assumed that all available GBPs can be applied to all fields
of the relation [4–7]. For this reason, they were neither obviously applicable to different-
schema relational databases, nor to knowledge graphs. Hence, given a relation R with m
fields in its schema, and s GBPs, the number of SBPs is exactly ms. Note that structural ho-
mogeneity implies exactly one input schema, even if there are multiple relational instances.
Finally, a DNF blocking scheme is defined as:

Definition 4. A DNF blocking scheme fP is a positive propositional formula constructed in
Disjunctive Normal Fo-rm or DNF (a disjunction of terms, where each term is a conjunction of
literals), using a given set H of SBPs as the set of atoms. Additionally, if each term is constrained to
comprise at most one atom, then the blocking scheme is referred to as disjunctive.

SBPs cannot be negated, since the DNF scheme is a positive formula. A tuple pair is
said to be covered if the blocking scheme returns True for that pair. Intuitively, this means
that the two constituent tuples share a block. In practice, both duplicate and non-duplicate
tuple pairs can end up getting covered, since blocking is just a pre-processing step.

Example 4. Consider the disjunctive scheme (ContainsCommonToken, Last Name) ∨ (SameFirst-
Digit, Zip), applied on Dataset 3. While the two tuples referring to Mickey Beats would share a
block (with the BKV Beats), the non-duplicate tuples referring to Susan and Samuel would also
share a block (with the BKV 6). Additionally, note that the first and fourth tuples share more than
one block, since they also have BKV 7 in common.

Given a blocking scheme, a blocking method would need to map tuples to blocks
efficiently. According to the definition provided earlier, a blocking scheme takes a tuple
pair as input. In practice, linear-time hash-based techniques are usually applied.

Example 5. To efficiently apply the blocking scheme in the previous example on each individual
tuple, tokens from the field value corresponding to field Last Name are extracted, along with the first
character from the field value of the Zip field, to obtain the tuple’s set of BKVs. For example, being
applied to the first tuple of Dataset 3, the BKV set {Beats, 7} is extracted. An index is maintained,
with the BKVs as keys and tuple pointers as values. With n tuples, traditional blocking computes
the blocks in time O(n) [3].

Let the set of generated blocks be Π. Π contains sets of the form Bv, where Bv is the
block that is referred to by the BKV v. The candidate set of pairs Γ is given below:

Γ =
⋃

Bv∈Π
{(r, s)}, ∀r, s ∈ Bv|r ∈ R1, s ∈ R2 (1)

Γ is precisely the set input to the second step of ER, which classifies each pair as a
duplicate, non-duplicate, or probable duplicate [55]. Blocking should produce a small Γ
but with high coverage and density of duplicates. Metrics quantifying these properties are
defined in Section 7.

Information 2021, 12, 134 10 of 31

Finally, schema mapping is utilized in the paper. The formal definition of a mapping is
quite technical; the survey by Bellahsene et al. provides a full treatment [47]. In this paper,
an intuitive understanding of the mapping as a pair of field-sets suffices. For example,
({Name},{First Name, Last Name}) is a 1:n mapping between Datasets 2 and 3. More
generally, mappings may be of cardinality n:m. The simplest case is a 1:1 mapping, with
singleton components.

5. The Generic Pipeline

Figure 4a shows a schematic of a generic pipeline for DNF blocking scheme learning
on heterogeneous datasets. Specifically, two heterogeneous datasets are initially provided
as input, with either dataset being RDF or tabular. If the dataset is RDF, then we logically
represent it as a property table. We describe the details and advantages of this tabular data
structure in Section 5.1. The key point to note is that the schema matching module takes
two tables as input, regardless of the data model, and outputs a set of schema mappings Q.
An extended DNF-BSL accepts Q and also a training set of duplicates and non-duplicates as
input, and learns an extended DNF blocking scheme. The DNF-BSL and blocking scheme
need to be extended, because tables are now structurally heterogeneous, and the Section 4
formalism does not natively apply. In Section 5.2, the formalism is extended to admit
structural heterogeneity. Figure 4b shows an unsupervised instantiation of the generic
pipeline. We describe the details in Section 6.

Figure 4. (a) shows a generic pipeline for learning a DNF blocking scheme on heterogeneous datasets,
with (b) showing an unsupervised instantiation.

Information 2021, 12, 134 11 of 31

5.1. Property Table Representation

Despite their formal description as sets of triples, RDF files are often physically stored
in triplestores as sparse property tables [16]. In this paper, we adapt this table instead as a
logical tabular representation of RDF. To enable the logical construction on RDF dataset
R, we define the property schema {subject} ∪ {p|∃(s, p, o), (s, p, o) ∈ R}. In essence, we
flatten the graph by assigning each distinct property (or edge label) a corresponding field
in this schema, along with an extra subject field. Every distinct subject in the triples-set has
exactly one corresponding tuple in the table.

For example, Figure 5 is the property table representation of Dataset 1 in Figure 3. If a
subject does not have a corresponding object value for a given property, then the reserved
keyword null is entered. If a subject has multiple object values for a property, the values are
concatenated using a reserved delimiter; (in Figure 5). Technically, the field values now
have set semantics, with null representing the empty set. Additionally, the original set of
triples can be losslessly reconstructed from the property table (and vice versa), making it
an information-preserving logical representation. Although intuitively straightforward,
we detail these lossless conversions in the Appendix A.

Figure 5. Property table representation of Dataset 1 in Figure 3.

The physical property table was proposed to eliminate expensive property-property
self-joins that occur frequently in SPARQL (http://www.w3.org/TR/rdf-sparql-query/,
accessed on 18 March 2021) queries. For ER, the logical data structure is useful, because it
allows for a dynamic schema that is resolvable at run-time. Triplestores, like Jena, allow
updating and querying of RDF graphs, despite the underneath tabular representation [16].
If the RDF dataset is already stored in such a triplestore, then it would not have to be
moved prior to ER. This gives the property table a systems-level advantage.

More importantly, having a schema for an RDF dataset means that we can invoke
a suitable schema matcher in the generalized pipeline. As we subsequently show, the
extended DNF-BSL in the pipeline requires the datasets to have (possibly different) schemas.
Finally, representing RDF as a table allows for us to address RDF-tabular heterogeneity,
by reducing it to tabular structural heterogeneity. Traditional ER operations become well-
defined for RDF-tabular inputs.

One key advantage of the property schema is that it does not rely on RDF Schema
(RDFS) metadata. In practice, this allows for us to represent any file on Linked Open Data
tabularly, regardless of whether metadata are available.

Even in the simple example of Figure 5, we note that the property table is not without
its challenges. It is usually sparse, and it may end up being broad, for RDF datasets with
many properties. Furthermore, properties are named using different conventions (for
example, the prefix Has occurs in all the properties in Figure 5) and it could be opaque,
depending on the dataset publisher. We empirically show (Section 7) that the instantiated
pipeline (Section 6) can handle these difficulties.

5.2. Extending the Formalism

The formalism in Section 4 assumed structural homogeneity. We extend it to accom-
modate structural heterogeneity. As input, consider two datasets R1 and R2. If either
dataset is in RDF, we assume that it is in property table form. Recall the original definition
of SBPs provided earlier. SBPs are associated with a single GBP and a single field, making

http://www.w3.org/TR/rdf-sparql-query/

Information 2021, 12, 134 12 of 31

them amenable only to a single schema. To account for heterogeneity, we extend SBPs by
replacing the field input with a mapping. Denote, as A1 and A2, the respective sets of fields
of datasets R1 and R2. We define simple extended SBPs below:

Definition 5. A simple extended specific blocking predicate is a pair (pi, m) where pi is a general
blocking predicate and m = ({ f1}, { f2}) is a mapping from a single field f1 ∈ A1 to a single field
f2 ∈ A2. The predicate takes two tuples t1 and t2 as arguments and applies pi to the field values
corresponding to f1 and f2 in the two tuples, respectively.

The correspondence in this definition is denoted as simple, since it uses a mapping of
the simplest cardinality (1:1). The earlier definition of a specific blocking predicate can be
reformulated as a special case of the stated definition, with A1 = A2 and f1 = f2.

The SBP semantics are not evident if the mapping cardinality is n:m, 1:n or n:1, which
is, between two arbitrary field-subsets, F1 ⊆ A1 and F2 ⊆ A2. If we interpret the two
sets as representing |F1||F2| 1:1 mappings, then we obtain a set of simple extended SBPs
{(pi, ({ f1}, { f2}))| f1 ∈ F1, f2 ∈ F2}.

The interpretation above is motivated by the requirement that an SBP should always
return a boolean value. We approach the problem by using the n:m mappings to construct
the set of simple extended SBPs, as shown above. We then use disjunction as a combine
operator on all elements of the constructed set to yield a single boolean result. We can then
define complex extended SBPs.

Definition 6. A complex extended specific blocking predicate is a pair (pi, M) where pi is a general
blocking predicate and M is a mapping from a set F1 ⊆ A1 to a set F2 ⊆ A2. The predicate takes
two tuples t1 and t2 as arguments and then applies on them |F1||F2| simple extended SBPs (pi, m),
where m ranges over all 1:1 mappings in the set {({ f1}, { f2})| f1 ∈ F1, f2 ∈ F2}. The predicate
returns the disjunction of these |F1||F2| values as the final output.

Example 6. Consider the mapping between sets {Name} in Dataset 2 and {First Name, Last Name}
in Dataset 3, in Figure 3. Let the input GBP be ContainsCommonToken. The complex extended
SBP corresponding to these inputs would be ContainsCommonToken({Name}, {First Name}) ∨
ContainsCommonToken({Name}, {Last Name}). This complex extended SBP would yield the same
result as the simple extended SBP ContainsCommonToken({Na-me},{Name}) if a new field called
Name is derived from the merging of the First Name and Last Name fields in Dataset 3.

An operator, like conjunction, is theoretically possible, but it may prove restrictive
when learning practical schemes. The disjunction operator makes complex extended SBPs
more expressive than simple extended SBPs, but it requires more computation (Section 5.3).
Evaluating alternate combine operators is left for future work.

Finally, (simple or complex) extended DNF schemes can be defined in a similar vein as
the earlier definition on DNF blocking schemes, using (simple or complex) extended SBPs
as atoms. One key advantage of using disjunction as the combine operator in Definition 6 is
that, assuming simple extended SBPs as atoms for both simple and complex extended DNF
schemes, the scheme remains a positive boolean formula, by virtue of the distributivity of
conjunction and disjunction.

5.3. Extending Existing DNF-BSLs

Existing DNF-BSLs [4–7] rely on similar high-level principles, which is to devise an
approximation algorithm for solving the NP-hard optimization problem that was first
formalized by Bilenko et al. [4]. The approximation algorithms are different, in that
they require different parameters and levels of supervision. These are detailed below
and summarized in Table 1. These BSLs were only originally designed for structurally
homogeneous tables, with a single field-set A. We describe their underlying core principles
before describing extensions in keeping with the formalism in Section 5.2.

Information 2021, 12, 134 13 of 31

Table 1. Disjunctive Normal Form Blocking Scheme Learner (DNF-BSL) Systems.

ID System Parameters Supervision

1 Michelson and Knoblock [5] ε, k Supervised

2 Bilenko et al. [4] ε, η, k Supervised

3 Cao et al. [6] s, ε, τ, α, k Semi-supervised

4 Kejriwal and Miranker [7] Generator: c, ut, lt, d, nd; Learner: ε, η, k Unsupervised

5 Algorithm 1 herein κ, k Unsupervised

Assume a set of GBPs G. The core of all approximation algorithms would first construct
a search space of SBPs H by forming the cross product of G and A. The goal of the
algorithm is to choose a subset H′ ⊆ H, such that the optimization condition (we describe
the condition here intuitively, and formally state it in the Appendix A). laid out by Bilenko
et al. is satisfied, at least approximately [4]. The condition assumes that training sets of
duplicates D and non-duplicates N are provided. Intuitively, the condition states that the
disjunctive blocking scheme that formed by taking the disjunction of SBPs in H′ covers
(see Definition 4) at least ε|D| duplicates, while covering the minimum possible non-
duplicates [4]. Note that ε is a parameter that is common to all four systems (ε was
designated as min_thresh in the original System 1 paper [5], and σ in the System 3 paper [6])
in Table 1.

A beam search parameter k (also common to all four systems) is required in order to
learn a DNF scheme (as opposed to just disjunctive). This parameter is used to supple-
ment the original set H with terms, to obtain a new set Hc. Figure 6 demonstrates this
combinatorial process.

Figure 6. An example showing how Hc is formed.

H originally consists of the SBPs a, b and c. These SBPs cover some tuple pairs (TPs).
Suppose that k = 2. A term of size 2 is formed by checking if any TP is covered by (at
least) two SBPs. For example, TP-3 is covered by SBPs a and b and, hence, also covered by
the term a ∧ b. For k > 2, terms from size 2 to size k are recursively added to H; the final
supplemented set is denoted as Hc. Note that for |H| predicates, building Hc takes O(|H|k)
time per TP. Given the exponential dependence on k and diminishing returns, the previous
results capped k at 2 [4,7]. If k = 1, Hc = H.

The set H′ ⊆ Hc that is now chosen by the approximation scheme would potentially
consist of terms and SBPs, with their disjunction yielding a k-DNF scheme. A k-DNF
formula has at most k literals in each term.

While System 1 only requires ε and k as its parameters, Systems 2 and 4 prune their
search spaces by removing all SBPs and terms from Hc that cover more than η|N| non-

Information 2021, 12, 134 14 of 31

duplicates. Note that this step heuristically improves both (because Hc now contains only
a few, high-quality elements) quality and run-time. It comes at the risk of failure, since
if the search space is pruned excessively (by high η), it may become impossible to cover
at least ε|D| duplicates. Systems 3 and 4 require less supervision, but significantly more
parameter tuning, given they rely on many more parameters.

Systems 1–3 rely on different (surveyed briefly in the Appendix A) Set Covering
(SC) variants [56]. All three systems can be extended by constructing a search space of
complex extended SBPs using G and the mappings set Q, instead of G and a field set A.
The underlying SC approximations operate in this abstract search space to choose the final
set H′. An extended DNF scheme is formed by a disjunction of (extended) elements in H′.

Modifying System 4 is problematic because the system is unsupervised and runs in
two phases. The first phase (denoted as generator) generates a noisy training set, and the
second phase (denoted learner) performs feature-selection on the noisy set to output a DNF
blocking scheme. The feature-selection based learner is similar to Systems 1–3 and can be
extended. Unfortunately, the generator explicitly assumes homogeneity, and it cannot be
directly extended to generate training examples for heterogeneous datasets. This implies
that the DNF-BSL component of the proposed generic pipeline in Figure 4a cannot be
instantiated with an existing unsupervised system.

In the event that a schema matcher (and, thus, Q) is unavailable in Figure 4a, we
present a fall-back option. Specifically, we build a set Q of all 1:1 mappings, |Q| = |A1||A2|.
Recall that Ai is the field set of dataset i. We denote the constructed set H of SBPs as
simple exhaustive. Note that for the set of all mappings (≈ 2|A1|2|A2|), the constructed set
H (denoted complex exhaustive) is not computationally feasible for non-trivial cases. Even
the simple exhaustive case is only a fall-back option, since a true set of 1:1 mappings Q
would be much smaller (at most min(|A1|, |A2|)) than this set.

6. An Unsupervised Instantiation

A key question addressed in this work is whether the generic pipeline can be instan-
tiated in an unsupervised fashion. As we showed earlier, existing DNF-BSLs that can be
extended require some form of supervision. An unsupervised heterogeneous DNF-BSL
is important because, in principle, it enables a fully unsupervised ER workflow in both
the relational and Semantic Web communities. As the surveys by Elmagarmid et al. and
Ferraram et al. note, unsupervised techniques for the second ER step do exist already [1,2].
A second motivation is the observation that existing unsupervised and semi-supervised
homogeneous DNF-BSLs (Systems 3–4) require considerable parameter tuning. Parameter
tuning is being increasingly cited as an important algorithmic issue, in applications ranging
from schema matching [57] to generic machine learning [58]. Variety in Big Data implies
that algorithm design cannot discount parameter tuning.

We propose an unsupervised instantiation with a new DNF-BSL that only requires
two parameters. In Table 1, only the supervised System 1 requires two parameters. The
schematic of the unsupervised instantiation (of the generic pipeline in Figure 4a) is shown
in Figure 4b. We use the existing schema matcher, Dumas, in the instantiated pipeline [18].
Dumas outputs 1:1 field mappings by first using a duplicates generator to locate tuple
pairs with high cosine similarity. In the second step, Dumas uses Soft-TFIDF to build a
similarity matrix from each generated duplicate. If n duplicates are input to the second
step, then n similarity matrices are built and then averaged into a single similarity matrix.
The assignment problem is then solved by invoking the Hungarian Algorithm on this
matrix [59]. This results in exactly min(|A1|, |A2|) 1:1 field mappings (the set Q) being
output.

In addition to using Q, we recycle the noisy duplicates of Dumas and then pipe them
into Algorithm 1. Note that Dumas does not generate non-duplicates. We address this
issue in a novel way, by permuting the generated duplicates set D. Suppose that D contains
n tuple pairs {(r1, s1), . . . (rn, sn)}, with each r, s, respectively, from datasets R1, R2. By
randomly permuting the pairs in D, we heuristically obtain non-duplicate pairs of the

Information 2021, 12, 134 15 of 31

form (ri, sj), i 6= j. Note that (at most) n! distinct permutations are possible. For balanced
supervision, we set |N| = |D|, with N the permutation-generated set.

Algorithm 1 Learn Extended k-DNF Blocking Scheme.

Input : Set D of duplicate tuple pairs, Set Q of mappings
Parameters : Beam search parameter k, SC-threshold κ
Output : Extended DNF Blocking Scheme B
Method : //Step 0: Construct sets N and H
1. Permute pairs in D to obtain N, |N| = |D|
2. Construct set H of simple extended SBPs using set G of GBPs and Q
3. Supplement set H to get set Hc using k
//Step 1: Build Multimaps M′D and M′N
4. Construct MD =< X, HX >, X is a tuple pair in D, HX ⊆ Hc contains the elements in
Hc covering X
5. Repeat previous step to build MN for tuple pairs in N
6. Reverse MD and MN to respectively get M′D and M′N
//Step 2: Run approximation algorithm
for all X ∈ keyset(M′D) do

8. Score X by using formula |M′D(X)|/|D| − |M′N(X)|/|N|
9. Remove X if score(X) < κ

end for
11. Perform W-SC on keys in M′D using Chvatal’s heuristic, weights are negative scores
//Step 3: Construct and output DNF blocking scheme
12. B := Disjunction of chosen keys
13. Output B

Empirically, the permutation is expected to yield a precise N because of observed
duplicates sparsity in ER datasets [3,7]. This sparsity is also a key tenet underlying the
blocking procedure itself. If the datasets were dense in duplicates, blocking would not
yield any savings.

Algorithm 1 shows the pseudocode of the extended DNF BSL. Inputs to the algorithm
are the piped Dumas outputs, D and Q. To learn a blocking scheme from these inputs,
two parameters, k and κ, beed to be specified. Similar to (extended) Systems 1–3 in Table 1,
G, Q, and k are used to construct the search space, Hc. Note that G is considered the
algorithm’s feature space, and it is not a dataset-dependent input (or parameter). Designing
an expressive G has computational and qualitative effects, as we empirically demonstrate.
We describe the GBPs that are included in G in Section 7.

Step 0 in Algorithm 1 is the permutation step just described to generate the non-
duplicates set N. G and Q are then used to construct the set H of simple extended (because
Dumas only outputs 1:1 mappings) SBPs, with |H| = |G||Q|. H is supplemented (using
parameter k) to yield Hc, as earlier described in Section 5.3.

Step 1 constructs multimaps (multimap keys reference multiple values, or a value set)
on which Set Covering (SC) is eventually run. As a first logical step, multimaps MD and
MN are constructed. Each tuple pair (TP) in D is a key in MD, with the SBPs and terms
in Hc covering that TP comprising the value set. MD is then reversed to yield M′D. M′N
is built analogously. Figure 7 demonstrates the procedure, assuming that D contains TPs
1-5, covered as shown in Figure 6. The time complexity of building (both) M′D and M′N is
O(|H|k(|D|+ |N|)).

Information 2021, 12, 134 16 of 31

Figure 7. Step 1 of Algorithm 1, assuming the information in Figure 6.

In Step 2, each key is first scored by calculating the difference between the fractions of
covered duplicates and non-duplicates. A threshold parameter, κ, is used to remove the
SBPs and terms that have low scores. Intuitively, κ tries to balance the conflicting needs
of previously described parameters, ε and η, and reduce tuning effort. The range of κ is
[−1, 1]. An advantage of the parameter is that it has an intuitive interpretation. A value
that is close to 1.0 would indicate that the user is confident about low noise-levels in inputs
D and Q, since high κ implies the existence of elements in Hc that cover many positives
and few negatives. Because many keys in M′D are removed by high κ, this also leads to
computational savings. However, setting κ too high (perhaps because of misguided user
confidence) could potentially lead to excessive purging of M′D, and subsequent algorithm
failure. Experimentally, we show that κ is easily tunable and even high values of κ are
robust to noisy inputs.

Weighted Set Covering (W-SC) is then performed using Chvatal’s algorithm (we
include Chvatal’s algorithm in the Appendix A.3 survey) [56], with each key in M′D acting as
a set and the tuple pairs covered by all keys as elements of the universe set U . For example,
assuming that all SBPs and terms in the keyset of M′D in Figure 7 have scores above κ,
U = {1, 2, 3, 4, 5}. Note that only M′D is pruned (using κ) and, also, W-SC is performed only
on M′D. M′N only aids in the score calculation (and subsequent pruning process) and may
be safely purged from memory before W-SC commences.

W-SC needs to find a subset of the M′D keyset that covers all of U and with minimum
total weight. For this reason, the weight of each set is the negative of its calculated score.
Given that sets chosen by W-SC actually represent SBPs or terms, their disjunction is the
k-DNF blocking scheme.

Under plausible (essentially, assuming that P ⊂ NP) complexity assumptions, Chvatal’s
algorithm is essentially the best-known polynomial-time approximation for W-SC [60]. For
example, Bilenko et al. used Peleg’s approximation to Red-Blue SC [61,62], which is known to
have worse bounds [62]. The proposed DNF-BSL has the strongest theoretical approximation
guarantee of all systems in Table 1.

7. Experiments
7.1. Metrics

The quality and efficiency of blocking is evaluated by the special metrics, Reduction
Ratio (RR), Pairs Completeness (PC), and Pairs Quality (PQ) [3]. Traditional metrics like
precision and recall do not apply to blocking since it is a pre-processing step, and its output
is not the final ER output.

Information 2021, 12, 134 17 of 31

To define RR, which intuitively measures efficiency, consider the full set of pairs Ω
that would be generated in the absence of blocking. Specifically, Ω is the set {(r, s)|r ∈
R1, s ∈ R2}. RR is then given by the formula:

RR = 1− |Γ|/|Ω| (2)

Given the sparsity of duplicates in real-world datasets [3], RR should ideally be close
to, but not precisely, 1.0 (unless Γ = φ).

Let us denote the set of all duplicate pairs, or the ground-truth, as Ωm. Similarly,
consider the set of duplicates included in the candidate set Γm = Γ ∩ Ωm. The metric
PC quantifies the effectiveness of the blocking scheme by measuring coverage of Γm with
respect to Ωm. Specifically, it is given by the formula:

PC = |Γm|/|Ωm| (3)

Low PC implies that recall on overall ER will be low, since many duplicates did not
share a block to begin with.

PC and RR together express an efficiency-effectiveness tradeoff. The metric PQ is
sometimes used to measure how dense the blocks are in duplicates, and it is given by:

PQ = |Γm|/|Γ| (4)

PQ has not been reported in recent BSL literature [4,7]. One reason is that PQ can
be equivalently expressed as c.PC/(1− RR), where c is |Ωm|/|Ω|. When comparing two
BSLs, PQ can therefore be expressed wholly in terms of PC and RR. We do not consider PQ
further in this paper.

7.2. Evaluating Dumas Using Preliminary Experiments

Given that the test suite is larger and more heterogeneous in this paper than in the
original Dumas work [18], we perform two preliminary experiments to evaluate Dumas
before describing the experimental study and methodology behind the core DNF-BSL
algorithm that was presented earlier. Dumas was briefly described in Section 6.

For the first preliminary experiment, we evaluate the performance of Dumas’s du-
plicates generator. The generator uses TF-IDF to retrieve the highest scoring duplicates
in order. Suppose that we retrieve t duplicates (as an ordered list). Denote, for any k ≤ t,
the number of true positives in sub-list [1 . . . k] as d(k). Define Precision@k as d(k)/k and
Recall@k as d(k)/|Ωm|, where Ωm is the ground-truth set of all duplicates. We plot Preci-
sion@k against Recall@k for all DPs to demonstrate the precision-recall tradeoff. To obtain a
full set of data points, we set t at 50,000 for all experiments, and calculate Precision@k and
Recall@k for k ∈ {1 . . . t}.

Figure 8 shows the results of Dumas’ duplicates-generator on all six dataset pairs (DPs)
that were used for evaluation (that we profile in Section 7.4). Except for DP 3, precision on
all cases seems inadequate, even at low recall levels. Although recall of 100% is eventually
attained on most DPs, the price is (near) 0% precision. A closer inspection of the results
showed that many false positives got ranked at the top. We discuss the implications of
these noisy results shortly.

For the second preliminary experiment, we attempt to evaluate Dumas’ schema
matching performance. Although t was set to a high value in the previous experiment,
Dumas only requires a few top pairs (typically 10–50) for the schema matching step [18].
To compute the similarity matrix from t pairs, Dumas uses Soft TF-IDF, which requires
an optional threshold θ. For a given DP, denote Q′ as the ground-truth set of schema
mappings, Q as the set of Dumas mappings, and Qm ⊆ Q as the set of correct Dumas
mappings. Define precision (on this task) as |Qm|/|Q| and recall as |Qm|/|Q′|.

Information 2021, 12, 134 18 of 31

Figure 8. Dumas duplicates-generation results, for k ∈ {1, 2 . . . 50,000}.

We set t and θ to default values of 50 and 0.5, respectively, and report the results in
Table 2. These default values were found to maximize performance in all cases, in agree-
ment with similar values in the original work [18]. We also varied t from 10 to 10,000 and
θ from 0 to 0.9. The performance slightly declined (by at most 5%) for some DPs when
t < 50, but it remained otherwise constant across parameter sweeps. This confirms that
Dumas is quite robust to t and θ.

Table 2. Best Results of Dumas Schema-Matcher.

Dataset Pair Precision Recall

1 100% 87.5%

2 92.86% 86.67%

3 91% 100%

4 75% 33.33%

5 100% 100%

6 100% 100%

One disadvantage of Dumas is that it is a 1:1 matcher. This explains the lower recall
numbers on DPs 2 and 4, which contain n:m mappings (Section 7.4). In a subsequently
designed experiment, we test if this is problematic by providing the ground-truth set to
our baselines, and comparing results.

An important point to note from the (mostly) good results in Table 2 is that generator
accuracy is not always predictive of schema mapping accuracy. This robustness to noise is
always an important criteria in pipelines. If noise accumulates at each step, the final results
will be qualitatively weak, possibly meaningless. Because Dumas’s matching component is
able to compensate for generator noise, it is a good empirical candidate for unsupervised
1:1 matching on typical ER cases. The first preliminary experiment also showed that on
real-world ER problems, a simple measure, like TF-IDF, is not appropriate (by itself) for
solving ER. The generator noise provides an interesting test for the extended DNF-BSLs.
Because both the mappings-set Q and top n generated duplicates (the set D) output by
Dumas are piped to the learner, there are two potential sources of noise.

Information 2021, 12, 134 19 of 31

Finally, given that the proposed system (in subsequent experiments) permutes the
Dumas-output D (Algorithm 1) to generate N, we tested the accuracy of the permutation
procedure in a follow-up experiment. With |D| ranging from 50 to 10,000 in increments of 50,
we generated N of equal size and calculated non-duplicates accuracy (1− |N ∩Ωm|/|N|)
of N over ten random trials per value. In all cases, accuracy was 100%, showing that the
permutation heuristic is actually quite strong.

In summary, these preliminary experiments evaluating Dumas show that, while it
has utility in generating training sets and schema matching outputs, there is noise in
both steps (and especially, the training set generation). The proposed method, for which
methodological details are provided next, must be capable of working with this noise to be
useful in practice.

7.3. Methodology

In this section, we describe our baselines, followed by the experimental methodology.
The experimental results will be presented in Section 8. Datasets and modeling will be
described in the next section.

7.3.1. Baselines

Table 1 listed existing DNF-BSLs, with Section 5.3 describing how the extended
versions fit into the pipeline. We extend two state-of-the-art systems as baselines:

Supervised Baseline: System 2 was chosen as the supervised baseline [4], and favored
over System 1 [5] because of better reported empirical performance on a common bench-
mark that was employed by both efforts. Tuning the parameter η leads to better blocking
schemes, which makes System 2 a state-of-the-art supervised baseline.

Semi-supervised Baseline: We adapt System 4 as a semi-supervised baseline by feeding
it the same noisy duplicates generated by Dumas as fed to the proposed learner, as well as a
manually labeled negative training set. The learner of System 4 uses feature selection and it
was shown to be empirically competitive with supervised baselines [7]. In contrast, System
3 did not evaluate its results against System 2. Additionally, the learner of System 4 requires
three parameters, versus the five of System 3. Finally, the three System 4 parameters are
comparable to the corresponding System 2 parameters, and evaluations in the original work
showed that the learner is robust to minor parameter variations [7]. For these reasons, the
feature-selection learner of System 4 was extended to serve as a semi-supervised baseline.

7.3.2. DNF BSL Parameter Tuning

We describe parameter tuning methodology. Note that the beam search parameter k
(see Table 1) is not technically tuned, but set, incumbent on the experiment (Section 7.3.3).

Baseline Parameters: Both baseline parameters are tuned in similar ways. We do an
exhaustive parameter sweep of ε and η, with values in the range of 0.90–0.95 and 0.0–0.05
(respectively) typically maximizing baseline performance. Low η maximizes RR, while
high ε maximizes PC. Although extreme values, with η = 0 and ε = 1, are expected to
maximize performance, they led to failure (ε|D| duplicates could not be covered i.e., see
Section 5.3) on all test cases. This demonstrates the necessity of proper parameter tuning.
Fewer parameters imply less tuning, and faster system deployment.

SC-threshold κ: The single parameter κ of the proposed method was tuned on the
smallest test case (DP 1) and found to work best at 0.9. To test the robustness of κ to
different domains, we fixed it at 0.9 for all experiments.

|D| and |N|: We emulate the methodology of Bilenko et al. in setting the numbers
of positive and negative samples input to the system. Bilenko et al. input 50% of true
positives and an equal number of negatives to train their system [4]. Let this number be
n (= |D|,|N|) for a given test suite. For example, n = 50 for DP 1 (since n = 100; see
Section 7.4). For fairness, we also use these numbers for the semi-supervised baseline and
proposed system. We retrieve the top n pairs from the Dumas generator and input the
pairs to both systems as D. Additionally, we provide n labeled non-duplicates (as N) to

Information 2021, 12, 134 20 of 31

the semi-supervised baseline. In subsequent experiments, the dependence of the proposed
system on n is tested.

7.3.3. Experimental Design: Extended DNF BSL

We describe the evaluation of the extended DNF BSLs. First, we describe the set of
general blocking predicates used in the experiments, followed by a design description of the
four experimental studies that, together, demonstrate the utility of the proposed algorithm.

Set G of GBPs: Bilenko et al. first proposed a set G that has since been adopted in
future works [4,6,7]. This original set contained generic token-based functions, numerical
functions, and character-based functions [4]. No recent work attempted to supplement G
with more expressive GBPs. In particular, phonetic GBPs, such as Soundex, Metaphone,
and NYSIIS were not added to G, despite proven performance benefits [55]. We make an
empirical contribution by supplementing G with all nine phonetic features implemented in
an open-source package (org.apache.commons.codec.language). For fairness, the same G
is always input to all learners in the experiments below. The results in Experiment 2 will
indirectly demonstrate the benefits of supplementing G. A more detailed description of
the original (and supplemented) G is provided in the Appendix A.

Experiment 1: To evaluate the proposed learner against the baselines, we input the
same Q (found in Preliminary Experiment 2) to all three systems. The systems learn the
DNF scheme by choosing a subset H′ ⊆ Hc of SBPs and supplemented terms, with Hc
constructed from G, Q, and k (Section 5.3). We learn only disjunctive schemes by setting k
to 1 in this experiment.

Experiment 2: we repeat Experiment 1 but with k = 2. In Section 5.3, we mention
that complexity is exponential in k for all systems in Table 1. Because of this exponential
dependence, it was not possible to run the experiment for k = 2 on all DPs. We note
which DPs presented problems, and why. Note that, if G, Q and the training sets are fixed,
increasing k seems to be the only feasible way of improving blocking quality. However, G
is more expressive in this paper. Intuitively, we expect the difference across Experiments 1
and 2 to be narrower than in previous work.

Experiment 3: in a third set of experiments, we evaluate how the blocking performance
varies with Q. To the baseline methods, we input the set of (possibly n:m) ground-truth
mappings Q′, while the Dumas output Q is retained for the proposed learner. The goal
is to evaluate if extended DNF-BSLs are sensitive, or if noisy 1:1 matchers, like Dumas,
suffice for the end goal.

Experiment 4: we report on run-times and show performance variations of the pro-
posed system with the number of provided duplicates, n. In industrial settings with an
unknown ground-truth, n would have to be estimated. An important question is whether
we can rely on getting good results with constant n, despite DP heterogeneity.

7.4. Modeling and Datasets

Table 3 summarizes the heterogeneous test suite of six dataset pairs (and nine indi-
vidual datasets). The suite spans over four domains and the three kinds of heterogeneity
discussed in the paper. All of the datasets are from real-world sources. We did not curate
these files in any way, except for serializing RDF datasets as property tables (instead of
triples-sets). The serializing was found to be near-instantaneous (<1 s) in all cases, with
negligible run-time as compared to the rest of the pipeline.

Dataset Pairs (DPs) 1 and 2 are the RDF benchmarks in the 2010 instance-matching
track (http://oaei.ontologymatching.org/2013/#instance, accessed on 18 March 2021) of
OAEI (Ontology Alignment Evaluation Initiative), an annual Semantic Web initiative. Note
that an earlier tabular version of DP 1 is also popular in homogeneous ER literature [3].

http://oaei.ontologymatching.org/2013/##instance

Information 2021, 12, 134 21 of 31

Table 3. Details of dataset pairs. The notation, where applicable, is (first dataset)/× (second dataset).

ID Dataset Pairs Fields Total Entity Pairs Duplicate Pairs Data Model

1 Restaurant 1 /Restaurant 2 8/8 339 × 2256 = 764,784 100 RDF/RDF

2 Persons 1 /Persons 2 15/14 2000 × 1000 = 2 million 500 RDF/RDF

3 IBM/vgchartz 12/11 1904 × 20,000 ≈ 38 million 3933 Tabular/Tabular

4 Libraries 1 /Libraries 2 5/10 17,636 × 26,583 ≈ 469 million 16,789 Tabular/Tabular

5 IBM/DBpedia 12/4 1904 × 16,755 ≈ 32 million 748 Tabular/RDF

6 vgchartz /DBpedia 11/4 20,000 × 16,755 ≈ 335 million 10,000 Tabular/RDF

DPs 3, 5, and 6 describe video game information. DP 6 has already been used as a test
case in a previous schema matching work [63]. vgchartz is a tabular dataset taken from a
reputable charting website (vgchartz.com, accessed on 18 March 2021). DBpedia contains
48,132 triples that were extracted from DBpedia (dbpedia.org, accessed on 18 March 2021),
and has four (three (genre, platform and manufacturer) properties and subject) fields and
16,755 tuples in property table form. Finally, IBM contains user-contributed data extracted
from the Many Eyes page (www-958.ibm.com/software/data/cognos/manyeyes/datasets,
accessed on 18 March 2021), maintained by IBM Research.

DP 4 describes US libraries. Libraries 1 was from a Point of Interest website (http:
//www.poi-factory.com/poifiles, accessed on 18 March 2021), and Libraries 2 was taken
from a US government listing of libraries.

DPs 2 and 4 contain n:m ground-truth schema mappings, while the others only contain
1:1 ground-truth mappings.

7.4.1. Statistical Significance

We conduct experiments in ten runs, and (where relevant) report statistical significance
levels using the paired sample Student’s t-distribution. On blocking metrics, we report
whether the results are not significant (NS), weakly significant (WS), significant (SS),
or highly significant (HS), based on whether the p-value falls within brackets [1.0, 0.1),
(0.05,0.1], (0.01, 0.05], and [0.0, 0.01], respectively. As for the choice of samples, we always
individually paired PC and RR of the proposed system against the baseline that achieved a
better average on the metric.

7.4.2. Implementation

All of the programs were implemented in Java on a 32-bit Ubuntu virtual machine
with 3385 MB of RAM and a 2.40 GHz Intel 4700MQ i7 processor.

8. Results

This section details the results that were obtained on the four experimental studies
described earlier in Section 7.3.3.

8.1. Experiment 1

Table 4 shows BSL results on all six DPs. The high overall performance explains the
recent popularity of DNF-BSLs. Using the extended DNF hypothesis space for blocking
schemes allows the learner to compensate for the two sources of noise discussed earlier.
Overall, when considering statistically significant results, the supervised method typically
achieves better RR, but PC is (mostly) equally high for all methods, with the proposed
method performing the best on DP 4 (the largest DP) and the supervised baseline on DP 2,
with high significance. We believe that the former result was obtained because the proposed
method has the strongest approximation bounds out of all three systems, and that this
effect would be most apparent on large DPs. Importantly, low standard deviation (often
0) is frequently observed for all methods. The DNF-BSLs prove to be quite deterministic,
which can be important when replicating results in both research and industrial settings.

vgchartz.com
dbpedia.org
www-958.ibm.com/software/data/cognos/manyeyes/datasets
http://www.poi-factory.com/poifiles
http://www.poi-factory.com/poifiles

Information 2021, 12, 134 22 of 31

Table 4. Comparative Results of Extended DNF BSLs. Bold values are (at least) weakly significant, with significance levels
(WS, SS, or HS) in paranthesis.

Dataset Pair (DP) Proposed Method Semi-Sup. Baseline Sup. Baseline

PC RR PC RR PC RR

1
Average 100% 99.68% 100% 99.68% 100% 98.59%

Std. Deviation 0% 0% 0% 0% 0% 3.41%

2
Average 95% 86.11% 95% 99.23% 99.6% (HS) 99.96% (HS)

Std. Deviation 0% 0% 0% 0% 0% 0%

3
Average 100% 95.47% 100% 95.44% 99.29% 99.99% (HS)

Std. Deviation 0% 0% 0% 0.01% 0% 0%

4
Average 98.95% (HS) 99.68% 98.43% 99.98% (HS) 98.19% 99.98% (HS)

Std. Deviation 0.1% 0.007% 0% 0% 0.27% 0.01%

5
Average 100% 92.28% 100% 94.58% 99.46% 97.75% (HS)

Std. Deviation 0% 0% 0% 1.01% 0.8% 2.36%

6
Average 99.91% 99.69% 99.97% 99.71% 91.09% 99.93% (HS)

Std. Deviation 0.08% 0.019% 0.07% 0.02% 0.03% 0.004%

8.2. Experiment 2

Next, we evaluated whether k = 2 enhances BSL performance and justifies the expo-
nentially increased cost. With k = 2, only DPs 1 and 5 were found to be computationally
feasible. On the other DPs, the program either ran out of RAM (DPs 4,6), or did not
terminate after a long (within a factor of 20 of the average time taken by the system for the
k = 1 experiment i.e., for that DP) time for DPs 2 and 3. The former was observed because
of high n and the latter because of the large number of fields (see Table 3). Setting k beyond
2 was computationally infeasible, even for DPs 1 and 5. Furthermore, the results on DPs 1
and 5 showed no statistical difference compared to Experiment 1, even though run-times
went up by an approximate factor of 16 (for both DPs).

8.3. Experiment 3

We provided the ground-truth set Q′ to baseline methods (and with k again set to 1),
while retaining Q for the proposed method. Again, we did not observe any statistically
significant difference in PC or RR for either baseline method. We believe this is because the
cases for which Q′ would most likely have proved to be useful (DPs 2 and 4, which contain
n:m mappings that Dumas cannot output) already perform well with the Dumas-output Q.

8.4. Experiment 4

Theoretically, the run-time of Algorithm 1 was shown to be O(|H|k(|D|+ |N|)); the
run-times of other systems in Table 1 are similar. Empirically, this has never been demon-
strated. For k = 1, we plot the run-time data that were collected from Experiment 1 runs
on DPs 1–6 (Figure 9a). The trend is fairly linear, with the supervised system slower for
smaller inputs, but not larger inputs. The dependence on |Q| shows why a schema matcher
is necessary, since, in its absence, the simple exhaustive set is input (Section 5.3).

As further validation of the theoretical run-time, Figure 9b shows the linear depen-
dence of the proposed system on |D|. Again, the trend is linear, but the slope (note that the
slope is the hidden constant in the asymptotic notation) depends on the schema hetero-
geneities of the individual DPs. For example, DPs 2 and 3, the largest datasets in terms of
fields (Table 3), do not scale as well as the others.

Information 2021, 12, 134 23 of 31

Figure 9. Experiment 4 results. (a) plots run-time trends of all three systems against the theoretical
formula, while (b,c), respectively, plot run-times and f-scores of the proposed system against sample
sizes.

Information 2021, 12, 134 24 of 31

Figure 9c shows an important robustness result. We plot the PC-RR f-score (2.RR.PC
RR+PC)

of the proposed system against |D|. The first observation is that, even for small |D|,
performance is already high except on DP 2, which shows a steep increase when |D| ≈ 100.
On all cases, maximum performance is achieved at about |D| ≈ 700 and the f-score curves
flatten subsequently. This is qualitatively similar to the robustness of Dumas to small
numbers of positive samples.

Figure 9c also shows that the proposed method is robust to overestimates of |D|. DP
1, for example, only has 100 true positives, but it continues to perform well at much higher
|D| (albeit with a slight dip at |D| ≈ 700).

9. Discussion

Earlier, when discussing the preliminary experimental results evaluating Dumas
(Section 7.2), we noted that an extended DNF-BSL can only integrate well into the pipeline if
it is robust to noise from previous steps. Previous research has noted the overall robustness
of DNF-BSLs. This led to the recent emergence of a homogeneous unsupervised system [7],
which was adapted here as a semi-supervised baseline. Experiment 1 results showed that
this robustness also carries over to extended DNF-BSLs. High overall performance shows
that the pipeline can accommodate heterogeneity, a key goal of this paper.

Experiment 2 results demonstrate the advantage of having an expressive G, which is
evidently more viable than increasing k. On DPs 1 and 5 (that the systems succeeded on),
no statistically significant differences were observed, despite the run-time increasing by a
factor of 16. We note that the largest (homogeneous) test cases on which k = 2 schemes
were previously evaluated were only about the order of DP 1 (in size). Even with less
expressive G, only a few percentage point performance differences were observed (in PC
and RR), with statistical significance not reported [4,7].

In order to confirm the role of G, we performed a follow-up experiment where we
used the originally proposed G [4] on DPs 1 and 5, with both k = 1 and k = 2. We observed
lower performance with k = 1 compared to Table 4 results, while k = 2 results were only
at par with those results. The run-times with less expressive G were obviously lower
(for corresponding k); however, k = 2 run-times were higher (with less expressive G)
than k = 1 run-times with more expressive G. All of the differences just described were
statistically significant (at the 95% level). This validates previous research findings, while
also confirming our stated hypothesis regarding G.

The Experiment 3 results showed that a sophisticated schema matcher is not always
necessary for the purpose of learning a blocking scheme. However, the importance of good
schema matching goes beyond blocking and even ER. Schema matching is an important
step in overall data integration [47]. On noisier datasets, a good n:m schema matcher could
make all the difference in pipeline performance, but we leave it for future work to evaluate
such a case.

The similar run-time trends that were shown by the various systems in Figure 9a also
explain why, in Experiment 2, all the systems simultaneously succeeded or failed on a
given DP. Even if we replace our DNF-BSL with an extended version from the literature,
the exponential dependence on k remains. Figure 9a,b also empirically validate theoretical
run-time calculations. Previous research on DNF-BSLs did not theoretically analyze (or
empirically report) the algorithmic run-times and scalability explicitly [4–7].

Figure 9c demonstrates the encouraging qualitative result that only a few (noisy)
samples are typically enough for adequate performance. Given enterprise quality require-
ments, as well as expense of domain expertise, high performance for low n and minimum
parameter tuning is a practical necessity, for industrial deployment. Recall that we retained
κ at 0.9 for all experiments (after tuning on DP 1), while for the baselines, we had to
conduct parameter sweeps for each separate experiment. When combined with the results
in both Table 4 and Figure 9c, this shows that the system can be a potential use-case in
industry. Combined with previous unsupervised results for the second ER step [1,2], such

Information 2021, 12, 134 25 of 31

a use-case would apply to both relational and Semantic Web data as a fully unsupervised
ER workflow, which has thus far remained elusive.

10. Conclusions and Future Work

In this paper, we presented a generic pipeline for learning DNF blocking schemes on
heterogeneous dataset pairs. We proposed an unsupervised instantiation of the pipeline
that relies on an existing instance-based schema matcher and learns blocking schemes
while using only two parameters. We also showed a novel way of reconciling RDF-tabular
heterogeneity by using the logical property table representation for building and populating
a dynamic property schema for RDF datasets. Finally, we evaluated all the techniques on
six test cases exhibiting three separate kinds of heterogeneity.

Future research will address further exploration of the property table representation
for tabularly mining RDF data. Additionally, refining G (the set of GBPs) further is a
promising, proven method of scalably improving BSL performance. We will also implement
a fully unsupervised ER workflow that the proposed unsupervised DNF-BSL enables, and
evaluate it in a similar fashion. Another important area of improvement is to devise better-
performing self-training methods (see, for example, the work by [64]) rather than relying on
the noisy examples that were produced by Dumas. Incorporating representation learning
into the pipeline is clearly something that could add value and improve performance, but it
is unclear whether representation learning is compatible with the set of GBPs. Investigating
this further is also an issue for future research. Last, but not least, we also intend to expand
the pipeline, so that it can learn a BSL on more than two structurally heterogeneous datasets
(or what we referred to as a dataset pair in the experiments). In principle, the approach can
be extended to accommodate multiple structurally heterogeneous datasets, but evaluating
the approach on large collections of datasets (each of which may individually also be large)
remains an open challenge.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used in this paper is publicly available. We have provided
links to individual datasets directly in the paper.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
Abbreviations used in the paper (in approximate order of appearance):

Abbreviation Expanded Form
ER Entity Resolution
KG Knowledge Graph
DNF Disjunctive Normal Form
BSL Blocking Scheme Learner/Learning
RDF Resource Description Framework
DNF-BSL Disjunctive Normal Form-Blocking Scheme Learner
LSH Locality Sensitive Hashing
RDB Relational Database
SN Sorted Neighborhood
URI Uniform Resource Identifier
BKV Blocking Key Value
GBP General Blocking Predicate
SBP Specific Blocking Predicate
RDFS Resource Description Framework Schema

Information 2021, 12, 134 26 of 31

TP Tuple Pair
SC Set Covering
W-SC Weighted Set Covering
RR Reduction Ratio
PC Pairs Completeness
PQ Pairs Quality
TF-IDF Term Frequency-Inverse Document Frequency
DP Dataset Pair
OAEI Ontology Alignment Evaluation Initiative
NS Not Significant
WS Weakly Significant
SS Significant
HS Highly Significant

Appendix A

Appendix A.1. Property Table Algorithms

We describe a procedure for serializing an RDF triples-set as a property table in time
Θ(n) where n is the number of triples. The procedure runs in two passes. In a first pass
over the set of triples, the procedure would record the distinct properties and subjects in
two respective sets, S1 and S2. The property schema would then be built using the RDF
dataset name and the field set S1 ∪ {subject}. The property table would itself be initialized,
with the subject column populated using S2. An index to the subject column would also be
built, with the subject as key and the row position as value. In the second pass over the
triples, the cells of the table are incrementally updated with each encountered triple. An
associative map admits an efficient implementation for the second pass.

For completeness, Algorithm A1 shows the inverse serialization; that is, how a
property table is converted to a triples-set. Note that both the procedure above and
Algorithm A1 are information-preserving; no information is lost when we exchange repre-
sentations.

Algorithm A1 RDF Property Table to RDF Triples-set.

Input : Property Table with property schema P(subject, a1, . . . , an) and n properties
Output : Triples-set P′

Method :
1. Initialize empty triples-set P′

for all tuples t in property table instance do
3. Let q = t(subject)
for all a = a1 . . . an do

if t(a) is null then
6. continue

end if
8. Tokenize t(a) using ; to obtain (possibly singleton) tokens-set T′

for all tokens t′ ∈ T′ do
10. Add triple (q, a, t′) to P′

end for
end for

end for
14. Output P′

Algorithm A1 is fairly simple and runs in worst-case time O(mn), where m is the
number of subjects in the table, and n is the total number of properties. We assume
that each subject can be bound above by a constant number of object values (per prop-
erty), a reasonable assumption in real-world cases. If not true, dataset characteristics
need to be known before run-time can be bound. We omit a proof that the procedure
always yields the same triples-set P′ from which the table was derived, if it was indeed

Information 2021, 12, 134 27 of 31

derived from such a table using the two-pass algorithm earlier described. As we noted in
Section 5.1, implemented triplestores often natively store RDF datasets as physical property
tables. In a real-world implementation, it is possible to exploit this systems-level advantage
and use a provided triplestore API to access the physical table in its native form and use it
logically [16]. We cited this earlier as a potential advantage in using the property table, and
not devising a new data structure for resolving RDF-tabular heterogeneity in ER.

Appendix A.2. Optimal DNF Schemes

We replicate the optimization condition first formally stated by Bilenko et al. [4].
Assume a (perfectly labeled) training set of duplicate pairs D, and non-duplicate pairs N. Let
f be a blocking scheme from the space F of all possible DNF blocking schemes that may
be constructed from subsets of the set Hc of SBPs and terms. F provably has cardinality
2|Hc |, since each DNF scheme is merely a positive DNF formula f constructed by treating
Hc as the atoms-set (Definition 4). The optimal blocking scheme f ∗ ∈ F satisfies the
following objective:

f ∗ = argmin f ∑
{r,s}∈N

f (r, s) (A1)

s.t.

∑
{r,s}∈D

f ∗(r, s) ≥ |D|ε (A2)

D, N and ε were defined earlier in the paper. We also stated the meaning of this condition
intuitively, which is that the scheme must cover at least a fraction ε of the set D while
minimizing coverage of non-duplicates in N. Bilenko et al. were the first to prove that this
optimization problem is, in fact, NP-Hard by reducing from Red-Blue Set Covering (see Set
Covering Appendix A.3) [4]. We refer the reader to the original work for that proof. Note
that the condition is generic in that r and s do not have to be from structurally homogeneous
datasets, and the proof of Bilenko et al. does not assume such a restriction either [4]. This
was one reason we were able to extend their system and use it as an instantiated supervised
baseline for the final pipeline module in Figure 4a. It also implies the natural result that the
problem remains NP-Hard for heterogeneous datasets.

Appendix A.3. Set Covering

We provide a generic description of the Weighted Set Covering (SC) problem, along
with Chvatal’s greedy algorithm, which, despite being relatively simple, continues to
be the best-known polynomial-time approximation scheme (called PTAS). The weighted
instance of SC assumes (as input) a universe set U with n elements and a family of m sets
S = {S1, . . . , Sm}, where each Si is a subset of U . Each set in the family is associated with
a weight, w(Si) for all i from 1 to m. Additionally, the condition

⋃
i Si = U is assumed to

hold. The SC problem is to find a subfamily C ⊆ S such that the summed weights of all
sets in C are minimized subject to the (mandatory) condition that

⋃
c∈C c = U (denoted as

the covering condition for the following discussion). The decision version of this problem is
known to be NP-Complete, and the optimization version, NP-Hard [56]. This is also true
for the non-weighted SC, which reduces to a special case of W-SC with each set assigned
equal (usually unit) weight.

Chvatal’s greedy algorithm can be stated simply as follows. Initialize C to be the empty
set. Iterate over S till the covering condition is met. In each iteration, pick a (previously
unpicked) set Si with maximum score |Si|/w(Si). In other words, we greedily pick the set
in the family (breaking ties arbitrarily) that covers the most elements per unit weight. It is
straightforward to observe that this algorithm is polynomial time; even a simple approach
can run in time O(mn) if the loop body is properly implemented. A linear-time algorithm
along the same lines is possible if more advanced data structures are used. We do not
go into details of how to optimize this algorithm; in most cases, an efficient off-the-shelf
implementation can be adapted.

Information 2021, 12, 134 28 of 31

In his seminal work (in which he proposed this algorithm), Chvatal also proved that
the final (summed) weight of the approximate answer C is greater than the optimal answer
C∗ by a factor of (at most) H(d), where, for any x ∈ Z+, the function H(x) = Σi1/i, for all
integers i ∈ [1, x] [56]. Note that H(x) ≤ ln(x) + 1. Here, d is simply the cardinality of the
largest set in S. Chvatal’s logarithmic approximation ratio remains the best-possible, even
decades later [60].

Many variants of SC have been proposed over the decades; an important one is the
Red-Blue Set Cover (RB-SC) [61], which is closely related to the supervised method of
Bilenko et al. [4]. RB-SC takes a universe set U as input, with U = R ∪ B, where R is the
set of red elements and B, the set of blue elements. Note that R ∩ B is empty. Again, we
are given a family S of subsets, but S is only constrained to cover all of B, not necessarily
the full universe set U . RB-SC needs to locate a subfamily C such that all blue elements
are covered but with the number of distinct red elements covered, minimized. Sets in the
family are not associated with weights; weighted generalizations of RB-SC are not relevant
for this discussion.

RB-SC seems similar to the ordinary SC, but it is ‘harder’ in an approximation sense. The
best known approximation ratio for RB-SC, first proved by Peleg, is 2

√
|U |log|B| [61]. In that

paper, he proposed an approximation algorithm that was adopted by Bilenko et al. [4].
In Section 6, we explained how to reduce our specific problem to W-SC, by treating

Hc as the family of subsets S, given that each SBP or term (in Hc) covers tuple pairs, and
with all duplicate tuple pairs together comprising the universe set U = D. We used the non-
duplicates set N only to calculate weights. On the other hand, Bilenko et al. performed a
more intuitive reduction to RB-SC, by treating red elements as analogous to non-duplicates
and blue elements to duplicates, in a given training set. This direct reduction comes with
weak approximation bounds, however, as the discussion above shows. Empirically, we
believe that better approximation results led to at par PC results (in Experiments 1–2) for
the proposed method on four DPs, compared to the supervised baseline, and to better PC
results (with high significance) on the largest DP (4).

Appendix A.4. General Blocking Predicates

The set G of General Blocking Predicates (GBPs) and the parameter k are used (along
with mappings Q in the heterogeneous case presented in the paper, or the field set A pre-
sented in previous work [4–7]) to build the search space of terms and SBPs, Hc. Intuitively, G
constitutes the feature space of the algorithm and choosing an appropriate G is an important
empirical consideration. Experiment 2 in Section 7, and the described follow-up experiment
in the subsequent discussion, demonstrate this point. Specifically, the experiments shows
that if G is expressive enough, setting k to 1 is adequate. Recall that, in this paper, we
adapted the original set G, first proposed by Bilenko et al. and supplemented it with pho-
netic functions found in an open-source package (org.apache.commons.codec.language),
to make G more expressive. For completeness, we first provide a brief description of the
original set. Note that all GBPs below are case-insensitive.

(1) Exact Match: Returns True if input strings exactly match.
(2) ContainsCommonToken: Returns True if input strings share a common token,

based on common delimiters (such as comma, whitespace and semicolon).
(3) ContainsCommonInteger: Returns True if input strings share at least one common

integer token. If no token is an integer in a given input string, False is returned by default.
(4) ContainsCommonOrOffByOneInteger: Same as above, except integers may be off

by one. Note that if True is returned by ContainsCommonInteger, True is also returned for
this GBP. This demonstrates that GBPs may be correlated.

(5–7) ContainsTokenWithSameNFirstChars: Returns True if the input strings share at
least one token with a common N-character prefix. Implemented with N = 3, 5, 7 to yield
three (correlated) GBPs.

(8–10) ContainsTokenWithCommonNGram: Returns True if the input strings share a
common length-N contiguous subsequence of tokens. Implemented with N = 2, 4, 6.

Information 2021, 12, 134 29 of 31

In total, these yield 10 GBPs. Although these GBPs have been found to work quite
well in previous work, including the original work in which they were first proposed [4], a
rationale was never provided for why specifically each of them were included. We briefly
attempt to do so here, based on our experimental observations.

GBPs 1–2 are appropriate for strings that have high token overlap or for alphanumeric
codes (in product databases, for example) that tend to match exactly and have high correla-
tion with duplicate classification. GBPs 3–4 are more appropriate for phone numbers, zip
codes, street numbers, social security numbers, dates of birth and other numeric quantities
that commonly occur in databases. GBPs 5–7 are empirically robust to data representation
issues; for example, GBP 5 would return True for two address strings that spell ‘Avenue’ as
Avenue or Ave. GBPs 8–10 are restrictive versions of GBP 2, and thus, highly discriminative.
They rarely return True, but when they do, it indicates strongly that the input strings are
derived from a duplicate pair.

Note that Bilenko et al. included 10 additional GBPs that were based on TF-IDF and
were appropriate for homogeneous datasets [4]. In pilot experiments (and also the Dumas
preliminary experiments; see Figure 8), we obtained the unsurprising result that these
TF-IDF features had negative correlation with heterogeneous BSL performance. These were
therefore not included in the G used in this paper.

In the Apache open-source package, nine phonetic functions are implemented and all
were included in the supplemented G. These are respectively Caverphone1, Caverphone2,
ColognePhonetic, DoubleMetaphone, MatchRatingApproachEncoder, Metaphone, NYSIIS, Re-
finedSoundex and Soundex. Christen provides a good description (and evaluation) of these
phonetic encodings in his comprehensive text [55]. Perhaps the most important advantage
of phonetic functions is that they are robust to spelling variations (especially in names) that
the other GBPs cannot easily accommodate (e.g., Kathryn vs. Catherine).

Finally, it is important to note that each of these GBPs is associated with an indexing
function, as earlier defined. Typically, the associated indexing functions simply extract
some characters, tokens or integers and return the extracted elements in a set (GBPs 1–10);
similarly, the associated phonetic indexing functions tokenize the string and return a set
containing the appropriate phonetic encoding (e.g., Soundex) of each token. GBPs cannot
be arbitrary boolean functions. As an example, the boolean function EditDistance < 0.5
might seem like a legitimate GBP (it takes two strings as input and returns True if the Edit
distance is less than 0.5), but it is not evident how to frame it as a set-intersection condition
on outputs of (some) indexing function, as the original GBP definition formally requires.

References
1. Elmagarmid, A.K.; Ipeirotis, P.G.; Verykios, V.S. Duplicate record detection: A survey. IEEE Trans. Knowl. Data Eng. 2007,

19, 1–16. [CrossRef]
2. Ferraram, A.; Nikolov, A.; Scharffe, F. Data linking for the semantic web. Int. J. Semant. Web Inf. Syst. 2013, 7, 169.
3. Christen, P. A survey of indexing techniques for scalable record linkage and deduplication. IEEE Trans. Knowl. Data Eng. 2012,

24, 1537–1555. [CrossRef]
4. Bilenko, M.; Kamath, B.; Mooney, R.J. Adaptive blocking: Learning to scale up record linkage. In Proceedings of the Sixth

International Conference on Data Mining (ICDM’06), Hong Kong, China, 18–22 December 2006; pp. 87–96.
5. Michelson, M.; Knoblock, C.A. Learning blocking schemes for record linkage. In Proceedings of the National Conference on

Artificial Intelligence, Boston, MA, USA, 16–20 July 2006.
6. Cao, Y.; Chen, Z.; Zhu, J.; Yue, P.; Lin, C.Y.; Yu, Y. Leveraging unlabeled data to scale blocking for record linkage. In Proceedings

of the International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011; p. 2211.
7. Kejriwal, M.; Miranker, D.P. An unsupervised algorithm for learning blocking schemes. In Proceedings of the Thirteenth

International Conference on Data Mining (ICDM’13), Dallas, TX, USA, 7–10 December 2013.
8. Bizer, C.; Heath, T.; Berners-Lee, T. Linked data-the story so far. Int. J. Semant. Web Inf. Syst. 2009, 5, 1–22. [CrossRef]
9. Volz, J.; Bizer, C.; Gaedke, M.; Kobilarov, G. Discovering and maintaining links on the web of data. In The Semantic Web-ISWC

2009; Springer: New York, NY, USA, 2009; pp. 650–665.
10. Xu, D.; Ruan, C.; Korpeoglu, E.; Kumar, S.; Achan, K. Product knowledge graph embedding for e-commerce. In Proceedings of

the 13th International Conference on Web Search and Data Mining, Houston, TX, USA, 3–7 February 2020; pp. 672–680.

http://doi.org/10.1109/TKDE.2007.250581
http://dx.doi.org/10.1109/TKDE.2011.127
http://dx.doi.org/10.4018/jswis.2009081901

Information 2021, 12, 134 30 of 31

11. Kejriwal, M.; Liu, Q.; Jacob, F.; Javed, F. A pipeline for extracting and deduplicating domain-specific knowledge bases.
In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November
2015; pp. 1144–1153.

12. Selvam, R.K.; Kejriwal, M. On using Product-Specific Schema. org from Web Data Commons: An Empirical Set of Best Practices.
arXiv 2020, arXiv:2007.13829.

13. Singhal, A. Introducing the knowledge graph: things, not strings. Off. Google Blog 2012, 5, 16.
14. Reese, J.T.; Unni, D.; Callahan, T.J.; Cappelletti, L.; Ravanmehr, V.; Carbon, S.; Shefchek, K.A.; Good, B.M.; Balhoff, J.P.; Fontana,

T.; et al. KG-COVID-19: A framework to produce customized knowledge graphs for COVID-19 response. Patterns 2021, 2, 100155.
[CrossRef]

15. Kejriwal, M. Knowledge Graphs and COVID-19: Opportunities, Challenges, and Implementation. Harv. Data Sci. Rev. 2020.
[CrossRef]

16. Wilkinson, K.; Sayers, C.; Kuno, H.A.; Reynolds, D. Efficient RDF Storage and Retrieval in Jena2. In Proceedings of the 1st
International Workshop on Semantic Web and Databases, Co-located with VLDB 2003, Berlin, Germany, 7–8 September 2003;
pp. 131–150.

17. He, B.; Patel, M.; Zhang, Z.; Chang, K.C.C. Accessing the deep web. Commun. ACM 2007, 50, 94–101. [CrossRef]
18. Bilke, A.; Naumann, F. Schema matching using duplicates. In Proceedings of the 21st International Conference on Data

Engineering, Tokoyo, Japan, 5–8 April 2005; pp. 69–80.
19. Benjelloun, O.; Garcia-Molina, H.; Menestrina, D.; Su, Q.; Whang, S.E.; Widom, J. Swoosh: A generic approach to entity resolution.

Int. J. Very Large Data Bases 2009, 18, 255–276. [CrossRef]
20. Papadakis, G.; Skoutas, D.; Thanos, E.; Palpanas, T. Blocking and filtering techniques for entity resolution: A survey. ACM

Comput. Surv. 2020, 53, 1–42. [CrossRef]
21. Kejriwal, M. Domain-Specific Knowledge Graph Construction; Springer: New York, NY, USA, 2019.
22. Nam, D.; Kejriwal, M. How Do Organizations Publish Semantic Markup? Three Case Studies Using Public Schema. org Crawls.

Computer 2018, 51, 42–51. [CrossRef]
23. Noy, N.; Gao, Y.; Jain, A.; Narayanan, A.; Patterson, A.; Taylor, J. Industry-scale knowledge graphs: Lessons and challenges.

Commun. ACM 2019, 62, 36–43. [CrossRef]
24. Christophides, V.; Efthymiou, V.; Stefanidis, K. Entity resolution in the web of data. Synth. Lect. Semant. Web 2015, 5, 1–122.

[CrossRef]
25. Zhu, L.; Ghasemi-Gol, M.; Szekely, P.; Galstyan, A.; Knoblock, C.A. Unsupervised entity resolution on multi-type graphs.

In Proceedings of the International Semantic Web Conference, Kobe, Japan, 17–21 October 2016; Springer: New York, NY, USA,
2016; pp. 649–667.

26. Kejriwal, M.; Miranker, D.P. An unsupervised instance matcher for schema-free RDF data. Web Semant. Sci. Serv. Agents World
Wide Web 2015, 35, 102–123. [CrossRef]

27. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. arXiv 2020, arXiv:2005.14165.

28. Xue, L.; Constant, N.; Roberts, A.; Kale, M.; Al-Rfou, R.; Siddhant, A.; Barua, A.; Raffel, C. mT5: A massively multilingual
pre-trained text-to-text transformer. arXiv 2020, arXiv:2010.11934.

29. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

30. Wang, Q.; Mao, Z.; Wang, B.; Guo, L. Knowledge graph embedding: A survey of approaches and applications. IEEE Trans. Knowl.
Data Eng. 2017, 29, 2724–2743. [CrossRef]

31. Kejriwal, M. Advanced topic: Knowledge graph completion. In Domain-Specific Knowledge Graph Construction; Springer: New York,
NY, USA, 2019; pp. 59–74.

32. Kejriwal, M.; Szekely, P. Neural embeddings for populated geonames locations. In Proceedings of the International Semantic
Web Conference, Vienna, Austria, 21–25 October 2017; Springer: New York, NY, USA, 2017; pp. 139–146.

33. Datar, M.; Immorlica, N.; Indyk, P.; Mirrokni, V.S. Locality-sensitive hashing scheme based on p-stable distributions. In Proceed-
ings of the Twentieth Annual Symposium on Computational Geometry, Brooklyn, NY, USA, 9–11 June 2004; pp. 253–262.

34. Paulevé, L.; Jégou, H.; Amsaleg, L. Locality sensitive hashing: A comparison of hash function types and querying mechanisms.
Pattern Recognit. Lett. 2010, 31, 1348–1358. [CrossRef]

35. Kim, H.s.; Lee, D. HARRA: fast iterative hashed record linkage for large-scale data collections. In Proceedings of the 13th
International Conference on Extending Database Technology, Lausanne, Switzerland, 22–26 March 2010; pp. 525–536.

36. Marçais, G.; DeBlasio, D.; Pandey, P.; Kingsford, C. Locality-sensitive hashing for the edit distance. Bioinformatics 2019,
35, i127–i135. [CrossRef]

37. Duan, S.; Fokoue, A.; Hassanzadeh, O.; Kementsietsidis, A.; Srinivas, K.; Ward, M.J. Instance-based matching of large ontologies
using locality-sensitive hashing. In Proceedings of the International Semantic Web Conference, Boston, MA, USA, 11–15
November 2012; Springer: New York, NY, USA, 2012; pp. 49–64.

38. Ma, Y.; Tran, T.; Bicer, V. Typifier: Inferring the type semantics of structured data. In Proceedings of the 2013 IEEE 29th
International Conference on Data Engineering (ICDE), Brisbane, Australia, 8–11 April 2013; pp. 206–217.

39. Shao, J.; Wang, Q.; Lin, Y. Skyblocking for entity resolution. Inf. Syst. 2019, 85, 30–43. [CrossRef]

http://dx.doi.org/10.1016/j.patter.2020.100155
http://dx.doi.org/10.1162/99608f92.e45650b8
http://dx.doi.org/10.1145/1230819.1241670
http://dx.doi.org/10.1007/s00778-008-0098-x
http://dx.doi.org/10.1145/3377455
http://dx.doi.org/10.1109/MC.2018.2701635
http://dx.doi.org/10.1145/3331166
http://dx.doi.org/10.2200/S00655ED1V01Y201507WBE013
http://dx.doi.org/10.1016/j.websem.2015.07.002
http://dx.doi.org/10.1109/TKDE.2017.2754499
http://dx.doi.org/10.1016/j.patrec.2010.04.004
http://dx.doi.org/10.1093/bioinformatics/btz354
http://dx.doi.org/10.1016/j.is.2019.06.003

Information 2021, 12, 134 31 of 31

40. Nascimento, D.C.; Pires, C.E.S.; Nóbrega, T.P. Configurable assembly of classification rules for enhancing entity resolution results.
Inf. Process. Manag. 2020, 57, 102224. [CrossRef]

41. Uno, T.; Maegawa, H.; Nakahara, T.; Hamuro, Y.; Yoshinaka, R.; Tatsuta, M. Micro-clustering: finding small clusters in large
diversity. arXiv 2015, arXiv:1507.03067.

42. Kejriwal, M. Adaptive Candidate Generation for Scalable Edge-discovery Tasks on Data Graphs. arXiv 2016, arXiv:1605.00686.
43. Kejriwal, M.; Miranker, D.P. Sorted neighborhood for schema-free RDF data. In Proceedings of the European Semantic Web

Conference, Portoroz, Slovenia, 31 May–4 June 2015; Springer: New York, NY, USA, 2015, pp. 217–229.
44. Kejriwal, M.; Miranker, D.P. A DNF blocking scheme learner for heterogeneous datasets. arXiv 2015, arXiv:1501.01694.
45. Kejriwal, M.; Miranker, D.P. Self-contained NoSQL Resources for Cross-Domain RDF. arXiv 2016, arXiv:1608.04437.
46. Kejriwal, M.; Miranker, D.P. On Linking Heterogeneous Dataset Collections. In Proceedings of the International Semantic Web

Conference (Posters & Demos), Trentino, Italy, 19–23 October 2014; pp. 217–220.
47. Bellahsene, Z.; Bonifati, A.; Rahm, E. Schema Matching and Mapping; Springer: New York, NY, USA, 2011; Volume 20.
48. Gal, A. Why is schema matching tough and what can we do about it? ACM Sigmod Rec. 2006, 35, 2–5. [CrossRef]
49. Koumarelas, l.; Papenbrock, T.; Naumann, F. MDedup: Duplicate detection with matching dependencies. Proc. VLDB Endow.

2020, 13, 712–725. [CrossRef]
50. Caruccio, L.; Deufemia, V.; Polese, G. Mining relaxed functional dependencies from data. Data Min. Knowl. Discov. 2020,

34, 443–477. [CrossRef]
51. Sahoo, S.S.; Halb, W.; Hellmann, S.; Idehen, K.; Thibodeau Jr, T.; Auer, S.; Sequeda, J.; Ezzat, A. A Survey of Current Approaches for

Mapping of Relational Databases to RDF; World Wide Web Consortium: Boston, MA, USA, 2009.
52. Sequeda, J.F.; Miranker, D.P. Ultrawrap: Sparql execution on relational data. J. Web Semant. 2013, 22, 19–39. [CrossRef]
53. Hernández, M.A.; Stolfo, S.J. The merge/purge problem for large databases. ACM Sigmod Rec. 1995, 24, 127–138. [CrossRef]
54. Kolb, L.; Thor, A.; Rahm, E. Multi-pass sorted neighborhood blocking with mapreduce. Comput. Sci. Res. Dev. 2012, 27, 45–63.

[CrossRef]
55. Christen, P. Data Matching: Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection; Springer: New York,

NY, USA, 2012.
56. Chvatal, V. A greedy heuristic for the set-covering problem. Math. Oper. Res. 1979, 4, 233–235. [CrossRef]
57. Lee, Y.; Sayyadian, M.; Doan, A.; Rosenthal, A.S. eTuner: Tuning schema matching software using synthetic scenarios. Int. J. Very

Large Data Bases 2007, 16, 97–122. [CrossRef]
58. Eiben, A.E.; Smit, S.K. Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 2011,

1, 19–31. [CrossRef]
59. Lovász, L.; Plummer, M.D. Matching Theory; Elsevier: Amsterdam, The Netherlands, 1986.
60. Raz, R.; Safra, S. A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of

NP. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, El Paso, TX, USA, 4–6 May 1997;
pp. 475–484.

61. Peleg, D. Approximation Algorithms for the Label-Cover MAX and Red-Blue Set Cover Problems. In Algorithm Theory-SWAT
2000; Springer: New York, NY, USA, 2000; pp. 220–231.

62. Carr, R.D.; Doddi, S.; Konjevod, G.; Marathe, M.V. On the red-blue set cover problem. In Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, USA, 9–11 January 2000; pp. 345–353.

63. Tian, A.; Kejriwal, M.; Miranker, D.P. Schema matching over relations, attributes, and data values. In Proceedings of the 26th
International Conference on Scientific and Statistical Database Management, Aalborg, Denmark, 30 June–2 July 2014.

64. Tkachenko, R.; Izonin, I. Model and principles for the implementation of neural-like structures based on geometric data
transformations. In Proceedings of the International Conference on Computer Science, Engineering and Education Applications,
Kiev, Ukraine, 18–20 January 2018; pp. 578–587.

http://dx.doi.org/10.1016/j.ipm.2020.102224
http://dx.doi.org/10.1145/1228268.1228269
http://dx.doi.org/10.14778/3377369.3377379
http://dx.doi.org/10.1007/s10618-019-00667-7
http://dx.doi.org/10.1016/j.websem.2013.08.002
http://dx.doi.org/10.1145/568271.223807
http://dx.doi.org/10.1007/s00450-011-0177-x
http://dx.doi.org/10.1287/moor.4.3.233
http://dx.doi.org/10.1007/s00778-006-0024-z
http://dx.doi.org/10.1016/j.swevo.2011.02.001

	Introduction
	Contributions
	Structure of the Article

	Related Work
	Background: Two-Step Entity Resolution (ER)
	Preliminaries and Formalism
	The Generic Pipeline
	Property Table Representation
	Extending the Formalism
	Extending Existing DNF-BSLs

	An Unsupervised Instantiation
	Experiments
	Metrics
	Evaluating Dumas Using Preliminary Experiments
	Methodology
	Baselines
	DNF BSL Parameter Tuning
	Experimental Design: Extended DNF BSL

	Modeling and Datasets
	Statistical Significance
	Implementation

	Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Discussion
	Conclusions and Future Work
	
	Property Table Algorithms
	Optimal DNF Schemes
	Set Covering
	General Blocking Predicates

	References

