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Abstract: Playability is a key concept in game studies defining the overall quality of video games.
Although its definition and frameworks are widely studied, methods to analyze and evaluate the
playability of video games are still limited. Using heuristics for playability evaluation has long been
the mainstream with its usefulness in detecting playability issues during game development well
acknowledged. However, such a method falls short in evaluating the overall playability of video
games as published software products and understanding the genuine needs of players. Thus, this
paper proposes an approach to analyze the playability of video games by mining a large number of
players’ opinions from their reviews. Guided by the game-as-system definition of playability, the
approach is a data mining pipeline where sentiment analysis, binary classification, multi-label text
classification, and topic modeling are sequentially performed. We also conducted a case study on
a particular video game product with its 99,993 player reviews on the Steam platform. The results
show that such a review-data-driven method can effectively evaluate the perceived quality of video
games and enumerate their merits and defects in terms of playability.

Keywords: playability; player reviews; text classification; sentiment analysis; topic modeling; steam

1. Introduction

Playability has been widely acknowledged as the key concept reflecting the overall
quality of a video game, in terms of its rules, mechanics, goals, and design within the
process of design and analysis [1]. This concept is commonly used in game studies. It
reflects the players’ degree of satisfaction towards their various ways of interaction with
the game system, that is, in a nutshell, “A good game has good playability” [2]. It can also be
narrowly interpreted as being equal to the quality of “gameplay” or simply the usability
of video games, that cannot be balanced by “any non-functional designs” [3]. It is also
common to consider both “gameplay” and “usability” as parallel elements of the playability
framework [4,5]. Moreover, playability is also seen as the quality in use [6] of video games
and represents “the degree in which specific player achieve specific game goals with effectiveness,
efficiency, flexibility, security and, especially, satisfaction in a playable context of use” [7]. Thus,
seeing games as systems and taking into account also the technical, mechanical, or material
quality of video games, playability is “the design quality of a game, formed by its functionality,
usability, and gameplay” [8].

Scholars across domains agree that playability, however measured, can be used to
reflect and evaluate the quality of a video game [1,8]. However, regardless of the definition
or framework adopted, research on the approaches to analyze the playability of a particular
game is limited. The most commonly adopted approach to playability analysis is the use
of heuristics [4,5,9,10]. Acknowledgedly, heuristic evaluation has multiple advantages
including being cheap, being easy to motivate evaluators, not requiring advanced planning,
and importantly it can be done in the early development stage [11]. However, it is also
inevitable that such evaluation is biased by the mindset of the evaluators [11,12]. Their
experiences and preferences influence the outcome as well [9,13–17]. In addition, it is
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common that such usability test contains inconsistency due to the evaluator effect [9,18].
Furthermore, the difference in game rule structures, i.e. games of emergence and games of
progression [19], has not been considered in playability evaluation using heuristics. It is
obviously not possible to detect gameplay issues of the game elements appearing in the
later game scenes of progression games (e.g., Witcher 3 [20]) with the limited time spent on
testing with game demos [10].

Hence, towards relevantly fair evaluation on the overall playability of any released
video game product, the opinions of the players who have played it for a fair amount
of time shall be valuable. Players’ game reviews are then the target data source for such
purposes. For software products, the analysis of end user reviews has been considered
important towards evaluation of software quality [21,22]. Meanwhile, text and opinion
mining is a well-known way of “using large text collections to discover new facts” [23,24].
With such support, many studies have provided various approaches towards effective
review analysis to uncover the critical user needs for software products [25–27]. Despite
the differences between video games and utilitarian software products and in the review
styles, such players reviews can be used towards the improvement of game products [28].
As one of the most popular digital game distribution platforms, Steam (https://store.
steampowered.com/, accessed on 16 March 2021) provides an online venue for the players
to review games. With such a large amount of players’ opinion data at hand and together
with the opinion mining techniques, it is then possible to evaluate video game playability
from the perspective of players’ collective intelligence.

Herein, we propose a data-driven video game playability analysis approach based
on the collection of player textual reviews. It answers the following research question:
How can the data-driven approach be used to gain insights into the playability of a game? The
proposed method uses a pre-trained text classifier model to elicit informative reviews from
the pre-processed review collection and uses another pre-trained classifier to classify such
reviews into pre-defined playability categories. In this paper, we choooe Paavilainen’s
game-as-system definition of playability as the reference of classification [8]. With such
an explicit and simplified framework and the proposed method, we can obtain not only
the intuitively quantified evaluation of the overall playability of the target game but also
the specified merits and defects of it in every framework-oriented perspective (answering
the research question). We also validated the usefulness of the proposed approach by
conducting a case study on a real-life video game with 99,993 reviews.

Compared to heuristic evaluation on playability, this approach relies on the collective
intelligence of a large number of players instead of a few experts’ opinions. Furthermore,
this approach evaluates the game by its released versions instead of demos. Thus, it can
provide both the overall playability evaluation and the detailed merits and defects on
a game-as-system level. Therefore, although acknowledging the usefulness of heuristic
evaluation in game development, we emphasize that the contributions of our approach
are: (1) to help game developers obtain a quick overall impression of the perceived game
playability from players’ perspective; and (2) to help game developers understand the
collective needs and complaints of players to identify the playability issues for video game
maintenance and evolution.

The remainder of this paper is organized as follows. Section 2 introduces the related
work. Section 3 presents the playability analysis approach, including the series of proce-
dures and details. Section 4 presents the case study on validating the proposed approach.
Section 5 provides further discussion. Section 6 concludes the article.

2. Related Work
2.1. Playability Evaluation with Heuristics

Heuristic evaluation, targeting originally usability evaluation, is an informal analysis
method where several evaluators are asked to comment on the target design based on pre-
defined heuristics/principles [11,29]. It aims at finding the usability problems during the
iterative design process so that such problems can be addressed before software products

https://store.steampowered.com/
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releasing [30]. Despite the rapid development of the video game industry, the methodolo-
gies for evaluating game quality and player experience are still limited. Therein, heuristic
evaluation is still an effective way of evaluating games compared to other methods for
being cheap and fast [31].

Malone proposed the set of heuristics as a checklist of ideas to be considered for
designing enjoyable user interfaces which is largely seen as the earliest game heuristics [32].
Therein, three main features are proposed: challenge, fantasy, and curiosity. Federoff’s list
of game heuristics is based on the observation and interviews with five people from one
game development company [33]. For such heuristics, game interface, game mechanics,
and game play are the three main aspects. Neither of these early studies provides validation
of the respectively proposed heuristics.

Desurvire et al. introduced Heuristic Evaluation for Playability (HEP) towards video,
computer, and board game evaluation with four categories: game play, game story, game
mechanics, and game usability [4]. HEP is validated via comparison with a user study
of a new game at the beginning of its development with four prospective users in 2-h
sessions. The authors also emphasized HEP is helpful at the early stage of game design but
admitted players’ behavior is still unpredictable. In addition, HEP is extended into Game
Genre-Specific Principles for Game Playability (PLAY) to adapt usability principles to game
design [34]. Forty-eight game design principles from eight categories are proposed.

Korhonen and Koivisto’s playability heuristics are designed for mobile games where
gameplay, game usability, and mobility are the main categories [5]. It is validated by four
experts over a mobile game in the production phase. The authors also admitted that,
although heuristics are helpful, the gameplay is much harder to evaluate. Furthermore,
they extended the heuristics to mobile multiplayer games with experiments showing the
heuristics can be applied to non-mobile games as well [35]. Korhonen et al. also compared
their heuristics with HEP finding the respective strength and weakness [9]. The study
also detects inconsistency within evaluators in terms of their reported problems due to the
potential evaluator effects [18] or different reporting baseline.

Pinelle et al. proposed heuristic evaluation focusing on the usability for video game
design based on the analysis of game expert reviews [10]. The heuristic set contains 12
problem categories and 285 individual problems. It is verified via a testing evaluation of the
demo of a PC game by five expert evaluators. Thereafter, an extension study is conducted
towards heuristics for networked multiplayer games; as a result, five problem categories
with 187 problems specially for network multiplayer games are proposed and verified by
10 expert evaluators on two network games [13]. However, Pinelle and colleagues also
emphasized “the heuristics do not address design issues related to how fun and engaging games
are for users”.

Koeffel et al. proposed a three-aspect heuristic set (including game play, game
story, and virtual interface) to evaluate the user experience in video games and table-
top games [36]. The authors summarized 29 heuristic items based on extensive literature
search and verified the heuristics based on expert evaluation (two experts) on five games
of different genres and comparison to game media reviews.

Many other scholars also conduct research on utilizing heuristic evaluation for specific
types of games. Röcker and Haar showed that existing heuristics can be transferable to
pervasive gaming applications [37]. Tan et al. proposed using heuristic evaluation, the
Instructional Game Evaluation Framework, for educational game analysis [38]. Khanana
and Law illustrated the use of playability heuristics as design tools for children’s games [39].
However, whether these heuristics can be used for video games in general is not verified.

On the other hand, regarding the different ways of using heuristic evaluation to-
wards video game playability, Aker et al. found, based on an extensive literature search,
that empirical evaluation, expert evaluation, inspection, and mixed method are the meth-
ods used for such purpose [40]. Among the four mentioned, expert evaluation is the
most commonly applied with many of the above mentioned studies adopting such a
method [5,9,13,33,35,36]. However, the outcomes of such a method rely heavily on the
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experts’ skills and preferences and seldom capture the behaviors and needs of real end
users [41]. Empirical evaluation, such as surveys, interviews, and focus groups, is also a
relevantly common method of using heuristics [4,32,37,38]. However, with such a method,
it is difficult to properly select the correct user sample and reproduce actual usage/play
situations within the limited given time [41].

2.2. User Review Studies

Being an important data source, customer feedback is commonly used for companies
to understand the market and the needs of their customers so that they could improve
products and services accordingly. Regarding software products, it is also critical to
facilitate the evolution of software products and services via the analysis of end user
reviews [21,22].

Many studies show mining the end user reviews of software products can help reveal
the hidden user behaviors, software characteristics, and the relations in between. Vasa
et al. conducted a preliminary analysis on 8.7 million reviews of 17,330 mobile apps
using statistic methods on user review character counts and ratings [42]. Their results
show mobile app reviews tend to be short and both the rating and the category of an app
influence the length of a review. With the same data, Hoon et al. showed that the most
frequently used words in user reviews are to express sentiment [43]. Harman et al. used
customized algorithms to extract app features and correlation analysis on 32,108 non-zero
priced apps from Blackberry app store [44]. The results show a strong correlation between
customer rating and the app download ranking but no correlation between the app price
and either downloads or ratings.

More importantly, many studies also show that the results from mining end user
reviews can reflect the positive and negative user experience regarding software products.
For example, Vu et al. proposed a keyword-based review analysis method to detect key-
word trends and sudden changes that could possibly indicate severe issues [45]. Panichella
et al. proposed an approach to extract information from user reviews relevant to the
maintenance and evolution of mobile apps using Natural Language Processing (NLP),
sentiment analysis, and text analysis techniques [46]. Gu and Kim proposed a method to
categorize reviews, extract aspects from sentences, and evaluate the obtained aspects of the
mobile apps using NLP techniques [47]. Many other studies also show that opinion mining
on end user reviews can help identify user complaints [48], the useful information [26],
and the factors for software success [25] and evaluate the experience towards specific soft-
ware features [49], merits and defects of particular software updates [50,51], and software
evolution [27].

Despite the differences in video games and utilitarian software products, as well as
those between the review styles, such end user reviews are considered valuable for game
designers and developers towards the improvement of their game products. Lin et al.
conducted an empirical study on the reviews of 6224 games on Steam and analyzed the
review content and the relation between players’ play hours and their reviews [28]. Santos
et al. compared the expert and amateur game reviews on Metacritic and found amateur
reviews are more polarized and have stronger sentiments than expert reviews [52]. Lu
et al. used topic modeling on Steam reviews to investigate the temporal dynamics of player
review topics and the influence of updates to such dynamics [53]. Although game reviews
form a rich resource for understanding the players’ experience and opinion on a particular
game, the game playability analysis based on players’ reviews is yet under-explored.

3. Method

In this section, we present an overview of our approach towards video game playabil-
ity evaluation, with further explanation of the key steps.
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3.1. The Framework Overview

Figure 1 depicts the overview of the video game playability evaluation approach
with each key step specified. The framework starts with collecting the player reviews
from online platforms (e.g., Steam) via either API or web crawling. Then, we prepro-
cess the obtained raw review data into structured form. The second step is to filter out
the “non-playability-informative” reviews via a pre-trained classifier. With the obtained
“playability-informative” reviews dataset, the third step is to classify the data into different
playability perspectives according to a selected playability framework. For example, when
selecting the framework of Paavilainen [8], the reviews are then classified into three per-
spectives accordingly, i.e., functionality, gameplay, and usability. With each review instance
categorized into a specific perspective, the fourth step is to quantify the evaluation result
of each perspective. Subsequently, the fifth step is to visualize such a result and present an
intuitive summary. Meanwhile, the sixth step is to extract the existing merits and defects
from each perspective by modeling and summarizing the topics of the reviews within. The
output of both the visualization and topic modeling is then synthesized into a report.

Figure 1. Video Game Playability Evaluation Framework.

3.2. Preprocessing

The preprocessing step encompasses the following key activities. First, we divide each
review item from the dataset into sentence-level review instances, due to the fact that each
review with multiple sentences can contain multiple topics and various sentiments. In this
study, we use the sentence tokenizer feature from the Natural Language ToolKit (NLTK)
(http://www.nltk.org/, accessed on 16 March 2021), a popular Python package with
text processing libraries, corpora, and lexical resources. Secondly, based on the obtained
sentence-level review dataset, we build the bigram and trigram models to identify the
phrases within the data. For such a purpose, we use the phrase detection feature of Gensim
(https://radimrehurek.com/gensim/models/phrases.html, accessed on 16 March 2021), a
popular semantic modeling package. Subsequently, for each review sentence, we perform
a series of text processing activities, including transforming text into lowercase, removing
non-alpha-numeric symbols, screening stop-words, eliminating extra white spaces, and
lemmatization (using the WordNetLemmatizer model of NLTK). Note that the processing
is only applied to the text when topic modeling is required. For sentiment analysis, such
activities are not only unnecessary but also counter-productive.

3.3. Filtering

Herein, the filtering step is to classify the dataset of sentence-level review instances
into “playability-informative” and “non-playability-informative”. By doing so, we identify
the review sentences that contain description regarding the playability of the particular
game and screen out those not relevant. Due to the variety in playability definition, the
criteria by which review instances are categorized slightly vary. In this study, we adopt
the game-as-system playability definition given by Paavilainen [8] as a reference, as this
definition provides clear criteria for the identification of playability-related text with a
pre-defined playability perspective framework with minimum complexity compared to the
other frameworks. Thus, accordingly, we set the two unique class labels as {‘Playability-
informative (P)’, ‘Non-Playability-Informative (N)’}. Based on the adopted definition and

http://www.nltk.org/
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framework, the criteria for “playability-informative” reviews are listed in Table 1 with
explanation and examples attached. On the other hand, a review is accordingly labeled
“non-playability-informative” when it contains no information related to such criteria. For
example, review sentences such as “I’m glad I supported this Dev team.” (Development
and Publishing), “Now the game has exceeded my expectations!” (Feeling Expression), and
“Ive got this game on PS4, XBOX and now Steam.” (Player Self Description) are all seen as
“non-playability-informative”.

Table 1. “Playability-informative” Criteria based on Paavilainen’s Framework [8] and Examples.

Criteria Explanation Review Examples

Functionality the technical, mechanical or material quality of the “...the performance in VR mode is absolutely terrible.”
game that is related to its smooth operation. “Crashing and stuttering constantly...”

Gameplay the rule dynamics that provide “gameness”. “Survival is not challenging unless you play hardcore,...”
e.g., goals, challenge, progress, and rewards. “...doing the same repetitive things over and over again”

Usability the user-interface of the game and “Controls and menus are bad,...”
its ease of use. “...the massive improvements to the games graphics...”

To efficiently identify and filter the “non-playability-informative” review sentences,
we herein apply a classifier based on machine learning algorithm. In the study, we compare
the Naive Bayes (NB) and the Expectation Maximization for Naive Bayes (EMNB) [54] and
adopt the EMNB classifier in the filtering step. EMNB is a well-recognized semi-supervised
text classification algorithm, which can build a classifier with high accuracy using only a
small amount of manually labeled training data. With EMNB, we thus filter out the review
sentences labeled ’N’ and build the “playability-informative” review sentence dataset.

3.4. Classification

In this step, we classify the obtained “playability-informative” review sentences into
perspectives according to the selected playability framework. As stated above, in this study,
we adopt the playability framework that contains three perspectives, i.e., Functionality
(F), Gameplay (G), and Usability (U). Targeting the specific objectives of this study when
the classes (i.e., playability perspectives) are determined by the existing framework, a
supervised learning algorithm is more suitable. On the other hand, it is also frequent that
a particular review sentence contains information regarding multiple perspectives. For
example, the review sentence “The gameplay, UI and story are not bad, unfortunately this game
has no Beginner friendly and you had to figure out by your own.” describes the players’ opinion
on both gameplay and usability. Thus, to cope with such a situation, we adopt a multi-label
classification algorithm. For such a multi-label classification task, we select from three
algorithms: kNN classification method adapted for multi-label classification (MLkNN) [55],
Twin multi-Label Support Vector Machines (MLTSVM) [56], and Binary Relevance multi-
label classifier based on k-Nearest Neighbors method (BRkNN) [57]. The interfaces of these
classification algorithms are provided by the Scikit-multilearn (http://scikit.ml, accessed
on 16 March 2021), a BSD-licensed library for multi-label classification built on top of
the Scikit-learn ecosystem (https://scikit-learn.org/, accessed on 16 March 2021). The
comparison of these algorithms is discussed in Section 4.2.

3.5. Quantification

In this step, with the classified three sets of “playability-informative” review sen-
tences, we evaluate each of the playability perspectives by quantifying the overall opinions
extracted from the according set of review sentences.

Herein, we use the average sentiment score of the “playability-informative” re-
view sentences representing the players’ collective evaluation towards the playability
of the game.

Algorithm 1 depicts the process of quantifying the playability of a particular game. Let
R be the set of “playability-informative” review sentences, where each ri ∈ R is evaluated

http://scikit.ml
https://scikit-learn.org/
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with the sentiment score (si) assigned via a selected sentiment analysis method, e.g.,
Valence Aware Dictionary for sEntiment Reasoning (VADER) [58], Sentiment strength [59],
etc. Meanwhile, each ri ∈ R is labeled by one or more playability perspectives (Li) using
the pre-trained multi-label text classifier (i.e., MLclassifier). Thereafter, for each playability
perspective (p), we find the set Rp that contains all the review sentences labeled p and
calculate the sentiment value for such perspective as the average of the sum of the sentiment
score (see Line 10).

Algorithm 1: Algorithm of Quantifying the Playability on Multiple Perspectives.
Data: A set of “playability-informative” review sentences
Result: A dictionary of playability scores, each for one perspective

1 R← set of “playability-informative” review sentences;
2 Let P be the set of all playability perspective labels;
3 for each ri ∈ R do
4 si (∈ S)← getSentimentScore(ri);
5 Li (⊆ P, 6= ∅)←MLclassifier.predict(ri);
6 end
7 Let result be return dictionary;
8 for each p ∈ P do
9 Rp ← any ri has p ∈ Li;

10 vp ←
∑ri∈Rp si

len(Rp)
;

11 result[p]← vp;
12 end
13 return result;

3.6. Visualization

In this step, we visualize the output of the quantification of player opinions regarding
each playability perspective with a polygon diagram. The number of vertices of the selected
polygon is equal to the perspective numbers. For example, when adopting Paavilainen’s
playability framework of three perspectives, the analysis of playability to a particular game
can be depicted as a triangle chart (Figure 2).

As shown in Figure 2, the line segments from the triangle center to each vertex
represent the scales measuring each playability perspective. The distance between a green
playability triangle vertex and the center represents the playability score in the particular
perspective. The central point of each line segment is value 0 indicating the neutrality of
the according perspective. The larger the green triangle is, the higher the overall playability
score the game has. When the red area is shown in any direction, the playability of that
game suffers in that particular perspective. Herein, the scale range indicating the positive
and negative of each perspective is determined by the average sentiment score ranging
from −1 to 1. For this particular game example, after the analysis of its reviews through
Algorithm 1, a result list [−0.2, 0.5, 0] is obtained. Based on such a result, Figure 2 is drawn.
It shows the game is good for its gameplay (G = 0.5), mediocre for its usability (U = 0),
and unsatisfactory for its functionality (F = −0.2).
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Figure 2. An example of playability triangular chart.

3.7. Topic Modeling and Summarization

As a critical part of the playability evaluation results, finding the players’ opinions
regarding the pros and cons of a particular game product can convey great value to the
developer team. Thus, in this step, besides the quantified outcome of overall playability, we
identify the specific issues regarding each playability perspective using a topic modeling
algorithm. In this study, we use Latent Dirichlet allocation (LDA) topic modeling, a well-
recognized effective topic modeling algorithm that finds the hidden topics from a large set
of text data [60].

4. Case Study

In this section, we verify the effectiveness of the proposed playability evaluation
method by conducting an experiment on a real-life video game from Steam platform.

4.1. Data Description

The game we select for this case study is No Man’s Sky (NMS) [61], a space exploration
and survival game developed and published by Hello Games (https://hellogames.org/,
accessed on 16 March 2021). The game was first released on 12 August 2016, before which a
social media “hype” had been evoked leading to an unprecedentedly high expectation from
the players. However, the release of the game was disastrous due to the unfulfilled promises
from the developers as well as the performance and gameplay defects. Interestingly, for
the last four years, the game has been continuously maintained with its quality gradually
increasing, which makes it a unique case where the changes in game quality is observable.

We collected the 99,993 English reviews from 12 August 2016 to 7 June 2020 for NMS.
Within the collected review set, the longest contains 116 sentences while the shortest is a
single-sentence review. Via tokenization, we obtained 519,195 review sentences. We then
manually labeled the sentences with “Playability-informative” (P) and “Non-playability-
informative” (N) in a random order, until obtaining 1500 “playability-informative” sen-
tences and 1500 “non-playability-informative” sentences. Therein, 1000 sentences (500 for
each label) were saved as training data and 2000 (1000 for each label) as testing data for
building the filtering classifier model. Furthermore, adopting Paavilainen’s playability
framework, we further labeled the 1500 “playability-informative” review sentences in both
the training and testing dataset into Functionality (F), Gameplay (G), and Usability (U), where
it is possible for one sentence to contain multiple labels. Such dataset was used to train
the classifying model. Note that the labeling of the training data is ideally done by three
expert evaluators. Two evaluators first label the sentences separately and then each label is
confirmed by the agreement of both parties. A third evaluator is invited to provide final
verification when agreement cannot be reached.

4.2. Classifier Selection

To evaluate the performance of the proposed method, we conducted experiments
testing its key steps, including the filtering and the classification steps.

https://hellogames.org/
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4.2.1. Filtering Evaluation

To evaluate the performance of filtering, with a series of experiments, we compared the
results of the original NB algorithm and the EMNB algorithm with the amount of training
and test data from 60 to 3000 with a step of 60. Within the amount of data selected for
each experiment iteration, 1/3 was selected as training data with the other 2/3 as test data.
The evaluation results show that the performances of NB and EMNB are similar regarding
our dataset throughout various data volumes. Throughout the series of experiments, the
accuracy (F1-score) difference between NB and EMNB with that same data volume does
not exceed 0.04. On the other hand, with a limited number of training data (100 training
data and 200 testing data), the accuracy of both algorithms reaches a satisfactory level
(>0.7). The level of accuracy does not drop when enlarging the data volume. Furthermore,
with the data volume reaches around 1200, both classification algorithms can provide
optimal accuracy (>0.8). In this study, considering the large amount of unlabeled review
sentence data as well as the according efficiency, we adopted the EMNB algorithm with the
full training data volume in order to obtain the best performance (F1-Score = 0.85).

4.2.2. Classification Evaluation

Furthermore, we conducted a series of experiments to compare the performances of
three multi-label text classification (MLTC) algorithms, i.e., MLkNN, MLTSVM, and the two
versions of BRkNN. With the manually labeled 1500 “playability-informative” training data,
we first found the best parameters targeting the best performance for each algorithm. Then,
the best accuracy of the three algorithms with the detected parameters were calculated for
comparison. The results shown in Table 2 indicate that MLkNN algorithm has the best
classification accuracy (0.769) on our training dataset with the detected best parameter.
Together with the previous filtering step with EMNB (accuracy of 0.85), the overall accuracy
is satisfactory (0.85 ∗ 0.769 = 0.653).

Table 2. Comparison of the performance of MLTC algorithms.

Algorithm Best Parameter Accuracy

MLkNN k = 27, s = 0.5 0.769
MLTSVM c_k = 0.125 0.532
BRkNNaC k = 19 0.663
BRkNNbC K = 17 0.712

In addition, to further tune the method, we evaluated both the performance of com-
bining the two individual steps and that of applying only the MLTC algorithm targeting
both filtering and classifying tasks. For such purpose, we manually labeled “N” to the 1500
“non-playability-informative” training data and combined them with the 1500 “playability-
informative” ones. The performance of the above three algorithms on the enlarged dataset
is shown in Table 3.

Table 3. Comparison of the performance of two- and one-step classification.

Two-Step One-Step

Algorithm Best Parameter Accuracy Algorithm Best Parameter Accuracy

EMNB + MLkNN k = 27, s = 0.5 0.653 MLkNN k = 1, s = 0.5 0.121
EMNB + MLTSVM c_k = 0.125 0.452 MLTSVM c_k = 0.125 0.349
EMNB + BRkNNaC k = 19 0.564 BRkNNaC k = 1 0.121
EMNB + BRkNNbC K = 17 0.605 BRkNNbC k = 6 0.276

The results show that a two-step classification, i.e., “playability-informative” review
filtering with EMNB and perspective classifying with multi-label text classification, has a
much better accuracy rate than one-step classification with only MLTC. In addition, we
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found that using MLkNN (with the parameter k = 27 and s = 0.5) for the classifying
procedure has the best overall accuracy.

4.3. Results

In this section, we present the results from applying the proposed playability analysis
approach on the review dataset of NMS. The results contain two major parts: (1) the overall
playability score; and (2) the merits and defects of the game.

4.3.1. Playability Score

With the obtained 519,195 review sentence data, we follow the analysis method
procedure by first filtering out the “non-playability-informative” ones. As an outcome,
273,476 review sentences are automatically labeled as “playability-informative” using
the pre-trained EMNB classifier with the 3000 training data. Subsequently, we classify
them into the three perspectives using the selected MLkNN algorithm receiving 43,110
review sentences on functionality, 20,5474 on gameplay, and 30,176 on usability. To perform
sentiment analysis on the review sentences, we select the VADER approach, due to its
high classification accuracy on sentiment towards positive, negative, and neutral classes in
social media domain [58]. In addition, its overall classification accuracy on product reviews
from Amazon, movie reviews, and editorials also outperform other sentiment analysis
approaches and run closely with that of an individual human [58]. It is also easy to import
and perform using Python as being integrated into the NLTK package. By calculating
the sentiment score for each review sentence with VADER and the average score for each
review set, we obtain the result as {‘Functionality’: 0.025, ‘Gameplay’: 0.111, ‘Usability’:
0.039} (shown in Figure 3). It indicates that the overall playability of this game is at the level
of mediocre in each of the two out of three perspectives, when only performs only slightly
better than mediocre in the gameplay perspective. Such results comply with the overall
rating of Mixed on Steam (https://store.steampowered.com/app/275850/No_Mans_Sky/
#app_reviews_hash, accessed on 16 March 2021).

Figure 3. Overall playability score for NMS.

Furthermore, to further verify the results, we follow the major updates of NMS via the
information from its patch notes (https://nomanssky.gamepedia.com/Patch_notes, accessed
on 16 March 2021). As the release date of the 11th major update is 11th June 2020, the
review dataset for the 10th update is incomplete. Thus, focusing on the first nine updates
(Foundation, PathFinder, Atlas Rises, NEXT, Abyss, Visions, Beyond, Synthesis, and Living
Ship), we divide the “playability-informative” review sentences into 10 subsets based on
their release dates. Via the same calculation on each subset, the playability analysis results
regarding the original release (marked as Release 1.0) and the nine following major updates,
as well as their data volumes, are shown in Table 4.

https://store.steampowered.com/app/275850/No_Mans_Sky/#app_reviews_hash
https://store.steampowered.com/app/275850/No_Mans_Sky/#app_reviews_hash
https://nomanssky.gamepedia.com/Patch_notes


Information 2021, 12, 129 11 of 18

Table 4. Playability score changes through major updates.

1.0 Foundation PathFinder Atlas Rises NEXT Abyss Visions Beyond Synthesis Living Ship

Date 16.11.27 17.03.08 17.08.11 18.07.24 18.10.29 18.11.21 19.08.14 19.11.28 20.02.18 20.04.07

Count F. 28,251 800 718 1851 4222 135 1858 2680 1052 555
Count G. 120,894 6128 5460 12,582 19,085 554 12,649 10,011 7667 3579
Count U. 18,106 758 751 1698 2876 103 1692 1900 922 449

Score F. −0.0054 0.0372 0.0973 0.0684 0.0487 0.0091 0.0760 0.0458 0.0966 0.0770
Score G. 0.0765 0.1322 0.1346 0.1534 0.1389 0.1080 0.1686 0.1406 0.2211 0.2113
Score U. 0.0106 0.0708 0.0807 0.0948 0.0608 0.0823 0.0755 0.0481 0.1489 0.1538

Based on such results, we can conclude that the playability of the game increased in
terms of all three perspectives through the nine updates, even though it decreased regarding
some particular updates (e.g., Beyond). The reason for such a situation is the introduction
of new critical features, major interface changes, new vital bugs, etc. Taking the Beyond
update as an example, as a Version 2.0.0, it added the Virtual Reality support and a wide
range of features to the game (https://nomanssky.gamepedia.com/Update_2.00, accessed
on 16 March 2021). It evoked controversy among players regarding its performance and
gameplay. Nonetheless, by comparing the playability of Release 1.0 and that of the version
after the “Living Ship” update, all three perspectives had been greatly improved.

4.3.2. Playability Merits and Defects

To detect the merits and defects of the game in terms of each playability perspective,
we first divide the review sentences into three subsets based on the classification result. For
each subset, i.e., the review sentences for each perspective, we further select the positive
(sentiment score greater than 0) review sentences and the negative ones (sentiment score
smaller than 0) forming six review sentence sets. The volume of each subset is shown in
Table 5. To detect the explicit sentiment from the review, we ignore the neutral (sentiment
score equals 0) review sentences herein. In addition, to conveniently compare the results
to the information extracted from the Metacritic later, we select only the review data
concerning the original game release (i.e., between 12 August 2016 and 27 November 2016).

Table 5. Data volume for review subsets for Release 1.0.

Functionality Gameplay Usability

Positive 10,684 47,780 6537
Negative 10,637 32,627 6396

Subsequently, to find the best topic number for each review subset, we conduct a
series of experiments for each set testing with the topic numbers ranging from 2 to 20.
We use the topic coherence representing the quality of the topic models. Topic coherence
measures the degree of semantic similarity between high scoring words in the topic. A
high coherence score for a topic model indicates the detected topics are more interpretable.
Thus, by finding the highest topic coherence score, we can decide the most fitting topic
number. Herein, we use c_v coherence measure, which is based on a sliding window,
one-set segmentation of the top words and an indirect confirmation measure that uses
normalized pointwise mutual information (NPMI) and the cosine similarity [62]. Note that
we pick the model that has the highest c_v value before flattening out or a major drop, in
order to prevent the model from over-fitting.

With the best topic number (k) values detected for the six review subsets (shown in
Table 6), we can continue with building the according topic models and detecting the topics.
Table 7 shows the extracted topics for each subset as well as the top 10 keywords that
describe each of them.

https://nomanssky.gamepedia.com/Update_2.00
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Table 6. Best fitting topic numbers and c_v values.

Functionality Gameplay Usability

P k = 3, c_v = 0.552 k = 4, c_v = 0.535 k = 3, c_v = 0.397
N k = 3, c_v = 0.438 k = 3, c_v = 0.522 k = 5, c_v = 0.374

Table 7. Detected topics for each review set.

Topic (Positive Functionality) Top Words

+ Load Screen and Crashing “game”, “play”, “crash”, “time”, “screen”, “start”, “hour”, “go”, “load”, “get”
+ Performance and bugs fixed via update “issue”, “game”, “performance”, “fix”, “people”, “update”, “would”, “bug”, “problem”, “patch”
+ Running game fine with settings “run”, “game”, “setting”, “graphic”, “work”, “get”, “fps”, “pc”, “fine”, “high”

Topic (Negative Functionality) Top Words

− Poor Performance, Bugs, Crash, Need Fix “game”, “issue”, “problem”, “performance”, “fix”, “people”, “crash”, “bad”, “poor”, “bug”
− Lag, Stutter, fps drop, even with low settings “run”, “setting”, “low”, “game”, “stutter”, “drop”, “pc”, “graphic”, “lag”, “fps”
− Crash at Start screen, try hours “crash”, “game”, “play”, “time”, “screen”, “get”, “start”, “can”, “try”, “hour”

Topic (Positive Gameplay) Top Words

+ Explore, survival, different planet systems “planet”, “find”, “new”, “explore”, “system”, “beautiful”, “different”, “look”, “survival”, “thing”
+ Crafting, ship-flying, resource and inventory “space”, “ship”, “get”,“resource”, “fly”, “well”, “craft”, “upgrade”, “inventory”, “learn”
+ Fun exploration gameplay “game”, “exploration”, “fun”, “play”, “get”, “hour”, “gameplay”, “good”, “enjoy”, “lot”
+ Need story to make better “game”, “want”, “make”, “need”, “would”, “give”, “bit”, “people”, “story”, “work”

Topic (Negative Gameplay) Top Words

− Repetitive, boring gameplay “game”, “get”, “hour”, “feel”, “repetitive”, “start”, “bore”, “boring”, “gameplay”, “people”
− Lack of inventory upgrade “ship”, “resource”, “make”, “need”, “inventory”, “find”, “upgrade”, “lack”, “craft”, “much”
− Fly, explore, combat “planet”, “space”, “see”, “look”, “explore”, “combat”, “find”, “fly”, “kill”, “ship”

Topic (Positive Usability) Top Words

+ Control feels with controller, fly ship “control”, “use”, “ship”, “take”, “feel”, “get”, “controller”, “fly”, “space”, “flight”
+ Beautiful graphics “game”, “graphic”, “play”, “change”, “setting”, “beautiful”, “look”, “run”, “work”, “good”
+ Music&sound, hold and click button “hold”, “button”,‘ ‘music”, “menu”, “screen”, “system”, “inventory”, “click”, “sound”, “second”

Topic (Negative Usability) Top Words

− Graphic settings poor, restart “graphic”, “game”, “setting”, “change”, “run”, “bad”, “start”, “poor”, “get”, “restart”
− Fly control with mouse annoying “control”, “mouse”, “ship”, “fly”, “game”, “use”, “get”, “annoying”, “make”, “press”
− Terrible texture and sound “terrible”, “look”, “texture”,‘ ‘game”, “sound”, “pop”, “point”, “require”, “complaint”, “way”
− Horrible flight control, cluncky inventory “control”, “flight”, “feel”, “people”, “horrible”, “system”, “inventory”, “lack”, “clunky”, “fov”
− Option, click and hold button, bad/awful PC port “game”, “pc”, “option”, “button”, “hold”, “port”, “menu”, “awful”, “bad”, “click”

From the detected topics, we can easily summarize the merits and defects of the
game in terms of each playability perspective. For example, the topics extracted from the
“negative-functionality” review set show that users are satisfied with the performance of
the game when settings are tackled properly. They are also satisfied with the bugs being
fixed and with the game despite the load screen and crashing. On the negative side, players
often complain about various issues, including poor performance, bugs, crashes, lagging,
stuttering, fps, etc. Regarding gameplay, the exploration and survival through different
planet systems, as well as the crafting, spaceship cruising, and resource and inventory
management, are well received by the players. They also indicate a better story is needed.
On the other hand, the players feel negative about the gameplay being repetitive and
boring and frustrated about the lack of inventory upgrade. The flying, exploring, and
combat mechanisms also suffer. Regarding usability, the players feel positive regarding
the spaceship control using controller and the beautiful graphics. They also like the music
and sound effects and the menu interface using a click and hold button to access the
inventory. However, players also complain about the following aspects: the graphic setting
only changes after restarting, controlling with mouse is annoying, texture and sound
being terrible, horrible flight control and clunky inventory, the click-and-hold interaction
mechanism, and being an awful PC port. Note that a similar topic shown in both the
positive and negative groups (e.g., loading screen and crash) suggests that a relevantly high
number of players express different sentiment when talking about ’crash’. For example,
“With a Rift S headset and a gtx1080 graphics card I’m getting great performance out of the game
with no crashes.” and “This game has a TON of performance problems and has crashed on me far
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too many times to be acceptable.” express sentiment differently when both are about “crash”.
Such a situation indicates players’ opinions diverge regarding this topic.

To verify the correctness of the detected merits and defects of the game via topic
modeling, we compare our results to the expert opinions extracted from the critic re-
views of Metacritic (https://www.metacritic.com/game/pc/no-mans-sky, accessed on
16 March 2021). Metacritic reviews have been considered valuable in providing insights
in evaluating the quality of media products, e.g., movies and games [63,64]. We find
the 10 critic reviews (including ‘gamewatcher’, ‘hookedgamers.com’, ‘ign denmark’, ‘the
games machine’, ‘mmorpg.com’, ‘pelit.fi’, ‘pcgamer.com’, ‘gamegrin.com’, ‘games.cz’, and
‘game-debate.com’) on NMS. Their full review contents are accessible online with the “pros
and cons” explicitly listed. Due to the fact that all the critic reviews were given soon after
the release date, the opinions thus only apply to Release 1.0 of the game. As stated above,
such opinions are used to compare with the extracted players’ review opinions regarding
the same version.

As shown in Table 8, we can easily compare the extracted positive and negative topics
from the player reviews and the summarized “playability-informative” “Pros and Cons”
from the critic reviews. We can conclude that a great majority of the merits and defects of
the game mentioned by the media experts are detected from the player review modeling.
For example, regarding functionality, both parties point out the problems of crashing, bugs,
frame drops, and performance issues. Note that the critic reviews do not mention the merits
regarding functionality, which is reasonable as providing a functional product is clearly
a “must-have” instead of an “exciter”. Regarding gameplay, the exploration and survival
gameplay is praised by both, as well as the different planet systems and spaceship flying.
The sense of relaxing that mentioned by the media is not covered by the players’ topics. On
the negativity of gameplay, the complaints about inventory, repetitive/tedious gameplay
(limited options), lack of combat, etc. are mutual. Furthermore, regarding usability, the
graphics and sound are praised by both, when the players’ reviews additionally give credits
to the controlling performance with controllers. On the other hand, both parties reflect
negative opinions on the control (with mouse) and menu/option being frustrating, when
the players complain more specifically about the “hold and click button” control.

In addition, we also compare these extracted topics to the original game-as-system
definition and the according perspective descriptions of Paavilainen’s playability frame-
work [8]. Regarding functionality, nearly all the sub-perspectives are covered by the player
review topics, except for “error reporting”. Apparently, the players are generally not satis-
fied with functionality from all sub-perspectives, as all such can be related to at least one
topic from negative reviews. On the other hand, regarding gameplay, the player reviews
reflect positively on the play styles, goals, challenges, and rewards of the game, when
convention and consistency are not mentioned enough. Repetitiveness and autonomy (i.e.,
lack of inventory upgrade -> cannot freely preserve more items) are the gameplay sub-
perspectives being complained often. Finally, regarding usability, the negative opinions
are about the control with mouse (control), texture (audiovisual), inventory (UI layout),
graphic setting, option/menu (Navigation), and click and hold button (feedback). Such
results further validate the extracted review topics are “playability-informative”.

https://www.metacritic.com/game/pc/no-mans-sky
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Table 8. Mapping between extracted player review topics and metacritic reviews pros and cons.

Playability Players’ Review Topic Metacritic Review Pros and Cons

Functionality + Load Screen and Crashing
+ Performance and bugs fixed via update
+ Running game fine with settings
− Poor Performance, Bugs, Crash, Need Fix − Still major technical issues.

− Deplorable technical condition.
− The PC version is heavy, buggy, and crashing

− Lag, Stutter, fps drop, even with low settings − Random frame rate drops.
− Poorly optimized.

− Crash at Start screen, try hours

Gameplay + Explore, survival, different planet systems + Solid survival gameplay with great freedom.
+ Crafting, ship−flying, resource and inventory + Relaxing exploration
+ Fun exploration gameplay + Massive universe to explore.

+ It truly is an impossibly huge galaxy.
+ A sense of majesty and grandeur unlike anything else.
+ Lots of options to fiddle with.
+ Near limitless replay value.
+ Huge scale, infinite content.
+ Solid survival gameplay with great freedom.
+ Relaxing exploration.

+ Need story to make better − Very little real story.
− No reason to proceed, lacks a narrative...

− Repetitive, boring gameplay − a lack of real discovery
−Most planets look the same
− repetitive systems
− Repetitive
− Dull, tedious crafting.
− Planets all hold the same handful of interest points.
− ... disappoints in almost every way and just has no depth
− ... gameplay options extremely limited.
− ... Has too few features to be varied in the long run.
− soon turns into a routine stereotype...
− The universe is a lifeless and static backdrop.

− Lack of inventory upgrade − Loads of inventory management.
− Fly, explore, combat − Not for thrill seekers or combat fans.

− whilst gathering resources to move on but won’t linger.

Usability + Control feels with controller, fly ship
+ Beautiful graphics + Beautiful alien worlds.

+ Breathtaking views.
+ Stylish in graphics ...
+ some lovely scenery
+ An atmospheric walk through beautiful worlds

+ Music and sound, hold and click button + stylish..sound
+ A successful.. atmospheric audiovisual implementation.

− Graphic settings poor, restart
− Fly control with mouse annoying
− Terrible texture and sound
− Horrible flight control FOV, cluncky inventory − Uncomfortable controls
− Option, click and hold button, bad/awful PC port − frustrating menus

+ It may work perfectly as an occasional short distraction
−Many promises left undelivered

“+” represents positive, “−” represents negative.

5. Discussion

Considering that other factors can also influence the outcome of the playability analy-
sis, we extended the experiments using the playtime of the players and the voted helpfulness
value as the weight to the sentiment score. The playtime value indicates how long each
player has been playing the game, i.e., the game experience. It is reasonable to assume that
players who spend more time on a particular game with more gaming experience shall pro-
vide more trustworthy reviews. On the other hand, the voted helpfulness value indicates
how many other players agree with the statement and evaluation in a particular review, i.e.,
the perceived trustworthiness. According to our review data, among the players who wrote
the reviews, the longest playtime of one player is 645,618 min (≈10,760 h) with the shortest
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being 1 min. The average playtime is 5791.70 min (≈96.53 h). Meanwhile, the highest
helpfulness score received by a single review is 12,236 with the lowest being zero. The
average helpfulness score is 6.42. By adding the normalized “playtime” and “voted help-
fulness” values as weights to the sentiment score of each review sentence, we can obtain
the weighted playability score for each perspective as follows: Functionality of −0.1985,
Gameplay of −0.1815, and Usability of −0.1983 with the scale of (−1, 1). This result shows
that the overall playability of this game is slightly under mediocre. Furthermore, similar
experiments with the reviews between updates show that the playability of the game is
still increasing through updates, but the values are slightly negative. This phenomenon
shows that experienced players and popular reviews can have obvious influence on the
playability analysis result when their opinions are credited with more value. However,
how to verify the influence of the players’ experience and the credibility of their reviews
towards the analysis result of playability shall be further investigated in future studies.

On the other hand, as shown in Table 4, the majority (61.2%) of the reviews are
given before the first update of the game. Thus, the playability of Release 1.0 likely has a
greater influence on the overall score than that of the rest. Therefore, it is reasonable such
unevenness is also taken into account. Comparatively, for a similar situation in review-
based analysis, the time sequence factor was considered by Chen et al. when evaluating the
informativeness of mobile application reviews [26]. However, we are unable to conclude
that the newest reviews accurately reflect the current playability of the game without
further investigation on the content of such reviews compared to the older ones. A study
on the changes of reviewers’ opinions regarding the evolution of the target system (similar
to the one in [27]) shall be conducted towards tackling such issues.

It is worth emphasizing that the proposed approach can be adapted by considering
any proposed playability heuristics when such heuristic-oriented issues are sufficiently
mentioned by the players. Due to the nature of heuristics being a checklist of principles [11],
it is thus possible to extract players’ opinions according to different heuristics via labeling
training data accordingly. Although the outcome of applying different heuristics could
certainly differ, it is a potentially good practice towards detecting more playability issues.
Thus, a comparative study on applying this approach with different playability heuristics
shall be conducted in the future work.

Furthermore, an obvious limitation of this approach is the requirement of a large
number of player reviews, which is impossible before the release of the game. Heuristic
evaluation of playability is an effective way to target such a situation. Comparatively, our
approach aims for the continuous maintenance and evolution of games after their releases,
where playability evaluation can be conveniently automated through this data mining
pipeline with sufficient review data collected. The gap between experts’ and end players’
opinions is, to a certain extend, inevitable [52]. Hence, our approach can contribute to
helping the developers better understand the needs and complaints of the players. Based
on that, they can improve the games continuously and effectively.

6. Conclusions

In this paper, we propose a data-driven approach for analyzing the playability of
video games based on the players’ reviews. Focusing on the collective opinions of a large
number of players, this approach provides an effective solution for understanding the
overall playability of a particular video game as well as the detailed merits and defects
within each pre-defined playability perspective. The results of this study show that the
proposed approach can provide fair evaluation and analysis in terms of video game
playability with satisfactory accuracy. Compared to the mainstream heuristic evaluation
method, our approach contributes specifically to the maintenance and evolution of video
games by helping game developers understand the collective needs and complaints of real
players. The approach can be improved by taking into account other factors that influence
the playability analysis: the playtime, voted helpfulness, player preferences, etc. The
different evaluation results by selecting different playability frameworks or using different
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playability heuristics shall be further investigated comparatively. Furthermore, more video
game cases, especially from different genres, shall be used for verification and comparison.
We shall also further investigate the credibility of game players as reviewers based on their
reviewing behaviors and gaming profiles via computational methods. Such studies shall
contribute to the enrichment of the playability and player behavior analysis methodologies.
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