
 information

Article

Numerical Markov Logic Network: A Scalable Probabilistic
Framework for Hybrid Knowledge Inference

Ping Zhong * , Zhanhuai Li, Qun Chen, Boyi Hou and Murtadha Ahmed

����������
�������

Citation: Zhong, P.; Li, Z.; Chen, Q.;

Hou, B.; Ahmed, M. Numerical

Markov Logic Network: A Scalable

Probabilistic Framework for Hybrid

Knowledge Inference. Information

2021, 12, 124. https://doi.org/

10.3390/info12030124

Academic Editor: Willy Susilo

Received: 26 January 2021

Accepted: 11 March 2021

Published: 15 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710129, China;
lizhh@nwpu.edu.cn (Z.L.); chenbenben@nwpu.edu.cn (Q.C.); ntoskrnl@mail.nwpu.edu.cn (B.H.);
a.murtadha@mail.nwpu.edu.cn (M.A.)
* Correspondence: zhongping@mail.nwpu.edu.cn

Abstract: In recent years, the Markov Logic Network (MLN) has emerged as a powerful tool for
knowledge-based inference due to its ability to combine first-order logic inference and probabilistic
reasoning. Unfortunately, current MLN solutions cannot efficiently support knowledge inference
involving arithmetic expressions, which is required to model the interaction between logic relations
and numerical values in many real applications. In this paper, we propose a probabilistic inference
framework, called the Numerical Markov Logic Network (NMLN), to enable efficient inference of
hybrid knowledge involving both logic and arithmetic expressions. We first introduce the hybrid
knowledge rules, then define an inference model, and finally, present a technique based on convex
optimization for efficient inference. Built on decomposable exp-loss function, the proposed inference
model can process hybrid knowledge rules more effectively and efficiently than the existing MLN
approaches. Finally, we empirically evaluate the performance of the proposed approach on real data.
Our experiments show that compared to the state-of-the-art MLN solution, it can achieve better
prediction accuracy while significantly reducing inference time.

Keywords: Markov Logic Network; MAX-SAT inference; loss function decomposition; convex
optimization; numeric knowledge rule

1. Introduction

In recent years, the Markov Logic Network (MLN) [1] has emerged as a powerful
tool for knowledge-based inference due to its ability to combine first-order logic inference
and probabilistic reasoning. It has been applied in a wide variety of applications, e.g.,
knowledge base construction [2–5] and entity resolution [6]. The state-of-the-art proba-
bilistic knowledge-based systems (e.g., Tuffy [7], ProKB [8], and Deepdive [9]) tackle the
problem of MLN inference in two steps, grounding and inference. The step of grounding
constructs a Markov network by knowledge rules; it is followed by the step of inference,
which searches for the Maximum A Posteriori (MAP) probability or marginal probability
of the variables.

In many real scenarios, for instance the inference on phone performance as shown in
Table 1, knowledge rules may involve both first-order logic and arithmetic expressions.
However, the existing MLN inference techniques cannot effectively support these hybrid
rules due to the following two new challenges:

1. Modeling the integration of logic formula and arithmetic expression. We note that
the latest approach of Probabilistic Soft Logic (PSL) [10] enables MAP inference on
continuous variables over a set of arithmetic rules such as “r2 : Per f ormance(p) 6 0.2”
by considering it as a constraint on prior probability. However, it can be observed
that an arithmetic expression (e.g., FastCPU(c) > 0.9) is not a predefined continuous
logic variable; thus, it cannot be easily integrated into the objective function defined
by PSL. Specifically, even though the arithmetic inequalities like “FastCPU(c) > 0.9”

Information 2021, 12, 124. https://doi.org/10.3390/info12030124 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-7163-5466
https://doi.org/10.3390/info12030124
https://doi.org/10.3390/info12030124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12030124
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12030124?type=check_update&version=2

Information 2021, 12, 124 2 of 22

in r3 can be regarded as a Boolean variable by PSL, computing the truth value of r3 by
the max function used in PSL would render its corresponding objective function non-
convex. Since the inference of PSL was built on convex optimization, applying PSL
inference on r3 would lead to inaccurate results and convergence failure. Therefore,
the existing MLN solutions cannot effectively support the integration of logic formula
and arithmetic expression.

2. Scalability. Arithmetic expressions usually involve pair-wise numerical comparison.
The existing MLN solutions would generate the combination of all the predicate
variables in the grounding process. This results in the undesirable quadratic or even
cubic explosion of grounded clauses, which can easily render the inference process
unscalable. For instance, consider the rule r4 in Table 1. The existing inference
solutions would result in an n2 size of clauses for n variables. It is worth pointing
out that clause explosion would not only result in inference inefficiency, but also
meaningless inference results. In the circumstance of clause explosion, the techniques
based on Gibbs sampling [11,12] may fail because the sampler would be trapped in a
local state. As shown in our experimental study, the predictions of PSL may become
inaccurate because it fails to converge.

Table 1. Examples of knowledge rules.

Knowledge Rules Size

r1 Frequency(c) ∧ Core(c)⇒ FastCPU(c) n

r2 Per f ormance(c) 6 0.2 n

r3 FastCPU(c) > 0.9∧ HasCPU(p, c)
∧Memory(p) > 0.8⇒ Per f ormance(p)

n

r4 Per f ormance(p1) > Per f ormance(p2) ∧Similarprice(p1, p2)⇒
Per f ormancecost(p1) > Per f ormancecost(p2)

n2

To address the aforementioned challenges, we propose a novel inference framework
called the Numerical Markov Logic Network (NMLN). The framework defines the opti-
mization objective of inference as a novel exp-loss function, which can seamlessly integrate
logic and arithmetic expressions. We also present an inference approach of exp-loss function
decomposition based on convex optimization and use the technique of ADMM (Alternating
Direction Method of Multipliers) to parallelize the inference process for improved efficiency.
The major contributions of this paper can be summarized as follows:

• We propose a novel probabilistic framework for hybrid knowledge inference. We
define the hybrid knowledge rules and present the optimization model.

• We propose a scalable inference approach for the proposed framework based on the
decomposition of the exp-loss function.

• We present a parallel solution for hybrid knowledge inference based on convex
optimization.

• We empirically evaluate the performance of the proposed framework on real data.
Our extensive experiments show that compared to the existing MLN techniques, the
proposed approach can achieve better prediction accuracy while significantly reducing
inference time.

2. Related Work

Probabilistic Programming Languages (PPLs) [13] seek to separate model specification
from inference and learning algorithms, thus making it easy for end users to construct
probabilistic models in a simple style. Recent PPL platforms, including PyMC3 [14],
Edward [15], and Pyro [16], require that the user defines the model structure such as
probabilistic graph models (i.e., represents a joint probability distribution for the problem
in hand).

Information 2021, 12, 124 3 of 22

The Markov Logic Network (MLN) [1] was originally proposed for combining first-
order logic inference and probabilistic reasoning. Based on the original model, several
variants and significant improvements have been proposed. For example, Tuffy [7] was the
first system that implemented MLN inference by RDBMS. ProKB [8] proposes a probabilistic
knowledge base system allowing uncertain first-order relations and can dramatically
reduce the grounding time cost in Tuffy. Deepdive [9] was also an improvement over
Tuffy, which has been widely applied to different applications. It provides a powerful
knowledge base construction tool and optimizes MLN inference by a combination of
statistical inference and machine learning. Our previous work of POOLSIDE [17] proposed
a ranking system for commercial products according to their attributes and user comments.
Implemented using Deepdive, POOLSIDE provides a naive predefined function to specify
the relations between attribute values. The recently proposed variant Quantified Markov
Logic Networks (QMLNs) [18] extends classical MLN with a statical quantifiers ∀∗, which
provides a kind of quantification describing for example most, few, or at least k thresholds.
More recently, Flash [19] exploited MLN to express the Spatial Probabilistic Graphical
Model (SPGM), which can perform SPGM predictions efficiently. The MLN has been
widely applied to various areas, including activity recognition systems in smart homes [20],
root cause analysis in IT infrastructure [21], and natural language understanding [22], to
name a few. Note that these systems were all designed for inference on first-order logic
rules, but they cannot effectively support the inference on hybrid knowledge rules.

The latest research is mainly focused on the applications. MLNClean [23] was pro-
posed for data cleaning, which is able to clean both schema-level and instance-level errors.
The authors of SMLN [24] proposed a framework with native support for spatial data. The
paper [25] proposed R-KG, a robot intelligent service, to reason about knowledge based on
a Markov logic network.

On the issue of probabilistic reasoning, the MLN mainly focuses on two aspects: infer-
ence optimization and model learning. The traditional MLN-based inference techniques
suffer from the issue of scalability due to their dependence on the generative model, which
embeds all the data and targets in a model. The lifted inference technique [26] was proposed
to simplify the MLN network by exploiting symmetry in the model. The authors of [27]
proposed a technique to enable large-scale parallel inference by making Gibbs sampling
work on the divided networks. The authors of [28] also proposed a query-driven technique
that can leverage the local network for query prediction. Moreover, in our previous work
POOLSIDE [17], we also proposed an improved query-driven inference algorithm, which
exploits the information in the known neighbors to predict the query node. Ground Net-
work Sampling (GNS) [29] proposed in 2016 offers a new instantiation perspective, which
can ground from a set of sampled paths at inference time; thus, GNS offers better scala-
bility compared to MLN. Model learning for the MLN includes parameter learning and
structural learning. Parameter learning aims to find the optimal weights for a set of rules.
This is usually achieved by optimizing different metrics of the objective function [30–32].
Structure learning instead aims to learn both logic formulas and their weights, which use
the top-down [33] or bottom-up [34] search strategy to find formulas. The authors of [35]
proposed a functional-gradient boosting algorithm that learns parameter and structure
simultaneously. Since feature representation using neural networks has received much
attention from researchers in various domains, neural Markov logic networks [36] also
propose to learn the implicit representation of rules using neural networks instead of the
explicit rules specified by humans.

To represent fuzzy logic, the MLN models have been extended from the binary field
to the continuous field. The hybrid MLN [37] defines and reasons about the soft equality
and inequality constraints for first-order relations. Probabilistic Soft Logic (PSL) [10]
extends binary variables in the MLN into the continuous range [0, 1]. PSL uses Lukasiewicz
logic [38] to compute the truth values of logic clauses. Moreover, PSL allows users to define
arithmetic rules, which can be interpreted as constraints on the variables, and transforms

Information 2021, 12, 124 4 of 22

the MAP inference into a convex optimization problem. With the help of ADMM [39], the
inference can be effectively parallelized and scaled up well to the data size.

However, PSL cannot effectively support the inference on hybrid knowledge rules;
the proposed inference techniques thus cannot address the clause explosion issue.

3. Hybrid Knowledge Rules

The first-order relation consists of a predicate and several predicate variables, e.g.,
“relation(y1, y2)”, where the “relation” is called a predicate, which represents the relation-
ship between variables, while y1 and y2 are called predicate variables. If we replace the
predicate variables of a relation with the instance data, the relation can be considered as
grounded. In our inference system, each grounded relation is regarded as an inference
variable or evidence, which has a truth value at [0, 1] intervals, to indicate whether the
relation is held (equal to one) or not (equal to zero).

A hybrid knowledge rule involves both arithmetic and logic expressions. Formally,
we define a hybrid knowledge rule by extending the definition of the knowledge rule [10]
as follows:

Definition 1. Suppose that x denotes the set of first-order relation variables and `(x) denotes a
linear function, which consists of variables in x. A hybrid knowledge rule, r, can be represented by a
disjunction form of:

t1 ∨ t2 ∨ · · · ∨ tn, (1)

where ti denotes a term, which should be one of the following three types:

• (1) ti is a first-order relation x or its negation ¬x, where x ∈ x;
• (2) ti is a logic expression, and xi denotes its variables, where xi ⊆ x;
• (3) ti is a linear inequality in the form of `(xi) 6 (or >)0, where xi ⊆ x.

4. Inference Framework

To introduce our inference framework, we first define the knowledge inference prob-
lem as follows:

Definition 2. Suppose that r denotes the set of knowledge rules, x denotes a set of variables
(including the set of inference variables V and the set of evidence Λ), and Φj denotes a function
defined over variables x, which represents the constraint based on the rule rj ∈ r. The knowledge
inference problem is to find a solution V? for the variables, such that:

V? = argmin
V∈[0,1]n

∑
rj∈r

Φj(x) (2)

In order to define Φj, we use Lukasiewicz logic [38], which extends binary variables
to the continuous field [0, 1], to represent the logic formula. Lukasiewicz logic transforms a
logic operator in the following manner:

x1 ∧ x2 ⇒ max(x1 + x2 − 1, 0) (3)

x1 ∨ x2 ⇒ min(x1 + x2, 1) (4)

¬x ⇒ 1− x (5)

Note that the latest approach of PSL can handle the clauses containing only logic for-
mulas. Based on Lukasiewicz logic, PSL transforms a logic formula into a linear inequality
`(x) 6 0, where:

`(x) = ∑
xi∈x

βixi + b (6)

is a linear function, which defines the distance of a constraint from being satisfied. Given a
logic formula (rule) r in disjunctive form, let I− ⊆ x and I+ ⊆ x denote the set of variables

Information 2021, 12, 124 5 of 22

with and without the negation prefix “¬”, respectively. Formally, the linear function `(x)
can be represented by:

`(x) = 1− ∑
xi∈I+

xi − ∑
xi∈I−

(1− xi). (7)

Based on the transformation, it then defines a Hinge-Loss Markov Random Field (HF-MRF),
which extends the MLN to the continuous field. The loss function for each clause can be
formally represented by:

φ(x) = (max{`(x), 0})p, (8)

where x denotes the vector of variables, p denotes a user-defined parameter, and `(x)
denotes the linear function, as shown in Equation (7).

Unfortunately, the loss function as defined in Equation (8) cannot handle a hybrid
knowledge rule involving both a logic formula and arithmetic inequalities. It can be
observed that directly modeling the inference of hybrid knowledge rules by Equation (8)
would render its corresponding objective function non-convex.

To integrate all terms in a hybrid rule into a function, we consider the truth value of
each arithmetic expression (inequalities) as a continuous logic variable in the interval of
[0, 1], which is consistent with its semantic and logic propositions. Formally, we define the
truth value for a linear inequality, ` 6 0, as follows:

T6(`) = min
(

1− `

sup(`)
, 1
)

, (9)

sup(`) = ∑
xi∈I+

βxi + c, (10)

where sup(`) denotes the sum of all positive variables’ coefficients βxi and constant c. Note
that the linear inequality of ` > 0 can be equivalently transformed into −` 6 0. Figure 1a
demonstrates the functional relation between a linear function value ` and its truth value.
As shown in the figure, with a linear inequality being normalized by its supremum, its
truth value is equal to the maximal value of one when the inequality is satisfied, and it
decreases to zero as the violation reaches the maximum level.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
()

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ex
p-

lo
ss

()

(b)

Figure 1. Metric functions: an example: (a) truth value function; (b) exp-loss function.

It is noteworthy that the truth value as defined in Equation (9) is consistent with
the PSL transformation with regard to Equations (3) and (4). For the negation operator,
we define:

T(¬(` 6 0)) = T(−` 6 0), (11)

Our inference framework then defines a linear function ` for a hybrid rule as follows:

Information 2021, 12, 124 6 of 22

`(x) = 1− ∑
xi∈I+

xi − ∑
xi∈I−

(1− xi)− ∑
`i∈`6

(
1− `i

sup(`i)

)
, (12)

where `6 denotes the set of linear inequalities in the rule.
Note that the hybrid rules can be directly converted to the PSL loss function formulated

in Equation (8), by replacing the linear functions in Equation (7) with Equation (12), such
that hybrid rules’ inference can be solved by PSL, as we did in our empirical evaluation
study. However, such an inference approach causes the clause explosion problem, as we
discussed in the introduction. To solve the problem of clause explosion, we instead define
an exp-loss function to measure the violation of a rule as follows.

Definition 3. Let `(x) denote the linear function defined in Equation (12), and α > 1 denote the
base argument, which can be e or other constants. The exp-loss function is defined by:

α`(x)−1. (13)

Lemma 1. α`(x)−1 is convex when α > 1.

Proof. A function twice differentiable is convex iff the Hessian matrix is positive semi-
definite. Take:

f (x) = αl(x)−1 = α∑n
i=1 βixi+d−1.

Computing the Hessian:
∂2 f (x)
∂xi∂xj

= βiβ jα
∑n

i=1 βixi+d−1,

we see it is actually positive semi-definite, because for any λi,

∑
i,j

βiβ jα
∑n

i=1 βixi+d−1λiλj = (∑
i

λiα
∑n

i=1 βixi+d−1)2 > 0. (14)

It is worth pointing out that we chose the exp-loss function to measure the violation
of a rule due to following reasons:

1. The exp-loss is a natural extension to the hinge-loss function defined in Equation (8).
The exponential power `(x) guarantees a greater loss when a violation of the rule
occurs. On the other hand, it can be observed that even though the function is not
zero when the rule is satisfied (e.g., if α = e, the loss is e−1 if the rule is satisfied), the
value of the exp-loss and its gradient becomes very small in the negative interval,
which can be considered as a soft constraint of the max() function.

2. As shown in the following section, the exp-loss function enables the scalable inference
based on function decomposition. It can effectively address the challenge of the
explosion of grounded clauses.

Let V denote the set of unknown variables for inference. Given a set of hybrid
knowledge rules r and the weight wj with respect to rj ∈ r, the inference target is to
minimize the sum of all weighted loss functions generated by all clauses as follows:

argmin
V∈[0,1]n

|r|

∑
j=1

wj

|g(rj)|
∑
i=1

α`j(xi)−1. (15)

where g() denotes the operation of grounding and xi denotes the set of variables in the
i-th clause. According to Equation (15), each rule rj has the size of

∣∣g(rj
)∣∣ clauses in its

loss, which are generated by replacing the predicate variables in first-order relations with
the possible instances in the data. This process is known as grounding in the existing

Information 2021, 12, 124 7 of 22

MLN solution, which is usually implemented by a series of database join operations.
Our framework performs grounding for inference optimization, while the MLN performs
grounding to generate a factor graph.

5. Inference Optimization
5.1. Decomposition of Exponential Loss Function

In the scenario of hybrid knowledge inference, grounding the rules, which involves nu-
merical value comparison between two predicate variables, such as the term “Per f ormance(p1)
6 Per f ormance(p2)”, could easily result in clause explosion. To address this issue, our
solution first decomposes the rule relations into groups and then grounds them separately.
We illustrate the replacement process by a simple example as follows:

Example 1. Given the rule of Frequency(y1) > Frequency(y2) ⇒ FastCPU(y1) > FastCPU(y2),
its loss function (according to Equations (12) and (13)) can be represented by:

αFr(y2)−Fr(y1)+Fc(y1)−Fc(y2)−2, (16)

where Fr and Fc denote the predicates frequency and FastCPU, respectively. The total loss of the
rule is estimated by the sum of all the grounded loss functions as follows:

n

∑
i=1

n

∑
j=1

αFr(yj)−Fr(yi)+Fc(yi)−Fc(yj)−2. (17)

It is noteworthy that the total sum of the loss can be decomposed into:(
n

∑
i=1

α−Fr(yi)+Fc(yi)

)(
n

∑
j=1

αFr(yj)−Fc(yj)

)
α−2. (18)

Suppose that yi has n instances. Compared to the original form in Equation (16), which requires a
computational time of O(n2), computing the loss function in Equation (18) only requires O(2n).

In the general case, where the hybrid rules may contain facts and share common
variables, the decomposition may be more complicated. Formally, we define the irreducible
groups as follows.

Definition 4. Suppose that a rule r contains the relations R = {R1, · · · , Rm} and yi =(
yi

1, · · · , yi
k
)

denotes the variables in Ri. We call Ri irreducible if ∀Rj 6= Ri, yi * yj; other-
wise, there exists a relation Rj with yi ⊆ yj, and Ri can be reduced to Rj. An irreducible group
consists of an irreducible relation Ri and all the relations reducible to Ri, and we denote it by R̂i.
The set of predicate variables shared by two or more irreducible relations is called a joint variable set,
denoted by S.

For the decomposition of the exp-loss function, we first split a hybrid rule into multiple
irreducible groups. We sketch the procedure for identifying all the irreducible groups and
their joint variables in Algorithm 1. For each relation Ri, we can find its irreducible group R̂i
if the relation exists in the groups. Note that a relation might be reduced to more than one
irreducible group. However, it can only be assigned to one group. The algorithm simply
assigns it to the first irreducible group it meets. An illustrative example of how to split a set
of relations into irreducible groups is also shown in Figure 2. In the example, the relations
R(y1) and R(y3) can be reduced to the relations R(y1, y2) and R(y2, y3), respectively. The
splitting operation results in totally three irreducible groups. It can be observed that the
relations R(y1, y2) and R(y2, y3) share the variable y2, and R(y4) is disjoint to both R(y1, y2)
and R(y2, y3).

Information 2021, 12, 124 8 of 22

Algorithm 1: Find irreducible groups and joint variables.
Input: relations set R = {R1, · · · , Rm} and predicate variable set

yi =
(
yi

1, · · · , yi
k
)

with respect to Ri
Output: irreducible groups R̂ and joint variable set S.
R̂ = {{R1}, · · · , {Rm}} and S =Ø;
for Ri in R do

for Rj in R− Ri do
if yi ⊆ yj then

find R̂i′ ∈ R̂ where Ri ∈ R̂i′ ;
find R̂j′ ∈ R̂ where Rj ∈ R̂j′ ;
merge the set R̂i′ and R̂j′ ;

end
end

end
for R̂i in R̂ do

for R̂j in R̂− R̂i do
if Sij = yi ∩ yj 6= ∅ then

add Sij to S;
end

end
end

R(y1,y2) R(y2,y3) R(y1) R(y3) R(y4)

R(y1,y2) R(y2,y3)

R(y1) R(y3)

R(y4)
S={ y2}

Figure 2. Example of relation decomposition.

Now, we are ready to describe how to leverage irreducible groups R̂ for decomposition
optimization. In the proposed inference framework, the first-order relation is represented
by a linear function in the exponential term in a loss function. Suppose that R̂ has k
irreducible groups, which is denoted by R̂j. Then, the linear function `(x) can be split into
k + 1 parts {`1, · · · , `k, `c}, where `j is the variables and their coefficients corresponding
to the relations in R̂j, and `c is the constant part. Therefore, the loss function can be
reformulated as follows:

loss(r) = w
|g(r)|

∑
i=1

α`(xi)−1 = w
|g(r)|

∑
i=1

k

∏
j=1

α`j(xij) · αc, (19)

Information 2021, 12, 124 9 of 22

where xij denotes the variables respecting the i-th grounded relations in R̂j. To decompose
the loss function, we first split all the clauses g(r) that share the same grounded relation
in the set of joint variables S into partitions. In each partition, the grounding clause is
the combination of all variables in the irreducible groups. As a result, the sum of clauses
in a partition can be represented by the product of all the sums in each group. Without
loss of generality, we assume all irreducible relations have n instances, and the set of joint
variables S has θ instances. The decomposed loss function can be stated as follows:

loss(r) = w
θ

∑
s=1

k

∏
j=1

(
n

∑
i=1

α`j(xsij)

)
· αc. (20)

Now, we estimate the complexity of loss computation. The original loss computes all
combinations of clauses of irreducible relations, which is O(θnk). As shown in Equation (20),
our proposed technique of function decomposition can reduce the computational complex-
ity from O(θnk) to O(θnk).

It is noteworthy that the grouped loss function is just a deformation of the original
loss function. Each rule in the form of Equation (19) can be converted to Equation (20).
According to Equations (12), (13) and (15), the expansion of the loss function is the sum of
exponential functions, and all exponential functions have a linear exponent. As a result,
the loss function is convex. Our proposed method can effectively find the global optimal.

Now, we provide the entire process of hybrid knowledge rule inference in Algorithm 2.
The algorithm first generates variables that represent the first-order relations in the dataset
and then grounds the clauses for each rule rj in the form of decomposed exp-loss functions.
Finally, we use the ADMM algorithm introduced in the following subsection to optimize
the sum of losses for all knowledge rules.

Algorithm 2: Inference of hybrid knowledge rules.
Input: set of hybrid knowledge rules r, relation set R = {R1, · · · , Rm}, predicate

variable set yi =
(
yi

1, · · · , yi
k
)

with respect to Ri, and the instances of
dataset D.

Output: Solution V? ∈ [0, 1]n for the inference variables V.
Generate the set of variables x according to R and D;
for rj ∈ r do

Find irreducible groups and joint variables for rj by Algorithm 1;
Generate the loss(rj) for rj (grounding) in the form of Equation (20);

end
Find the optimal solution V? = argmin

V∈[0,1]n
∑rj∈r loss(rj)

We provide an example of the comparison between our framework and PSL in the
Figure 3. In this example, we selected hybrid knowledge used in our experimental study
for entity linking, to demonstrate the loss functions in three scenarios: the original PSL
hinge-loss and the exp-loss with and without loss decomposition. As shown in the figure,
the rule consists of two first-order relations. Each relation in the dataset has three instances.
Since PSL does not support hybrid rule inference, we show the loss function when the
linear inequality is directly regarded as a logical variable. It is easy to observe that the
original PSL loss function cannot guarantee convexity. The decomposed exp-loss function
reduces the number of clauses from 32 to 2× 3.

Information 2021, 12, 124 10 of 22

Knowledge rule

prior(m, e1) − prior(m, e2) ⩽ −0.178 →

link(m, e1) ⩽ link(m, e2)

Data

PSL loss

 max{max{L(d,τ1)- L(d,τ2),0} - max{P(d,τ1)- P(d,τ2)+0.178, 0}}

 + ...

 +max{max{L(d,τ3)- L(d,τ1),0} - max{P(d,τ3)- P(d,τ1)+0.178, 0}}

Exp-loss

 a0.85*(P(d,τ2) - P(d,τ1))+ L(d,τ1) - L(d,τ2) – 0.85

+…

+a0.85*(P(d,τ1) - P(d,τ3))+ L(d,τ3) - L(d,τ1) – 0.85

Decomposed Exp-Loss

 （a0.85*P(d,τ1)-L(d,τ1) + a0.85*P(d,τ2)-L(d,τ2) + a0.85*P(d,τ3)-L(d,τ3)）*

（aL(d,τ1)-0.85*P(d,τ1) + aL(d,τ2)-0.85*P(d,τ2) + aL(d,τ3)-0.85*P(d,τ3)）*

 a-0.85

32 clauses

32 clauses

2×3 clauses

Grounding

Figure 3. Example of the comparison of the proposed framework. PSL, Probabilistic Soft Logic.

5.2. Parallel Optimization

Our decomposition-based method can effectively compute the loss function proposed
in Equation (19). In this subsection, we demonstrate how to implement our method in
the optimization process. In order to achieve efficient inference, we use the approach of
parallel optimization based on the ADMM algorithm. ADMM is a distributed optimization
technique that focuses on solving large-scale convex optimization problems. It is generally
applicable to the loss function in the form of ∑N

i=1 fi(x), where each term fi(x) is a convex
function. The main idea of ADMM is to replace the variables in each term with independent
local variables and add the constraints on these variables by the augmented Lagrange
method. ADMM iteratively optimizes the local variables and updates the consensus global
variables until they converge. More details about ADMM optimization is shown in [39].

The total loss function of the inference is the sum of all clauses in the form of decom-
posed exp-loss functions. For simplicity, we define:

P(x) = w
k

∏
j=1

(
n

∑
i=1

α`j(xij)

)
· αc (21)

as a term of the loss function, such that the total loss is the sum of all terms, which can be
formulated as follows:

loss(x) =
H

∑
h=1

Ph(xh). (22)

where H is the size of all terms in the loss function. By reformulating the optimization
problem with local variables and related constraints by the augmented Lagrange function,
ADMM transforms the MAP problem into:

loss(z, γ, x) =
H

∑
h=1

Ph(zh) +
H

∑
h=1

γ>h (zh − xh) +
H

∑
h=1

ρ

2
‖zh − xh‖2

2, (23)

where zh denotes a copy of the variables in xh, xh denotes the variables in x that correspond
to zh, γ denotes the vector of Lagrange multipliers, and ρ > 0 denotes the step-size
parameter. Each set of local variables in z is independent of the others, such that for any
two sets of local variables zh and zh′ , zh ∩ zh′ = ∅.

The optimization process iteratively updates the following three blocks until it converges:

γt
h ← γt−1

h + ρ
(

zt−1
h − xt−1

h

)
, ∀h = 1, . . . , H (24)

Information 2021, 12, 124 11 of 22

zt ← argmin
z

loss
(

z, γt, xt−1
)

, (25)

xt ← argmin
x

loss
(
zt, γt, x

)
. (26)

The optimization process converges if the local variables converge to the global
variables and the global variables converge at the last iteration. Specifically, the two
convergence conditions can be represented by:

∥∥r̄t
∥∥

2 =

(
H

∑
h=1

∥∥zt
h − xt

h
∥∥2

2

) 1
2

6 εpri, (27)

and: ∥∥s̄t
∥∥

2 = ρ

(
m

∑
i=1

Ki

∥∥∥xt
i − xt−1

i

∥∥∥2

2

) 1
2

6 εdual , (28)

where m denotes the total number of variables in x and
∥∥r̄t
∥∥

2 and
∥∥s̄t
∥∥

2 denote primal resid-
ual and dual residual, respectively. εpri and εdual are feasibility tolerances for the primal
and dual feasibility conditions, and Ki is the number of local variables for a variable xi.

Our optimization takes the same steps as shown in Equations (24) and (26). For
Equation (25), we follow the traditional ADMM practice to apply the parallel optimization
to each clause. However, for each clause, our method does not find the minimal result
at each iteration. Instead, it iteratively updates each local variable to its minimal value
while fixing the values for other variables. The gradient5loss(z) corresponds to the vector
composed by the first derivative of each element. Since the local variables are independent
for each term:

P(z, γ, x) = w
k

∏
j=1

(
n

∑
i=1

α`j(zij)

)
· αc + γ>(z− x) +

ρ

2
‖z− x‖2

2, (29)

such that we only demonstrate the gradient for a single term. Let zij′ denote a local variable,
which belongs to the irreducible group R̂j′ . The gradient of zij′ can be represented by:

∂P(z, γ, x)
∂zij′

= ln α · β · α`j′ (zij′)w
k

∏
j=1

(
n

∑
i=1

α`j(zij)

)
· αc + γij′ + ρ

(
zij′ − xij′

)
, j 6= j′ (30)

where zij′ denotes the set of variables that are in the same group with zij′ . For the computa-

tion of the first term ∏k
j=1

(
∑n

i=1 α`j(zij)
)
· αc, it is obvious that each zij′ in the same group

Rj′ shares the same product from k− 1 groups. Let f j denote ∑n
i=1 α`j(zij), such that:

P(z) = w
k

∏
j=1

f j · αc = w
k

∏
j=1

(
n

∑
i=1

α`j(zij)

)
· αc. (31)

In order to compute the gradient, we first compute the product P(z) and then compute the
gradient for each variable as follows:

∂loss
∂zij′

= ln α · β · α`j′ (zij′) · P(z) · 1
f j′

+ ρ
(

zij′ − xij′
)

, j 6= j′. (32)

Equation (32) significantly reduces the computation in the optimization process, by sharing
the product P(z) for every variable.

Information 2021, 12, 124 12 of 22

6. Experimental Study

In this section, we empirically evaluate the performance of the proposed solution by a
comparative study. We compare the NMLN to PSL, which is the state-of-the-art technique
for soft logic inference. PSL has been empirically shown to have the best performance
on MLN inference among the existing solutions. More importantly, to the best of our
knowledge, it is the only technique that is able to infer hybrid knowledge rules, even
though it cannot solve the issue of clause explosion. To enable PSL inferences on hybrid
knowledge rules, we replace the linear functions in Equation (7) by Equation (12), such
that the rule can be converted to a linear function, which can then be solved by PSL
inference. It is noteworthy that other Gibbs sampling-based methods such as Deepdive
fail on hybrid rules due to the existence of extremely high-probability states. The sampler
would be trapped in a local state, which requires an unacceptable time to sample the correct
distribution. We evaluated the performance of different techniques on two real applications:
mobile phone ranking and entity linking. We show the statistics of the datasets in Table 2.

Table 2. Statistics of the test datasets.

Dataset Total No. of Variables No. of Non-Matches No. of Matches

Mobile Phone 1058 – –
AIDA-CONLL 728,225 713,113 15,112

Wiki-Sport 28,244 24,244 4000
Wiki-FourDomains 23,828 19,318 4510

6.1. Comparative Study

In the comparative study, we set the number of parallel threads at 6, εpri = 10−3, and
εdual = 10−5 in all experiments. For the NMLN, we set the base of exponential function
α = e and step size ρ = 0.5 as the default.

Mobile phone ranking: For this experiment, we needed to rank various mobile phones
by performance for users. Since the performance evaluation of mobile phones is to some
extent a subjective problem, it is difficult to obtain the ground truth. Therefore, we extracted
the phone’s ranking list from a well-known benchmark website. Available online: (
https://benchmarks.ul.com/ accessed on 3 June 2018), which also lists the specific details
of phones such as the CPU, memory, or size. We considered the positions of phones
in the ranking list as the annotations to evaluate the inference results. The test dataset
contained 899 smart phones. We define the average distance to evaluate the quality of the
inference results:

D(r, r∗) = 1− 1
N2

N

∑
i=1
|ri − r∗i |, (33)

where r denotes the results ranked by inference and r∗ denotes the annotations in the
ranking list. This function takes the maximal value of one when the inference results
are exactly the same as the annotations. We defined six rules, which were presented in
Appendix A, for performance inference. The detailed results are presented in Table 3. They
evidently show that the NMLN achieves similar performance to PSL on prediction accuracy,
while it requires significantly less inference time. The two methods have a similar accuracy
due the rules used in this task being simple; thus, PSL can also give a fine prediction.

Table 3. Evaluation results on mobile phone ranking. NMLN, Numerical Markov Logic Network.

Distance_avg Grounding Inference Total

NMLN 0.857 0.13 s 0.45 s 2.09 s
PSL 0.853 34.7 s 37.9 s 73.9 s

https://benchmarks.ul.com/
https://benchmarks.ul.com/

Information 2021, 12, 124 13 of 22

Entity linking: Our empirical study was conducted on three real benchmark datasets,
whose details are described as follows.

• AIDA-CONLL: This dataset was constructed based on the source of CONLL2003 [40],
which contains 1393 news articles. It consists of proper noun annotations, which
indicate its corresponding entities in YAGO2 [41]. In our experiments, we evaluated
all approaches on its testB dataset.

• Wiki-Sports: This dataset contains the articles on the topic of sports extracted under the
feature article page in Wikipedia. The mentions in the dataset are extracted from the
anchor texts in the articles and annotated by the entities to which they link. We used
the disambiguation page of Wikipedia to generate the candidates for each mention.
In order to avoid the leakage of label information, we eliminated the corresponding
Wiki pages during the extracting link text for the entities.

• Wiki-FourDomains: This dataset contains the articles extracted on four topics, which
include films, music, novels, and television episodes, on Wikipedia. We applied the
same process on the dataset as Wiki-Sports to generate mention-annotations and
candidate entities.

In the experiment, we linked a mention in the articles to the YAGO2 entity with the
highest inference probability. We first extracted the following six features from the YAGO2
knowledge-base: prior, semantic similarity, coherence, syntax similarity, edit distance, and
word2vector similarity. Note that we also eliminated the mention-entity pair candidates,
which are obviously not matched, from the inference process. Otherwise, the large number
of candidates may cause PSL memory to overflow.

To show the inference capability on a set of decision rules, we made use of the
annotations from 300 documents to train a random forest. For each leaf node in the forest,
we generated a decision rule, which was formulated as the logic implication of “X → Y”,
where Y is the leaf node and X is the logic conjunction of all decision nodes in the path
from the root to Y. We retained in total 38 rules whose impurity (measured by Gini) was
less than 0.025. In addition, we added the rule of link(m, e) 6 0.2 for every target pair
such that the candidates unconstrained by any rule can take a small value. The rules were
presented in Appendix B.

The detailed evaluation results are presented in Table 4. It can be observed that the
NMLN performs considerably better than PSL on prediction accuracy. The experiment
showed that PSL cannot converge to consensus values; thus, it cannot perform well. On
inference efficiency, the NMLN also performed considerably better than PSL: the NMLN
ends within half an hour, while PSL takes more than 14 h.

Table 4. Evaluation results on entity linking.

In-KBacc Grounding Inference Total

AIDA-CNOLL

NMLN 0.805 278 s 1344 s 1745 s
PSL 0.708 25,636 s 25,566 s 51,661 s

Wiki-Sport

NMLN 0.865 23 s 162s 201 s
PSL 0.826 1889 s 889 s 2793 s

Wiki-FourDomains

NMLN 0.893 14 s 138 s 164 s
PSL 0.876 1196 s 545 s 1753 s

Now, we provide an analysis of the experimental results. As mentioned in Equation (29),
for each term P(x) in the loss function, ADMM transforms the term into P(z, γ, x), by re-
placing x with local variables z and adds constraints to ensure the local variables converge

Information 2021, 12, 124 14 of 22

to x. Assume that P(x) contains n variables and k irreducible groups. The size of the
local variables in P(z, γ, x) is n× k. However, the original form in PSL makes the ADMM
method construct nk local variables, which means that each global variable xi has k copies
in the NMLN, but nk−1 copies in PSL. As a result, although the solution found by PSL is the
global optimal for the dual problem in ADMM, its local variables actually do not converge
to x; thus, the NMLN outperformed PSL on all datasets.

Evaluation of convergence:
In this experiment, we compared the convergence of the two methods on the task

of mobile phone ranking. The evaluation results are presented in Figure 4. According to
Equations (27) and (28), the optimization process converges if primal residual

∥∥r̄t
∥∥

2 and
dual residual

∥∥s̄t
∥∥

2 are approximately close to zero. It can be observed that the NMLN is
able to converge quickly and stably for both conditions. In Figure 4a, the primal residual
of PSL stops decreasing at the value of 64, such that the method cannot converge for
both conditions.

0 10 20 30 40 50 60
Number of iterations

0

200

400

600

800

1000

Pr
im

al
 R

es
id

ua
l

PSL
NMLN

(a)

0 10 20 30 40 50 60
Number of iterations

0

50

100

150

200

250

300

Du
al

 R
es

id
ua

l

PSL
NMLN

(b)

Figure 4. Evaluation of convergence on NMLN vs. PSL: (a) primal residual; (b) dual residual.

6.2. Scalability

To evaluate the scalability for the NMLN, we generated synthetic data with various
sizes for phone ranking inference. The detailed evaluation results are presented in Figure 5.
Since the rules contain two kinds of unknown variables FastCPU(c) and Per f ormance(p),
we generated the relations at a ratio of 0.2:0.8. Our experiments show that PSL consumes
a large amount of memory. The performance of PSL falls dramatically due to memory
overflow when the size of the variable exceeds 4500. Compared to PSL, the NMLN scales
much better when the data size increases. As shown in Figure 5a, all inference tasks
are finished within two seconds by the NMLN. The NMLN spends most of the time
in pre-processing when it runs on small data, such that the runtime does not increase
significantly in (a). When the data size is large (more than 5000), we also provide the
log scale performance in Figure 5b. It can be observed that the runtime scales in an
approximately linear fashion. In the figure, the speed has a slight slow down when
the data size is greater than 10,000, which is caused by the sequential operations in the
pre-processing phase.

We also present the number of iterations required by both techniques to converge in
Figure 5c,d. It can be observed that the NMLN takes 36 iterations on all the tasks with the
number of variables varying from 100 to 10 M. The reason is that the average size of the
local variables with respect to the same global variables is always a fixed number in the
NMLN. In PSL, clause explosion causes a single variable taking more local copies when
the size increases.

Information 2021, 12, 124 15 of 22

1 , 0 0 0 2 , 0 0 0 3 , 0 0 0 4 , 0 0 0 5 , 0 0 0

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

tim
e (

s)

o f v a r i a b l e s

 N M L N
 P S L

(a)

1 0 0 1 , 0 0 0 1 0 , 0 0 0 1 0 0 , 0 0 0 1 , 0 0 0 , 0 0 0
0 . 1

1

1 0

1 0 0

1 0 0 0

tim
e (

s)

o f v a r i a b l e s

 N M L N
 P S L

(b)

1 , 0 0 0 2 , 0 0 0 3 , 0 0 0 4 , 0 0 0 5 , 0 0 0
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

lte
rat

ion
s t

o c
on

ve
rge

o f v a r i a b l e s

 N M L N
 P S L

(c)

1 0 0 1 , 0 0 0 1 0 , 0 0 0 1 0 0 , 0 0 0 1 , 0 0 0 , 0 0 0
0

4 0

8 0

1 2 0

1 6 0

2 0 0

2 4 0

lte
rat

ion
s t

o c
on

ve
rge

o f v a r i a b l e s

 N M L N
 P S L

(d)

Figure 5. Scalability evaluation on NMLN vs. PSL: (a) runtime; (b) runtime log scale; (c) iterations to
converge; (d) iteration log scale.

6.3. Sensitivity Evaluation

In this subsection, we evaluate the performance sensitivity of the NMLN w.r.t. the
number of parallel threads, the base of exponential function α, and the step size ρ. In our
empirical study, except the evaluated parameter, all the other parameters were set to the
same values. We ran the evaluation of parallel threads on the synthetic data for scalability
evaluation, since the size of the variables has a significant impact on the parallel methods.
For evaluations on the parameters of α and ρ, we only present the evaluation results on the
original mobile phone rank data due to the reason that different sizes of variables seem to
have no effect on the results.

The evaluation results on the number of parallel threads are presented in Figure 6, in
which the x-axis denotes the number of variables and the y-axis denotes the percentage
of runtime compared with the runtime of non-paralleled method (Threads = 1) spent on
the same data as the baseline. It can be observed that the runtime of paralleled inference
decreases significantly when the size of the variables is large. Specifically, when the number
of threads is set to six, the runtime of inference decreases to 23% and 27%, respectively,
on 1000 K and 100 K variables. However, if the variables are smaller than 1K, the runtime
decreases only marginally with the increase of the threads. This should not be surprising
because small tasks are not suitable for parallelization.

The evaluation results on the base of exponential function α are presented in Figure 7,
in which the parameter varies from e to 100. It can be observed that the performance of the
NMLN fluctuates only marginally within a long range of α for both the primal residual
and dual residual. Therefore, the NMLN inference is stable to take different base values.

Information 2021, 12, 124 16 of 22

100 1K 10K 100k 1000k
Number of Variables

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f R
un

tim
e(

 v
s T

hr
ea

ds
 =

 1
)

Threads = 1
Threads = 2
Threads = 4
Threads = 6

Figure 6. Sensitivity evaluation w.r.t. the number of parallel threads.

0 10 20 30 40
Number of iterations

0

10

20

30

40

50

60

70

Pr
im

al
 R

es
id

ua
l

 = e
 = 10
 = 100

(a)

0 10 20 30 40
Number of iterations

0

2

4

6

8

Du
al

 R
es

id
ua

l

 = e
 = 10
 = 100

(b)

Figure 7. Sensitivity evaluation w.r.t. α: (a) primal residual; (b) dual residual.

The evaluation results on the step size ρ are presented in Figure 8, in which the
parameter varies from 0.1 to 1.0. It can be observed that the larger value of ρ leads to a
faster convergence speed on the primal residual and a slower convergence speed on the
dual residual. Thus, the step size ρ should be set to a proper value (0.5) to balance the
two conditions.

0 10 20 30 40
Number of iterations

0

20

40

60

80

100

120

Pr
im

al
 R

es
id

ua
l

 = 0.1
 = 0.5
 = 1.0

(a)

0 10 20 30 40
Number of iterations

0

2

4

6

8

10

Du
al

 R
es

id
ua

l

 = 0.1
 = 0.5
 = 1.0

(b)

Figure 8. Sensitivity evaluation w.r.t. ρ: (a)primal residual; (b) dual residual.

7. Conclusions

Current MLN solutions cannot support knowledge inference involving arithmetic
expressions. In this paper, we propose the Numerical Markov Logic Network (NMLN)
to enable effective and efficient inference of hybrid knowledge involving both logic and
arithmetic expressions. We define the exp-loss function as the metric to integrate arithmetic
inequalities and logic formulas. By exploiting the decomposition of exp-loss functions,
our method reduces the computational complexity from O

(
θnk
)

to O(θnk), such that

Information 2021, 12, 124 17 of 22

the inference has a good scalability for the issue of clause explosion. We also present
a parallel solution for hybrid knowledge inference based on convex optimization. The
proposed approach can achieve better prediction accuracy while significantly reducing the
inference time.

Author Contributions: Conceptualization, P.Z. and Q.C.; methodology, P.Z.; software, P.Z.; valida-
tion, P.Z., Q.C. and B.H.; formal analysis, Q.C.; investigation, Q.C.; resources, Z.L.; data curation, B.H.;
writing—original draft preparation, P.Z.; writing—review and editing, Q.C. and M.A.; visualization,
P.Z.; supervision, Q.C.; project administration, Z.L.; funding acquisition, Z.L. All authors have read
and agreed to the published version of the manuscript.

Funding: The work was supported by the National Key Research and Development Program of China
(2018YFB1003400), National Natural Science Foundation of China (61732014, 61672432), Fundamental
Research Funds for the Central Universities (Program No. 3102019DX1004) and Natural Science
Basic Research Plan in Shaanxi Province of China (Program No. 2018JM6086).

Data Availability Statement: Mobile phone data at https://benchmarks.ul.com/ (accessed on
3 June 2018), AIDA-CONLL data at https://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/aida/downloads/ (accessed on 30 November 2018), Wiki-
Sport and Wiki-FourDomains data at http://en.wikipedia.org/wiki/Wikipedia:Featured_articles
(accessed on 10 January 2021).

Conflicts of Interest: We declare that we have no financial and personal relationships with other
people or organizations that can inappropriately influence our work, there is no professional or
other personal interest of any nature or kind in any product, service and/or company that could
be construed as influencing the position presented in, or the review of, the manuscript entitled
“Numerical Markov Logic Network: A Scalable Probabilistic Framework for Hybrid Knowledge
Inference”, which has been approved by all authors. I would like to declare on behalf of my co-
authors that the work described is original research that has not been submitted or published in other
journals previously, and not under consideration for publication elsewhere, in whole or in part.

Appendix A. Knowledge Rules in the Phone Dataset

Table A1. Knowledge rules in the phone dataset.

Knowledge Rules Weight

r1 core(c1) > core(c2)→ f astcpu(c1) > f astcpu(c2) 2

r2 f requency(c1) > f requency(c2)→ f astcpu(c1) > f astcpu(c2) 4

r3 sccore(c1) > sccore(c2)→ f astcpu(c1) > f astcpu(c2) 1

r4 sec f requency(c1) > sec f requency(c2)→ f astcpu(c1) >
f astcpu(c2)

2

r5 f astcpu(c1) > f astcpu(c2)&hascpu(p1, c1)&hascpu(p2, c2)→
per f ormance(p1) > per f ormance(p2)

1

r6 memory(p1) > memory(p2)→ per f ormance(p1) >
per f ormance(p2)

1

Appendix B. Knowledge Rules in the Aida Dataset

We show the meaning of all relations in the rules as follows:

• prior(m, e): the prior distribution computed by the number of entities linking to e.
• anchormisim(m, e): the similarity measured by mutual information according to the

“hasWikipediaAnchorText” file in YAGO2.
• anchormisim(m, e): the similarity measured by word2vector according to the “has-

WikipediaAnchorText” file in YAGO2.
• catemisim(m, e): the similarity measured by mutual information according to the

“hasWikipediaCategory” file in YAGO2.

https://benchmarks.ul.com/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/aida/downloads/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/aida/downloads/
http://en.wikipedia.org/wiki/Wikipedia:Featured_articles

Information 2021, 12, 124 18 of 22

• catewvsim(m, e): the similarity measured by word2vector according to the “has-
WikipediaCategory” file in YAGO2.

• distance(m, e): the edit distance-based similarity.
• synsim(m, e): the syntactical similarity computed by WordNet and YAGO2.
• coherence(m, e): we find the max candidate of (mention, entity) pairs for one docu-

ment, for which all entities in the set have the maximum word similarity.

Table A2. Knowledge rules in the Aida dataset.

Knowledge Rules Weight

r1 anchormisim(m, e1)− anchormisim(m, e2) >
0.008&prior(m, e1)− prior(m, e2) > 0.033→ link(m, e1) >

link(m, e2)

1.11

r2 distance(m, e1)− distance(m, e2) > −0.007&prior(m, e1)−
prior(m, e2) > −0.016→ link(m, e1) > link(m, e2)

0.75

r3 anchormisim(m, e1)− anchormisim(m, e2) 6
−0.008&prior(m, e1)− prior(m, e2) 6 0.002→ link(m, e1) 6

link(m, e2)

0.95

r4 anchorwvsim(m, e1)− anchorwvsim(m, e2) 6
−0.128&prior(m, e1)− prior(m, e2) 6 0.108→ link(m, e1) 6

link(m, e2)

0.77

r5 prior(m, e1)− prior(m, e2) 6 −0.178→ link(m, e1) 6
link(m, e2)

0.95

r6 catewvsim(m, e1)− catewvsim(m, e2) > −0.811&prior(m, e1)−
prior(m, e2) > −0.006→ link(m, e1) > link(m, e2)

0.99

r7 anchorwvsim(m, e1)− anchorwvsim(m, e2) 6
0.436&catewvsim(m, e1)− catewvsim(m, e2) 6

0.797&prior(m, e1)− prior(m, e2) 6 −0.006→ link(m, e1) 6
link(m, e2)

0.74

r8 anchormisim(m, e1)− anchormisim(m, e2) 6
−0.383&catemisim(m, e1)− catemisim(m, e2) 6

−0.0&prior(m, e1)− prior(m, e2) 6 0.032→ link(m, e1) 6
link(m, e2)

2.26

r9 anchormisim(m, e1)− anchormisim(m, e2) >
0.006&anchorwvsim(m, e1)− anchorwvsim(m, e2) >

0.445&catewvsim(m, e1)− catewvsim(m, e2) > −0.193→
link(m, e1) > link(m, e2)

0.89

r10 anchormisim(m, e1)− anchormisim(m, e2) 6
0.006&catewvsim(m, e1)− catewvsim(m, e2) >

−0.057&distance(m, e1)− distance(m, e2) > 0.41→
link(m, e1) > link(m, e2)

0.73

r11 anchormisim(m, e1)− anchormisim(m, e2) >
−0.008&distance(m, e1)− distance(m, e2) >

−0.007&prior(m, e1)− prior(m, e2) > −0.016→ link(m, e1) >
link(m, e2)

1.97

Information 2021, 12, 124 19 of 22

Table A2. Cont.

Knowledge Rules Weight

r12 anchormisim(m, e1)− anchormisim(m, e2) 6
−0.013&distance(m, e1)− distance(m, e2) 6 −0.01→

link(m, e1) 6 link(m, e2)

0.9

r13 anchormisim(m, e1)− anchormisim(m, e2) 6
0.006&catewvsim(m, e1)− catewvsim(m, e2) >

−0.057&distance(m, e1)− distance(m, e2) > 0.41→
link(m, e1) > link(m, e2)

0.73

r14 anchormisim(m, e1)− anchormisim(m, e2) >
−0.006&catemisim(m, e1)− catemisim(m, e2) >

−0.172&distance(m, e1)− distance(m, e2) > 0.007→
link(m, e1) > link(m, e2)

0.95

r15 anchormisim(m, e1)− anchormisim(m, e2) 6
0.092&catemisim(m, e1)− catemisim(m, e2) 6

0.0&distance(m, e1)− distance(m, e2) 6 0.007→ link(m, e1) 6
link(m, e2)

0.95

r16 catewvsim(m, e1)− catewvsim(m, e2) 6 0.811&prior(m, e1)−
prior(m, e2) 6 −0.173→ link(m, e1) 6 link(m, e2)

1.21

r17 anchormisim(m, e1)− anchormisim(m, e2) >
0.006&catemisim(m, e1)− catemisim(m, e2) > −0.189→

link(m, e1) > link(m, e2)

0.82

r18 anchorwvsim(m, e1)− anchorwvsim(m, e2) >
0.131&distance(m, e1)− distance(m, e2) > −0.354→

link(m, e1) > link(m, e2)

0.84

r19 anchorwvsim(m, e1)− anchorwvsim(m, e2) 6
0.809&anchorwvsim(m, e1)− anchorwvsim(m, e2) >

0.131&prior(m, e1)− prior(m, e2) > −0.094→ link(m, e1) >
link(m, e2)

1.04

r20 anchormisim(m, e1)− anchormisim(m, e2) >
0.008&catewvsim(m, e1)− catewvsim(m, e2) >

−0.984&prior(m, e1)− prior(m, e2) > −0.003→ link(m, e1) >
link(m, e2)

1.58

r21 anchormisim(m, e1)− anchormisim(m, e2) 6
0.01&anchormisim(m, e1)− anchormisim(m, e2) >

0.008&catemisim(m, e1)− catemisim(m, e2) 6
−0.172&prior(m, e1)− prior(m, e2) 6 −0.003→ link(m, e1) >

link(m, e2)

5.0

r22 anchorwvsim(m, e1)− anchorwvsim(m, e2) 6
−0.185&catemisim(m, e1)− catemisim(m, e2) 6

0.061&distance(m, e1)− distance(m, e2) 6 −0.007→
link(m, e1) 6 link(m, e2)

1.59 :

r23 anchorwvsim(m, e1)− anchorwvsim(m, e2) >
0.09&catewvsim(m, e1)− catewvsim(m, e2) >
−0.095&distance(m, e1)− distance(m, e2) >

−0.389&prior(m, e1)− prior(m, e2) > −0.124→ link(m, e1) >
link(m, e2)

1.69

Information 2021, 12, 124 20 of 22

Table A2. Cont.

Knowledge Rules Weight

r24 anchorwvsim(m, e1)− anchorwvsim(m, e2) 6
0.09&distance(m, e1)− distance(m, e2) > 0.272&prior(m, e1)−

prior(m, e2) > −0.007→ link(m, e1) > link(m, e2)

1.3

r25 anchorwvsim(m, e1)− anchorwvsim(m, e2) 6
0.093&distance(m, e1)− distance(m, e2) 6

−0.298&prior(m, e1)− prior(m, e2) 6 0.077→ link(m, e1) 6
link(m, e2)

3.29

r26 anchormisim(m, e1)− anchormisim(m, e2) >
−0.008&catemisim(m, e1)− catemisim(m, e2) >

−0.0&catewvsim(m, e1)− catewvsim(m, e2) > 0.163→
link(m, e1) > link(m, e2)

3.28

r27 anchorwvsim(m, e1)− anchorwvsim(m, e2) 6
0.229&catemisim(m, e1)− catemisim(m, e2) 6

−0.0&prior(m, e1)− prior(m, e2) 6 −0.012→ link(m, e1) 6
link(m, e2)

1.43

r28 anchormisim(m, e1)− anchormisim(m, e2) >
−0.031&distance(m, e1)− distance(m, e2) > −0.007→

link(m, e1) > link(m, e2)

5.0

r29 anchormisim(m, e1)− anchormisim(m, e2) 6
0.006&anchorwvsim(m, e1)− anchorwvsim(m, e2) >

0.093&distance(m, e1)− distance(m, e2) 6
−0.007&synsim(m, e1)− synsim(m, e2) 6 −0.158→

link(m, e1) 6 link(m, e2)

5.0

r30 anchormisim(m, e1)− anchormisim(m, e2) >-
0.119&catemisim(m, e1)− catemisim(m, e2) >
−0.011&catewvsim(m, e1)− catewvsim(m, e2) >

−0.816&prior(m, e1)− prior(m, e2) > −0.006→ link(m, e1) >
link(m, e2)

1.58

r31 anchormisim(m, e1)− anchormisim(m, e2) 6
−0.893&distance(m, e1)− distance(m, e2) >

0.397&prior(m, e1)− prior(m, e2) 6 −0.006→ link(m, e1) >
link(m, e2)

5.0

r32 anchormisim(m, e1)− anchormisim(m, e2) 6
0.119&catemisim(m, e1)− catemisim(m, e2) 6

0.15&distance(m, e1)− distance(m, e2) 6 0.397&prior(m, e1)−
prior(m, e2) 6 −0.006→ link(m, e1) 6 link(m, e2)

1.28

r33 catewvsim(m, e1)− catewvsim(m, e2) >
−0.796&distance(m, e1)− distance(m, e2) >

−0.573&prior(m, e1)− prior(m, e2) > 0.003→ link(m, e1) >
link(m, e2)

1.15

r34 catewvsim(m, e1)− catewvsim(m, e2) 6
0.804&distance(m, e1)− distance(m, e2) 6 0.397&prior(m, e1)−

prior(m, e2) 6 −0.085→ link(m, e1) 6 link(m, e2)

1.3

r35 catemisim(m, e1)− catemisim(m, e2) >
−0.17&catewvsim(m, e1)− catewvsim(m, e2) >
−0.807&distance(m, e1)− distance(m, e2) >

0.006&prior(m, e1)− prior(m, e2) > −0.033→ link(m, e1) >
link(m, e2)

1.33

Information 2021, 12, 124 21 of 22

Table A2. Cont.

Knowledge Rules Weight

r36 catemisim(m, e1)− catemisim(m, e2) >
−0.012&catewvsim(m, e1)− catewvsim(m, e2) 6
−0.99&distance(m, e1)− distance(m, e2) 6

0.006&prior(m, e1)− prior(m, e2) > 0.032→ link(m, e1) 6
link(m, e2)

0.96

r37 anchormisim(m, e1)− anchormisim(m, e2) 6
0.362&distance(m, e1)− distance(m, e2) 6 0.006&prior(m, e1)−

prior(m, e2) 6 −0.162→ link(m, e1) 6 link(m, e2)

2.88

r38 coherence(m, e)→ link(m, e) 1

r39 link(m, e) 6 0.2 1

References
1. Richardson, M.; Domingos, P.M. Markov logic networks. Mach. Learn. 2006, 62, 107–136. [CrossRef]
2. Banerjee, O.; El Ghaoui, L.; d’Aspremont, A. Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate

Gaussian or Binary Data. J. Mach. Learn. Res. 2008, 9, 485–516.
3. Dong, X.L.; Gabrilovich, E.; Heitz, G.; Horn, W.; Murphy, K.; Sun, S.; Zhang, W. From Data Fusion to Knowledge Fusion. PVLDB

2014, 7, 881–892. [CrossRef]
4. Jiang, S.; Lowd, D.; Dou, D. Learning to Refine an Automatically Extracted Knowledge Base Using Markov Logic. In Proceedings

of the 12th IEEE International Conference on Data Mining, ICDM 2012, Brussels, Belgium, 10–13 December 2012; pp. 912–917.
[CrossRef]

5. Zhang, C.; Ré, C.; Cafarella, M.J.; Shin, J.; Wang, F.; Wu, S. DeepDive: declarative knowledge base construction. Commun. ACM
2017, 60, 93–102. [CrossRef]

6. Singla, P.; Domingos, P.M. Entity Resolution with Markov Logic. In Proceedings of the 6th IEEE International Conference on
Data Mining (ICDM 2006), Hong Kong, China, 18–22 December 2006; pp. 572–582. [CrossRef]

7. Niu, F.; Ré, C.; Doan, A.; Shavlik, J.W. Tuffy: Scaling up Statistical Inference in Markov Logic Networks using an RDBMS. PVLDB
2011, 4, 373–384. [CrossRef]

8. Chen, Y.; Wang, D.Z. Knowledge expansion over probabilistic knowledge bases. In Proceedings of the International Conference
on Management of Data, SIGMOD 2014, Snowbird, UT, USA, 22–27 June 2014; pp. 649–660. [CrossRef]

9. Sa, C.D.; Ratner, A.; Ré, C.; Shin, J.; Wang, F.; Wu, S.; Zhang, C. Incremental knowledge base construction using DeepDive. VLDB
J. 2017, 26, 81–105. [CrossRef]

10. Bach, S.H.; Broecheler, M.; Huang, B.; Getoor, L. Hinge-Loss Markov Random Fields and Probabilistic Soft Logic. J. Mach. Learn.
Res. 2017, 18, 109:1–109:67.

11. Wick, M.L.; McCallum, A.; Miklau, G. Scalable Probabilistic Databases with Factor Graphs and MCMC. PVLDB 2010, 3, 794–804.
[CrossRef]

12. Zhang, C.; Ré, C. Towards High-throughput Gibbs Sampling at Scale: A Study Across Storage Managers. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, ACM, SIGMOD ’13, New York, NY, USA, 22–27 June
2013; pp. 397–408. [CrossRef]

13. Krapu, C.; Borsuk, M. Probabilistic programming: A review for environmental modellers. Environ. Model. Softw. 2019, 114, 40–48.
[CrossRef]

14. Salvatier, J.; Wiecki, T.V.; Fonnesbeck, C.; Elkan, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2016, 2.
[CrossRef]

15. Tran, D.; Kucukelbir, A.; Dieng, A.B.; Rudolph, M.R.; Liang, D.; Blei, D.M. Edward: A library for probabilistic modeling, inference,
and criticism. arXiv 2016, arXiv:1610.09787.

16. Bingham, E.; Chen, J.P.; Jankowiak, M.; Obermeyer, F.; Pradhan, N.; Karaletsos, T.; Singh, R.; Szerlip, P.A.; Horsfall, P.;
Goodman, N.D. Pyro: Deep Universal Probabilistic Programming. J. Mach. Learn. Res. 2019, 20, 28:1–28:6.

17. Zhong, P.; Li, Z.; Chen, Q.; Wang, Y.; Wang, L.; Ahmed, M.H.M.; Fan, F. POOLSIDE: An Online Probabilistic Knowledge Base
for Shopping Decision Support. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,
CIKM 2017, Singapore, 6–10 November 2017; pp. 2559–2562. [CrossRef]

18. Gutiérrez-Basulto, V.; Jung, J.C.; Kuzelka, O. Quantified Markov Logic Networks. In Proceedings of the Principles of
Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Conference, KR 2018, Tempe, Arizona,
30 October–2 November 2018; pp. 602–612.

19. Sabek, I.; Musleh, M.; Mokbel, M.F. Flash in Action: Scalable Spatial Data Analysis Using Markov Logic Networks. PVLDB 2019,
12, 1834–1837. [CrossRef]

http://doi.org/10.1007/s10994-006-5833-1
http://dx.doi.org/10.14778/2732951.2732962
http://dx.doi.org/10.1109/ICDM.2012.156
http://dx.doi.org/10.1145/3060586
http://dx.doi.org/10.1109/ICDM.2006.65
http://dx.doi.org/10.14778/1978665.1978669
http://dx.doi.org/10.1145/2588555.2610516
http://dx.doi.org/10.1007/s00778-016-0437-2
http://dx.doi.org/10.14778/1920841.1920942
http://dx.doi.org/10.1145/2463676.2463702
http://dx.doi.org/10.1016/j.envsoft.2019.01.014
http://dx.doi.org/10.7717/peerj-cs.55
http://dx.doi.org/10.1145/3132847.3133168
http://dx.doi.org/10.14778/3352063.3352078

Information 2021, 12, 124 22 of 22

20. Gayathri, K.; Easwarakumar, K.; Elias, S. Probabilistic ontology based activity recognition in smart homes using Markov Logic
Network. Knowl.-Based Syst. 2017, 121, 173–184. [CrossRef]

21. Schoenfisch, J.; Meilicke, C.; von Stülpnagel, J.; Ortmann, J.; Stuckenschmidt, H. Root cause analysis in IT infrastructures using
ontologies and abduction in Markov Logic Networks. Inf. Syst. 2018, 74, 103–116. [CrossRef]

22. Kennington, C.; Schlangen, D. Situated incremental natural language understanding using Markov Logic Networks. Comput.
Speech Lang. 2014, 28, 240–255. [CrossRef]

23. Ge, C.; Gao, Y.; Miao, X.; Yao, B.; Wang, H. A Hybrid Data Cleaning Framework Using Markov Logic Networks. IEEE Trans.
Knowl. Data Eng. 2020, 1. [CrossRef]

24. Sabek, I. Adopting Markov Logic Networks for Big Spatial Data and Applications. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), Los Angeles, CA, USA, 26–30 August 2019.

25. Hao, W.; Menglin, J.; Guohui, T.; Qing, M.; Guoliang, L. R-KG: A Novel Method for Implementing a Robot Intelligent Service. AI
2020, 1, 117–140. [CrossRef]

26. Sarkhel, S.; Venugopal, D.; Singla, P.; Gogate, V. Lifted MAP Inference for Markov Logic Networks. In Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland, 22–25 April 2014;
pp. 859–867.

27. Beedkar, K.; Corro, L.D.; Gemulla, R. Fully Parallel Inference in Markov Logic Networks. In Proceedings of the Datenbanksysteme
für Business, Technologie und Web (BTW), 15. Fachtagung des GI-Fachbereichs “Datenbanken und Informationssysteme” (DBIS),
Magdeburg, Germany, 11–15 March 2013; pp. 205–224.

28. Zhou, X.; Chen, Y.; Wang, D.Z. ArchimedesOne: Query Processing over Probabilistic Knowledge Bases. PVLDB 2016, 9, 1461–1464.
[CrossRef]

29. Sun, Z.; Zhao, Y.; Wei, Z.; Zhang, W.; Wang, J. Scalable learning and inference in Markov logic networks. Int. J. Approx. Reason.
2017, 82, 39–55. [CrossRef]

30. Singla, P.; Domingos, P.M. Discriminative Training of Markov Logic Networks. In Proceedings of the Twentieth National
Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, Pittsburgh,
PA, USA, 9–13 July 2005; pp. 868–873.

31. Lowd, D.; Domingos, P.M. Efficient Weight Learning for Markov Logic Networks. In Proceedings of the Knowledge Discovery in
Databases: PKDD 2007, 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, Warsaw,
Poland, 17–21 September 2007; pp. 200–211. [CrossRef]

32. Huynh, T.N.; Mooney, R.J. Max-Margin Weight Learning for Markov Logic Networks. In Proceedings of the Machine Learning
and Knowledge Discovery in Databases, European Conference, ECML PKDD 2009, Bled, Slovenia, 7–11 September 2009;
pp. 564–579. [CrossRef]

33. Kok, S.; Domingos, P.M. Learning the structure of Markov logic networks. In Proceedings of the Machine Learning, Proceedings
of the Twenty-Second International Conference (ICML 2005), Bonn, Germany, 7–11 August 2005; pp. 441–448. [CrossRef]

34. Mihalkova, L.; Mooney, R.J. Bottom-up learning of Markov logic network structure. In Proceedings of the Machine Learning,
Proceedings of the Twenty-Fourth International Conference (ICML 2007), Corvallis, OR, USA, 20–24 June 2007; pp. 625–632.
[CrossRef]

35. Khot, T.; Natarajan, S.; Kersting, K.; Shavlik, J. Gradient-based boosting for statistical relational learning: the Markov logic
network and missing data cases. Mach. Learn. 2015, 100. [CrossRef]

36. Marra, G.; Kuzelka, O. Neural Markov Logic Networks. arXiv 2019, arXiv:1905.13462.
37. Wang, J.; Domingos, P.M. Hybrid Markov Logic Networks. In Proceedings of the Twenty-Third AAAI Conference on Artificial

Intelligence, AAAI 2008, Chicago, IL, USA, 13–17 July 2008; pp. 1106–1111.
38. Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic—Theory and Applications; Prentice Hall: Upper Saddle River, NJ, USA, 1995.
39. Boyd, S.P.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating

Direction Method of Multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [CrossRef]
40. Sang, E.F.T.K.; Meulder, F.D. Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition.

In Proceedings of the Seventh Conference on Natural Language Learning, CoNLL 2003, Edmonton, AB, Canada, 31 May–1 June
2003; pp. 142–147.

41. Hoffart, J.; Suchanek, F.M.; Berberich, K.; Lewis-Kelham, E.; de Melo, G.; Weikum, G. YAGO2: Exploring and querying world
knowledge in time, space, context, and many languages. In Proceedings of the 20th International Conference on World Wide
Web, WWW 2011, Hyderabad, India, 28 March–1 April 2011; pp. 229–232. [CrossRef]

http://dx.doi.org/10.1016/j.knosys.2017.01.025
http://dx.doi.org/10.1016/j.is.2017.11.003
http://dx.doi.org/10.1016/j.csl.2013.06.004
http://dx.doi.org/10.1109/TKDE.2020.3012472
http://dx.doi.org/10.3390/ai1010006
http://dx.doi.org/10.14778/3007263.3007284
http://dx.doi.org/10.1016/j.ijar.2016.12.003
http://dx.doi.org/10.1007/978-3-540-74976-9_21
http://dx.doi.org/10.1007/978-3-642-04180-8_54
http://dx.doi.org/10.1145/1102351.1102407
http://dx.doi.org/10.1145/1273496.1273575
http://dx.doi.org/10.1007/s10994-015-5481-4
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1145/1963192.1963296

	Introduction
	Related Work
	Hybrid Knowledge Rules
	Inference Framework
	Inference Optimization
	Decomposition of Exponential Loss Function
	Parallel Optimization

	Experimental Study
	Comparative Study
	Scalability
	Sensitivity Evaluation

	Conclusions
	Knowledge Rules in the Phone Dataset
	Knowledge Rules in the Aida Dataset
	References

