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Abstract: Cross-domain authenticated asymmetric group key agreement allows group members in
different domains to establish a secure group communication channel and the senders can be anyone.
However, the existing schemes do not meet the requirement of batch verification in the group key
negotiation phase, which makes the schemes have low efficiency. To address this problem, an identity-
based cross-domain authenticated asymmetric group key agreement is proposed that supports batch
verification. The performance analysis shows that this protocol is highly efficient. Finally, the proposed
protocol is proved to be secure under the k-Bilinear Diffie–Hellman Exponent assumption.

Keywords: cross-domain; group communication; batch verification; identity-based; authenticated
asymmetric group key agreement

1. Introduction

With the rapid proliferation of the mobile network, secure group communication is
usually required in many emerging applications [1], such as teleconference, telemedicine,
social group networks, ad hoc networks, and mobile cloud computing [2–6]. A popular
approach is to employ the group key agreement (GKA) protocols. The conventional GKA
protocols enable group members to exchange information confidentially by negotiating
a shared symmetric key over an open network [7]. Nevertheless, this symmetric key is
only known to the group members, which results in the problem of sender restriction.
This problem means that if an outsider wants to broadcast secret messages to the group,
he/she must join this group first. Motivated by the mentioned observation, Wu et al. [8]
introduced an asymmetric group key agreement (AGKA) protocol that a common public
encryption key (access to outsiders) is negotiated among group members and each member
can respectively compute a private decryption key. This protocol is only proved secure to
passive attackers who simply eavesdrop on the group communications. By considering
active attacks, such as a man in the middle attack, Zhang et al. [9] designed an authenticated
AGKA (AAGKA) protocol based on Public Key Infrastructure (PKI). To alleviate the
overhead of complicated certificate management, an identity-based AAGKA protocol [10]
is presented. However, the above studies only consider the scenarios in a single domain.

In cross-domain scenarios, such as telemedicine [11] and mobile cloud computing
networks [12], members physically belong to different regions, clouds, institutions or
networks. Each domain has its own domain administrator (DA), resources and members.
When there is collaborative work between several domains, members in a domain may
ask for resources in other domains [13]. For instance, in an electronic health social
system, patients in different hospitals with the same symptoms need to form a group
to securely share treatment or rehabilitation information [14] and get medical advice
from outside experts. Another example in mobile cloud computing [12], group terminals
distributed in different clouds or heterogeneous networks can also share resources with
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other groups when in collaborative work. In recent years, some cross-domain AAGKA
protocols [11,12,15] have been proposed to establish a secure connection between different
domains. In the literature [11,15], group members from different domains will authenticate
each other with digital signatures before calculating the group session keys. Despite
realizing mutual authentication, the digital signature schemes cannot support batch
verification so that the number of complex operations (e.g., bilinear pairing) grows linearly
with the number of group members. It seems inefficient and impractical that group
members may be mobile terminals with limited energy, computation and communication
resources. To reduce the computational overhead of group members, a semi-centered
scheme [12] was proposed that DAs need to authenticate other group members for their
domain members, while DAs may become the bottleneck [16] of the whole system.

Our Contributions

1. Inspired by Zhang et al. [10], this work extends a hierarchical batch signature scheme [17]
to a batch multi-signature scheme. Then, we apply it into the construction of the
proposed identity-based cross-domain AAGKA (ID-CD-AAGKA) protocol, which is
distributed without any trusted party and supports batch verification.

2. The security proof is given that this protocol offers secrecy, known-key security
and partial forward secrecy. Meanwhile, as the performance analysis shows, the
IB-CD-AGAKA protocol is more efficient than existing works.

The remainder of this paper is organized as follows. Section 2 gives a brief review of
the related works. Section 3 presents bilinear pairing and the complexity assumption. Our
IB-CD-AAGKA protocol is described in Section 4. The proof of correctness is provided
in Section 5, and the security aspect of the proposed protocol is analyzed in Section 6.
Section 7 gives the performance comparison between the IB-CD-AAGKA protocol and the
previous works. Finally, Section 8 concludes our work.

2. Related Works

Studies to secure group communications in cross-domain scenarios can be divided
into two categories, i.e., conventional authenticated GKA protocol and AAGKA protocol.

2.1. Cross-Domain Conventional Authenticated GKA (CCAGKA) Protocols

In 2015, Guo et al. [18] first put forth a multi-participant cross-domain group password-
based authenticated key exchange (MCGPAKE) protocol. In this protocol, a domain member
shares passwords with trusted domain servers. A header is selected as a proxy of each domain
to negotiate a cross-domain session key with other headers. If all the headers are malicious
attackers, they can predetermine the session key. Subsequently, Zhu et al. [19] proposed a
novel MCGPAKE protocol with explicit authentication and contributiveness in the universally
composable (UC) framework. The scheme realizes ( n

2 , n) contributions that if the adversary
corrupts less than half of the participants, the session key still cannot be predetermined.
On the other hand, the communication rounds in the aforementioned works [18,19] are no
less than eight rounds, which is not round-efficient. In 2016, Lan et al. [13] presented a
one-round CCAGKA protocol in which group members use different cryptographic settings
and signature schemes. An indistinguishability obfuscation program is published by a trusted
third party to make all the participants have the uniform computation as the group session
key. In 2018, Yang et al. [14] utilized a three-layer tree structure to construct a CCAGKA
protocol with symptom-matching for an e-health system. In the group key agreement phase,
a powerful patient is chosen to authenticate other group patients. In 2020, Luo et al. [20]
pointed out Yang’s scheme does not meet the requirement that different domains may have
different cryptographic system parameters. In this scheme, a group controller is set up to
generate a group session key for all the participants. However, it may lead to single node
failure when the group controller is corrupted. All the above CCAGKA protocols have the
same shortcoming, i.e., sender restriction [21].
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2.2. Cross-Domain AAGKA Protocols

In 2014, Qikun et al. [15] proposed a distributed cross-domain AAGKA protocol. Each
domain member is assigned with a register key binding to his public key and the domain
public key of the corresponding DA. The domain public keys lack an authentication
mechanism. Thus, domain members need to store all the domain public keys. In the
resource-constrained environment, terminals may not have enough memories to keep
them. Besides, when a domain public key is updated, terminals in all domains also need
to update this key. In 2018, Zheng et al. proposed a semi-centered scheme to solve the
problems in [15] where DAs participate in the key agreement phase as intermediated nodes
between users. All the messages received or sent by the group users must be authenticated
and transferred by DAs. Moreover, DAs form a pair of alliance public/private keys
to validate the domain public keys. In this way, each member only needs to store the
corresponding domain public key. It will reduce the computational overhead of group
users. Nevertheless, DAs can also compute the group session keys. If a DA fails, the group
session keys and the previous group messages would be leaked, which is the single node
failure to make DA become the system’s bottleneck [16]. In the same year, Qikun et al. [11]
proposed a distributed cross-domain AAGKA protocol based on a new signature scheme
in the above alliance structure. However, in the verification phase of this signature scheme,
the number of bilinear pairings grows linearly with the number of group members. When
the group size is large, the consumption of computing resources is considerable so that the
resource-constrained terminals cannot afford it.

Then, we give the comparisons between the IB-CD-AAGKA protocol and the above
schemes in Table 1.

Table 1. Comparison between the above cross-domain group key agreement protocols and the IB-CD-AAGKA protocol.

Schemes Distributed Sender-Unrestricted Constant or No Bilinear Pairing of Each User

Guo et al. [18] no no yes
Zhu et al. [19] no no yes
Lan et al. [13] no no yes

Yang et al. [14] no no yes
Luo et al. [20] no no yes

Zhang et al. [15] yes yes no
Zheng et al. [12] no yes yes
Zhang et al. [11] yes yes no

The proposed protocol yes yes yes

3. Preliminaries
3.1. Bilinear Pairing

As our protocol is constructed from bilinear pairing [22], we give a brief introduction
of it in this section.

Let G1 be an additive group and G2 be a multiplicative group. Both of them have
the same prime order q. ê : G1 × G1 → G2 is called a bilinear pairing if the following
properties hold:

• Bilinearity: For all P, Q ∈ G1 and a, b ∈ Z∗q , there is ê(aP, bQ) = ê(P, Q)ab.
• Nondegeneracy: There exists P, Q ∈ G1, such that ê(P, Q) 6= 1.
• Computability: For all P, Q ∈ G1, there exists an efficient algorithm to compute

ê(P, Q) ∈ G2.

3.2. Complexity Assumptions

The security of the proposed protocol bases on k-Bilinear Diffie–Hellman Exponent
(BDHE) assumption [8,23], which is described as follows:
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k-BDHE problem: Given P, I and tϕ = aϕP(ϕ = 1, 2, 3, . . . , k, k + 2, . . . , 2k) as input,

compute ê(P, I)ak+1
. As the input vector lacks the term ak+1P, the bilinear pairing seems to

be of no help in calculating ê(P, I)ak+1
.

k-BDHE assumption: Let B be an algorithm which has advantage

Adv(B) = Pr[B(P, I, t1, . . . , tk, tk+2, . . . , t2k) = ê(P, I)ak+1
]

in solving the k-BDHE problem. The k-BDHE assumption is that Adv(B) is negligible for
any polynomial-time algorithm B.

4. Our IB-CD-AAGKA Protocol

In this section, we present the proposed IB-CD-AAGKA protocol in detail.

4.1. Network Architecture

The cross-domain network architecture used in this protocol is illustrated in Figure 1.
There are three types of entities in this architecture. The root private key generator (RPKG)
is at the top level. The domain private key generators (DPKG) are at the second level.
The users are at the third level. A brief workflow of our protocol is as follows.

RPKG

DPKG1 DPKG2 DPKGn

(2) Distribute domain 
private keys  

(4) Establish a group

(5) Generate asymmetric group 
keys 

Different decryption keys

 The common encryption key

(3) Distribute 
user private 

keys  

(1) System Setup
Top Level

Second Level

Third Level

Figure 1. The three-layer cross-domain network architecture.

1. The RPKG generates a master private key, a master public key, and other system
parameters. Then, the RPKG keeps the master private key secret and publishes the
master public key and the other system parameters.

2. Each DPKG manages a domain independently and registers to the RPKG. The RPKG
generates all the DPKGs’ private keys, and sends them to the DPKGs separately in a
secure channel.

3. When a user joins a domain, he/she registers to the corresponding DPKG. The DPKG
generates the user’s private key, which is sent to the user securely.

4. When users from different domains want to establish a group, they generate and
publish their parameters of group keys.
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5. The group members verify whether the received parameters of group keys are from
other group members or not. If the verification passes, each group member can
calculate his/her group decryption private key and a common group encryption
public key.

An outside sender can encrypt the messages with the group encryption key and
broadcast the ciphertexts to a group. Then, the group members can decrypt the ciphertexts
with their group decryption keys.

4.2. Detailed Construction

Assume the number of group members in domain Di (1 ≤ i ≤ n) is mi, and DPKGi
generates private keys for Di’s domain users. Let Ui,j (1 ≤ i ≤ n, 1 ≤ j ≤ mi) denote the jth
domain member of Di in the group, who negotiates the asymmetric group keys with other
group members. IDi, IDi,j are identities of DPKGi and Ui,j, respectively. For simplicity, we
also assume the number of group members in each domain is equal, i.e., m1 = m2 = · · · =
mn = m. The group size is N = n ·m.

In the following, we provide a detailed description of our proposed IB-CD-AAGKA
protocol, which comprises three phases: system setup and private key distribution, cross-
domain group key agreement, group encryption and group decryption.

1. System setup and private key distribution.
First, the RPKG runs Setup to initialize the system parameters, including the master
private key and master public key. Second, the RPKG executes DPKG.Register to
generate the private key for each DPKGi. Third, each DPKGi generates private keys
for Di’s domain members by Member.Register.

(a) Setup: On input a security parameter 1λ, the RPKG generates system parameters
{G1, G2, q, P, Q, ê, s, PKroot}, where G1 is an additive group, G2 is a multiplicative
group, q is the prime order of G1 and G2, P and Q are generators of G1, ê denotes
a bilinear pairing G1 × G1 → G2, a random number s ∈ Z∗q is the master private
key, and PKroot = s · P is the master public key. The RPKG chooses four hash
functions H1, H2, H3 : {0, 1}∗ → Z∗q and H4 : G2 → {0, 1}τ (τ is the bit-length of
plaintexts). Then, the RPKG keeps s secret, and publishes the remaining system
parameters and the hash functions.

(b) DPKG.Register: When DPKGi registers to the RPKG, the RPKG runs this algorithm
to generate the public/private key pair for DPKGi. The RPKG first chooses a
random number ri ∈ Z∗q to compute Ri = ri · P, αi = H1(IDi ‖ Ri), and SKi =
(ri + αi · s) ·Q, where the tuple (Ri, αi) is DPKGi’s public key and SKi is DPKGi’s
private key. Then, the RPKG transmits (Ri, SKi) to DPKGi over a secure channel.

(c) Member.Register: When Ui,j joins the Di, DPKGi generates public/private key
pair for Ui,j in this algorithm. First, DPKGi randomly selects ri,j ∈ Z∗q . Second,
DPKGi computes Ri,j = ri,j · P, αi,j = H2(IDi ‖ Ri ‖ IDi,j ‖ Ri,j), and SKi,j =
SKi + αUi,j · ri,j ·Q, where the tuple (Ri,j, αi,j) is Ui,j’s public key and SKi,j is Ui,j’s
private key. Third, DPKGi transmits (IDi, Ri, IDi,j, Ri,j, αi,j, SKi,j) to Ui securely.

2. Cross-domain group key agreement.
All group members’ common encryption key and group decryption keys are generated
in this phase. The process of cross-domain group key agreement involves four
algorithms, namely GenKeyParams, BVerify, GenEncKey and GenDecKey, which are
executed by Ui,j sequentially. Let Ux,y (1 ≤ x ≤ n, 1 ≤ y ≤ m) symbolize the yth
member of Dx in the group and {Ux,y} (1 ≤ x ≤ n, 1 ≤ y ≤ m) represent a set of
all the group members. {(x, y)} (1 ≤ x ≤ n, 1 ≤ y ≤ m) is a set of group indexes of
{Ux,y} (1 ≤ x ≤ n, 1 ≤ y ≤ m).

(a) GenKeyParams: Ui,j executes this algorithm to generate the parameters of
group keys which includes Ui,j’s signatures on all the group members’ indexes
{(x, y)} (1 ≤ x ≤ n, 1 ≤ y ≤ m). Ui,j chooses a random number ηi,j ∈ Z∗q ,
computes Ti,j = ηi,j · P. For 1 ≤ x ≤ n, 1 ≤ y ≤ m, Ui,j computes fx,y = H3(x ‖ y)
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and Si,j(x, y) = SKi,j + fx,y · ηi,j ·Q. So far, Ui,j has generated his/her signatures
on {(x, y)} (1 ≤ x ≤ n, 1 ≤ y ≤ m), which are (Ri, Ri,j, Ti,j, {Si,j(x, y)} (1 ≤ x ≤
n, 1 ≤ y ≤ m)). Note that, {Si,j(x, y)} (1 ≤ x ≤ n, 1 ≤ y ≤ m) is a set including
Si,j(i, j), when x = i and y = j. Then, Ui,j keeps Si,j(i, j) secret and broadcasts Mi,j
= (Ri, IDi, Ri,j, IDi,j, Ti,j, {Si,j(x, y)} (1 ≤ x ≤ n, 1 ≤ y ≤ m, x 6= i or y 6= j)).

(b) BVerify: Ui,j receives {Rx, IDx, Rx,y, IDx,y, Tx,y, Sx,y(i, j)}(1 ≤ x ≤ n, 1 ≤ y ≤
m, x 6= i or y 6= j), where {Rx, Rx,y, Tx,y, Sx,y(i, j)}(1 ≤ x ≤ n, 1 ≤ y ≤ m, x 6= i
or y 6= j) are other group members’ signatures on (i, j). Then, Ui,j runs this
algorithm to take a batch verification of the signatures. First, Ui,j computes
fi,j = H3(i ‖ j). Second, for 1 ≤ x ≤ n, 1 ≤ y ≤ m, x 6= i or y 6= j, Ui,j computes
αx = H1(IDx ‖ Rx) and αx,y = H2(IDx ‖ Rx ‖ IDx,y ‖ Rx,y). Then, Ui,j checks
Equation (1). If Equation (1) holds, Ui,j ensures that the received messages are
really from other group members.

ê(
n

∑
x=1

m

∑
y=1

Sx,y(i, j), P) = ê(
n

∑
x=1

m

∑
y=1

(αx · PKroot + Rx + αx,y·Rx,y + fi,j · Tx,y, Q)

(x 6= i or y 6= j)

(1)

(c) GenEncKey: When someone wants to broadcast secret messages to the group,
he/she runs this algorithm to calculate the group encryption public key ek.
For 1 ≤ x ≤ n, 1 ≤ y ≤ m, the sender calculates ek : (W, Ω), in which

W =
n
∑

x=1

m
∑

y=1
Tx,y and Ω = ê(

n
∑

x=1

m
∑

y=1
(αx · PKroot + Rx + αx,y · Rx,y), Q).

(d) GenDecKey: This algorithm helps Ui,j calculate his/her unique group private

decryption key dki,j =
n
∑

x=1

m
∑

y=1
Sx,y(i, j). The parameters to generate all the group

members’ decryption keys are listed in Table 2, in which Si,j(i, j) is kept secretly
by Ui,j. {Sx,y(i, j)} ((1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ x ≤ n, 1 ≤ y ≤ m)) in each
column are utilized to compute Ui,j’s group decryption key.

Table 2. The parameters to generate the group decryption key.

Members U1,1 · · · U1,m U2,1 · · · Un,m

U1,1 ⇒ S1,1(1, 1) · · · S1,1(1, m) S1,1(2, 1) · · · S1,1(n, m)
...

...
. . .

...
...

. . .
...

U1,m ⇒ S1,m(1, 1) · · · S1,m(1, m) S1,m(2, 1) · · · S1,m(n, m)

U2,1 ⇒ S2,1(1, 1) · · · S2,1(1, m) S2,1(2, 1) · · · S2,1(n, m)
...

...
. . .

...
...

. . .
...

Un,m ⇒ Sn,m(1, 1) · · · Sn,m(1, m) Sn,m(2, 1) · · · Sn,m(n, m)

Keys dk1,1 · · · dk1,m dk2,1 · · · dkn,m

3. Group encryption and group decryption.
Once group members finish the above algorithms and establish a confidential group
communication channel, any sender can send encrypted messages to the group in
this phase.

(a) Encryption: If someone wants to send a message m∗ secretly to the group, he/she
should run this algorithm to encrypt it. The sender chooses a random number
ρ ∈ Z∗q and computes C1 = ρ · P, C2 = ρ ·W, C3 = m∗ ⊕ H4(Ωρ). Then, the
sender outputs the ciphertext (C1, C2, C3).
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(b) Decryption : When receiving the ciphertext (C1, C2, C3), Ui,j runs this algorithm
to decrypt it. Ui,j computes m∗ in Equation (2).

m∗ = C3 ⊕ H4(ê(dki,j, C1) · ê(− fi,j ·Q, C2)). (2)

5. Correctness Analysis

The correctness of this protocol depends on two conditions. Condition 1. Ui,j ensures
that the received group key parameters are from other legitimate group members with
batch verification. Then, they can use the received parameters to calculate the proper pair
of group encryption/decryption keys. To meet this condition, Equation (1) must hold.
Condition 2. When receiving the ciphertext encrypted by the group encryption key, Ui,j
can use his/her decryption key to decrypt it and obtain the correct plaintext. To satisfy this
condition, Equation (2) must hold.

• Equation (1) is proved as follows.

ê(
n

∑
x=1

m

∑
y=1

Sx,y(i, j), P) (x 6= i or y 6= j)

= ê(
n

∑
x=1

m

∑
y=1

(SKx,y + fi,j · ηx,y ·Q), P) (x 6= i or y 6= j)

= ê(
n

∑
x=1

m

∑
y=1

(SKx + αx,y · rx,y ·Q + fi,j · ηx,y ·Q), P) (x 6= i or y 6= j)

= ê(
n

∑
x=1

m

∑
y=1

((rx + αx · s) ·Q + αx,y · rx,y ·Q + fi,j · ηx,y ·Q), P) (x 6= i or y 6= j)

= ê(
n

∑
x=1

m

∑
y=1

((rx + αx · s) · P + αx,y · rx,y · P + fi,j · ηx,y · P), Q) (x 6= i or y 6= j)

= ê(
n

∑
x=1

m

∑
y=1

(Rx + αx · PKroot + αx,y · Rx,y + fi,j · Tx,y), Q) (x 6= i or y 6= j)

• Equation (2) is proved as follows.

C3 ⊕ H4(ê(dki,j, C1) · ê(− fi,j ·Q, C2))

= C3 ⊕ H4(ê(
n

∑
x=1

m

∑
y=1

Sx,y(i, j), ρ · P) · ê(− fi,j ·Q, ρ ·
n

∑
x=1

m

∑
y=1

Tx,y))

= C3 ⊕ H4(ê(
n

∑
x=1

m

∑
y=1

(SKx,y + fi,j · ηx,y ·Q), ρ · P) · ê(
n

∑
x=1

m

∑
y=1
− fi,j ·Q, ρ ·

n

∑
x=1

m

∑
y=1

ηx,y · P))

= C3 ⊕ H4(ê(
n

∑
x=1

m

∑
y=1

SKx,y, ρ · P) · ê(
n

∑
x=1

m

∑
y=1

fi,j · ηx,y ·Q, ρ · P) · ê(
n

∑
x=1

m

∑
y=1

fi,j · ηx,y

·Q, ρ · P)−1)

= C3 ⊕ H4(ê(
n

∑
x=1

m

∑
y=1

SKx,y + αx,y · rx,y ·Q, ρ · P))

= C3 ⊕ H4(ê(
n

∑
x=1

m

∑
y=1

(rx + αx · s) · P + αx,y · rx,y · P, Q)ρ)

= C3 ⊕ H4(ê(
n

∑
x=1

m

∑
y=1

(Rx + αx · PKroot + αx,y · Rx,y), Q)ρ)

= C3 ⊕ H4(Ωρ)
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= m∗ ⊕ H4(Ωρ)⊕ H4(Ωρ)

= m∗

6. Security Analysis

This section gives the proofs that the proposed protocol achieves three security
properties [10], i.e., the partial forward secrecy, the known key security, and the secrecy.
The partial forward secrecy requires that even if some group members’ long term keys
are leaked, the group decryption keys previously established by these group members
would not be compromised. The known-key security ensures that if an adversary learns the
encryption/decryption keys of some groups, he cannot calculate other groups’ decryption
keys. The secrecy means that only the legitimate group members can decrypt the encrypted
message under the corresponding group encryption key.

6.1. Known Key Security and Partial Forward Secrecy

Because Ui,j needs to pick a random number ηi,j to generate his/her group key
parameters, the encryption/decryption keys of a group are generated independently
to the corresponding keys of other groups. As a result, the decryption keys of a group
cannot be computed even if all encryption/decryption keys of other groups are leaked,
i.e., our protocol satisfies the known key security.

Furthermore, an attacker cannot recover the Si,j(i, j) without the knowledge of ηi,j,
even if the Ui,j’s private key SKi,j is corrupted. Therefore, the proposed protocol satisfies
the partial forward secrecy.

6.2. Secrecy
6.2.1. Security Model

In this model, secrecy means the indistinguishability of a message encrypted under
the negotiated public encryption key from a random string in the ciphertext space [10].
Specifically, we construct a game between a challenger C and an adversary A who has full
control of the communication channel to prove the secrecy of our protocol. This game has
three phases, which are described as follows:

Initial: The challenger C initiates the system and transmits the system parameters
to A.

Training: C answers A’s queries as follows:

• DPKG.Extract: C generates the DPKGi’s public and private keys, then outputs the
public key.

• Member.Extract: C generates the Ui,j’s public and private keys, then outputs the
public key.

• Execute: C executes an asymmetric group key agreement.
• Test: A sends m1 and m2 (|m1| = |m2|) to C. C randomly chooses a bit b ∈ {0, 1},

and encrypts mb using ek . A can submit this query only once and this query is used
to model secrecy.

Response: Finally, A returns a bit b′ ∈ {0, 1} as the guess. If b = b′, A wins the
game. The advantage of A is Adv(A) =

∣∣∣Pr[b = b′]− 1
2

∣∣∣. As defined in the literature [10],
we consider that if Adv(A) is negligible, our protocol is secure against semantically
indistinguishable chosen identity and plaintext attacks (Ind-ID-CPA).

6.2.2. Security Proof

This section proves that if an adversary A can corrupt the secrecy of the proposed
protocol with a non-negligible advantage, C can solve the k-BDHE problem with a non
-negligible advantage.

Proof. Assume N < k and given (P, I, t1, · · · , tk, tk+2, · · · , t2k), C computes ê(P, I)ak+1
is a

k-BDHE problem, where P, I are generators of G1 and tϕ = aϕ · P (ϕ = 1, 2, 3, · · · , k, k +



Information 2021, 12, 112 9 of 15

2, · · · , 2k) with an unknown a ∈ Z∗q . In the following, we show the process that C computes

ê(P, I)ak+1
.

Initial: At the beginning of the game, C chooses system parameters {G1, G2, ê, P, Q, PKroot}
where PKroot = t1 = a · P and Q = ak · P and sends them to A. Then, C randomly picks a
DPKG’s identity ID∗DPKG and a group member’s identity ID∗U as challenge identities.

Training: In this phase, C answers A’s queries as follows.

• H1 query: C keeps an initially empty list LH1 . On input IDi, Ri (1 ≤ i ≤ n), C does
the following:

1. If there is a tuple (IDi, Ri, αi) on LH1 , C returns αi as the answer;
2. Otherwise, C chooses a random number αi ∈ Z∗q and adds (IDi, Ri, αi) to LH1 .

Then, C returns αi as the answer.

• H2 query: C keeps an initially empty list LH2 . On input IDi, Ri, IDi,j, Ri,j (1 ≤ i ≤
n, 1 ≤ j ≤ m), C does the following:

1. If there is a tuple (IDi, Ri, IDi,j, Ri,j, αi,j) on LH2 , C returns αi,j as the answer.
2. Otherwise, C chooses a random number αi,j ∈ Z∗q and adds (IDi, Ri, IDi,j, Ri,j, αi,j)

to LH2 . Then C returns αi,j as the answer.

• H3 query: C keeps an initially empty list LH3 . On input x, y (1 ≤ x ≤ n, 1 ≤ y ≤ m), C
does the following:

1. If there is a tuple (x, y, fx,y) on LH3 , C returns fx,y as the answer.
2. Otherwise, C chooses a random number fx,y ∈ Z∗q and adds (x, y, fx,y) to LH3 .

Then, C returns fx,y as the answer.

• H4 query: C keeps an initially empty list LH4 . On input a message f , C does
the following:

1. If there is a tuple (f, v) on LH4 , C returns v as the answer.
2. Otherwise, C chooses a random number string v ∈ {0, 1}τ and adds (f, v) to LH4 .

Then, C returns v as the answer.

• DPKG.Extract: C keeps an initially empty list LDPKG. On input IDi (1 ≤ i ≤ n), C
does the following:

1. If there is a tuple (IDi, ri, Ri, SKi) on LDPKG, C returns Ri as the answer.
2. Otherwise, C randomly chooses αi, ri ∈ Z∗q and proceeds as follows:

(a) If IDi 6= ID∗DPKG, C computes Ri = ri · P− αi · PKroot and SKi = ri ·Q.
(b) Else, C computes Ri = αi · P, and sets SKi = null.

Then, C adds (IDi, ri, Ri, SKi) to LDPKG and adds (IDi, Ri, αi) to LH1 . Then C
returns Ri as the answer.

• Member.Extract: C keeps an initially empty list Lmember. On input (IDi, IDi,j), C does
the following :

1. If there is a tuple (IDi, Ri, IDi,j, ri,j, Ri,j, SKi,j) on Lmember, C returns Ri,j as the
answer.

2. Otherwise, C randomly chooses αi,j, ri,j ∈ Z∗q and proceeds as follows:

(a) If IDi 6= ID∗DPKG, C computes Ri,j = ri,j · P and SKi,j = SKi + αi,j · ri,j ·Q.
(b) Else, C does the following:

i. If IDi,j 6= ID∗U , C computes Ri,j = α−1
i,j · (ri,j · P− αi · PKroot − Ri) and

SKi,j = ri,j ·Q.
ii. Else, C computes Ri,j = ri,j · P, and sets SKi,j = null.

Subsequently, C adds (IDi, Ri, IDi,j, ri,j, Ri,j, SKi,j) to Lmember and adds (IDi, Ri,
IDi,j, Ri,j, αi,j) to LH2 . Then, C returns Ri,j as the answer.

• Execute: C keeps an initially empty list LExecute. C does the following:

1. If IDi 6= ID∗DPKG and IDi,j 6= ID∗U , or IDi = ID∗DPKG and IDi,j 6= ID∗U :
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(a) C chooses a random number ηi,j ∈ Z∗q and computes Ti,j = ri,j · P + f−1
x,y ·

t1−(i−1)·n−j.
(b) For 1 ≤ x ≤ n, 1 ≤ y ≤ m, x 6= i or y 6= j, C computes Si,j(x, y) = SKi,j + fx,y ·

ri,j ·Q + tk+1−(i−1)·n−j.
(c) C adds (IDi,j, ηi,j, null) to LExecute.

2. Else IDi = ID∗DPKG and IDi,j = ID∗U :

(a) C chooses a random number ηi,j ∈ Z∗q and computes Ti,j = f−1
x,y (ri,j · P −

N,h 6=(i−1)·n+j
∑

h=1
tk−h+1 − Ri − αi · PKroot − αi,j · P).

(b) For 1 ≤ x ≤ n, 1 ≤ y ≤ m, x 6= i or y 6= j, C calculates Si,j(x, y) = ri,j · Q−
N,h 6=(i−1)·n+j

∑
h=1

t2k−h+1.

(c) C adds (IDi,j, ηi,j, null) to LExecute.

C publishes Mi,j = (Ri, Ri,j, Ti,j, {Si,j(x, y)}(1 ≤ x ≤ n, 1 ≤ y ≤ m, x 6= i or y 6= j))

• Ek.Reveal: C returns ek = (W, Q).
• Test: At some point,A chooses two messages m0, m1(|m1| = |m2|) on whichAwishes

to be challenged and send these messages to C. Then, C does the following:

1. For 1 ≤ i ≤ n, 1 ≤ j ≤ m, C obtains (IDi, ri, Ri, SKi) from L and (IDi, Ri, IDi,j, ri,j,
Ri,j, SKi,j) from Lmember.

2. C obtains (η1,1, . . . , η1,m, . . . , ηn,1, . . . , ηn,m) from LSend.
3. C computes the group public encryption key ek = (W, Ω). Then, C does as follows:

(a) W =
n
∑

i=1

m
∑

j=1
ηi,j · P.

(b) Ω = ê(
n
∑

i=1

m
∑

j=1
(αi · PKroot + Ri + αi,j · Ri,j), Q) = ê(

n
∑

i=1

m
∑

j=1
(αi · PKroot + Ri +

αi,j · Ri,j), ak · P).
4. C generates the ciphertext (C1, C2, C3). Then, C does the following:

(a) C sets C1 = I and C2 = I · (
n
∑

i=1

m
∑

j=1
ηi,j).

(b) C chooses a random string Λ ∈ {0, 1}τ and b ∈ {0, 1}. Then C computes
C3 = mb ⊕Λ.

5. A returns (C1, C2, C3) to A. Note that, A cannot recognize that (C1, C2, C3) is not

a proper ciphertext, unless A has executed an H4 query on D = ê(
n
∑

i=1

m
∑

j=1
(αi ·

PKroot + Ri + αi,j · Ri,j) · ak, I).

Response: A finishes querying and returns b′ ∈ {0, 1} as the guess. If b = b′, A has
recognized that (C1, C2, C3) is not a proper ciphertext and has executed an H4 query on

D = ê(
n
∑

i=1

m
∑

j=1
(αi · PKroot + Ri + αi,j · Ri,j) · ak, I). Then, C randomly chooses a tuple (f, v)

from LH4 .
Subsequently, C constructs another random number oracle H′1 which has the same

probability distribution as H1. C uses H′1 to replace H1 and executes the game withA again.
If A can also return the right guess, A has executed an H4 query on

D′ = ê(
n
∑

i=1

m
∑

j=1
(α
′
i · PKroot + Ri + αi,j · Ri,j · ak), I). Then, C randomly chooses a tuple (f′ , v

′
)

from H4, and returns (vi,j · (v
′
i,j)
−1)
−

n
∑

i=1
m·(αi−α

′
i )

as the answer to this k-BDHE challenge.
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Note that, only if v = D and v′ = D′, that the above answer (vi,j · (v
′
i,j)
−1)
−

n
∑

i=1
m·(αi−α

′
i )

is equal to ê(P, I)ak+1
. The proof is as follows.

vi,j · (v
′
i,j)
−1

= N · (N′)−1

= ê(
n

∑
i=1

m

∑
j=1

(αi · PKroot + Ri + αUi,j · Ri,j) · ak, I)

· ê(
n

∑
i=1

m

∑
j=1

(α
′
i · PKroot + Ri + αi,j · Ri,j) · ak, I)−1

= ê(
n

∑
i=1

m

∑
j=1

(αi · PKroot + Ri + αi,j · Ri,j − α
′
i · PKroot + Ri + αi,j · Ri,j) · ak, I)

= ê(
n

∑
i=1

m · (αi · PKroot − α
′
i · PKroot) · ak, I)

= ê(
n

∑
i=1

m · (αi · a · P− α
′
i · a · P) · ak, I)

= ê(
n

∑
i=1

m · (αi − α
′
i) · ak+1 · P, I)

= ê(
n

∑
i=1

ak+1 · P, I)

n
∑

i=1
m·(αi−α

′
i )

7. Performance Analysis

In this section, the performance of the IB-CD-AAGKA protocol is analyzed. Due to
the limited resources of mobile terminals, we adopt the following five metrics, i.e., the
computational complexity, the computational cost, the communication complexity, the commun-
ication cost and the energy consumption. As mentioned in Section 2, most works have
shortcomings in security or functionalities. Specifically, the CCAGKA protocols [13,18–20,24]
have the limitation of sender restriction. In addition, the semi-centered AAGKA protocol [12]
faces single node failure. To our best knowledge, only schemes [11,15] are distributed and
sender-unrestricted. Thus, we take a performance comparison between the proposed protocol
and the schemes [11,15].

7.1. Computational Complexity and Cost

The computational complexity relates to the number of cryptographic operations of a
group member in the cross-domain group key agreement phase. The symbols Tmul , Tadd,
Tbp, and Th denote the computing time for a scalar multiplication in G1, an addition in
G1, a bilinear pairing, and a hash function, respectively. The computational complexity is
analyzed in the following.

The cross-domain group key agreement in the IB-CD-AAGKA protocol comprises
four algorithms, namely GenKeyParams, BVerify, GenEncKey, and GenDecKey. The
computational complexity of GenKeyParams is (2N + 1)Tmul + N · Tadd + N · Th. The
computational complexity of BVerify is 3(N − 1) · Tmul + (5N − 7)Tadd + (2N − 1)Th +
2Tbp. The computational complexity of GenEncKey is 2Tmul + (N + 2)Tadd + 2Th + Tbp.

Because, the part of Ω, which is
n
∑

x=1

m
∑

y=1
(αx · PKroot + Rx + αx,y · Rx,y) (x 6= i or y 6= j),

has been computed in BVerify. In GenDecKey, the computational complexity is Tadd,

because
n
∑

x=1

m
∑

y=1
Sx,y(i, j) (x 6= i or y 6= j) has also been calculated in BVerify. The
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computational complexity of the IB-CD-AAGKA protocol is 5N · Tmul + (7N − 4)Tadd +
3Tbp + (3N + 1)Th. Moreover, as shown in the Table 3, the computational complexity of
scheme [11] is (3N + 2)Tmul + 2N · Tbp and the computational complexity of scheme [15] is
(N + 4)Tmul + (2N − 1)Tadd + 3N · Tbp.

To calculate the computational cost, we adopt the values provided by the literature [25],
where Tmul = 0.817 ms, Tadd = 0.002 ms, Tbp = 5.5832 ms, and Th = 0.0012 ms.
Their experiment was run on a Windows 7 machine with an Intel I7-6700 processor
(3.40 GHZ) and 8GB memory, and the cryptographic operations were implemented using
the MIRACL [26] cryptographic library. The bilinear pairing ê : G1 × G1 → G2 is built
on 80-bit security levels. q is the order of the additive group G1. p is a generator of
G1 and it is a point on the super singular elliptic curve y2 = x3 + x (mod p) with the
embedding degree 2. Moreover, p is a 512-bit prime number and q is a 160-bit Solinas
prime number. Then, the computational cost of our protocol is (5N)× 0.817 + (7N − 4)×
0.002 + 3× 5.5832 + (3N + 1)× 0.0012 = (4.103N + 16.743) ms. The computational cost
of [11] is (3N + 2)× 0.817 + 2N × 5.5832 = (13.621N + 1.634) ms and the one of [15] is
(N + 4)× 0.817 + (2N − 1)× 0.002 + 3N × 5.5832 = (17.571N + 3.266) ms. As we can
see, the number of bilinear pairing in our protocol is 3. By comparison, the ones in the
schemes [11,15] are 2N and 3N. The reason for this is that the proposed protocol employs
batch verification while in other schemes, group members can only verify one signature
at a time. Moreover, our protocol has less computational cost than that of [11,15], when
N ≥ 2 and N ≥ 1, respectively.

7.2. Communication Complexity and Cost

The communication complexity is relevant to the length of sent messages, the length
of received messages and the length of total messages in the group key agreement phase.
We also employ the symbols and values from [25], in which |G| = 1024 bits denotes the
length of an element in G1 or G2, and l = 160 bits is the length of an identity. The analysis
of communication complexity and communication cost is as follows.

As for each group member Ui,j, his/her sent messages are Mi,j = (Ri, IDi, Ri,j, IDi,j,
Ti,j, {Si,j(x, y)}(1 ≤ x ≤ n, 1 ≤ y ≤ m, x 6= i, y 6= j)) and the received messages
are {Rx, IDx, Rx,y, IDx,y, Tx,y, Sx,y(i, j)}(1 ≤ x ≤ n, 1 ≤ y ≤ m, x 6= i, y 6= j), where
Ri, Ri,j, Ti,j, Si,j(x, y), Rx, Rx,y, Tx,y, Sx,y(i, j) ∈ G1 and IDi, IDi,j, IDx, IDx,y are identities of
DPKGi, Ui,j, DPKGx and Ux,y. Thus, the length of sent messages is (N + 2)|G|+ 2l and
the length of received messages is 4(N − 1)|G|+ 2(N − 1)l. The length of total messages
is (5N − 2)|G| + 2N · l. The communication cost is (5N − 2) × 1024 + (2N) × 160 =
(5440N − 2048) bits.

Moreover, as shown in the Table 3, the communication cost of scheme [11] is
(3392N − 2048) bits and the one of scheme [15] is (6304N − 2048) bits. Thus, the proposed
protocol has more communication cost than that of [11] and less communication cost in
than [15]. However, we found that in the group key agreement phase of [11], a group
member’s sent messages do not include his/her own public key and the corresponding
domain key. Both of them are not known by other members in the group. The length
of the two keys is 2|G|. Then, we recompute the communication complexity of [11],
where the length of sent messages is (N + 2)|G| + 2l, the length of received messages
is 4(N − 1)|G|+ 2(N − 1)l, the length of total messages is (5N − 2)|G|+ 2N · l and the
communication cost is (5444N − 2048) bits. In this condition, the IB-CD-AAGKA protocol
has the same communication complexity and communication cost.
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Table 3. The performance comparison between the proposed protocol and the schemes [11,15].

Performance Metrics Proposed Protocol Zhang et al. [11] Zhang et al. [15]

Computational complexity
5N · Tmul

+(7N − 4)Tadd
+3Tbp + (3N + 1)Th

(3N + 2)Tmul
+2N · Tbp

(N + 4)Tmul
+(2N − 1)Tadd + 3N · Tbp

Computational cost (ms) 4.103N + 16.743 13.621N + 1.634 17.571N + 3.266
Length of sent messages (N + 2)|G|+ 2l N · |G|+ 2l (N + 3)|G|+ l

Length of received messages 4(N − 1)|G|
+2(N − 1)l

2(N − 1)|G| 1

+2(N − 1)l
5(N − 1)|G| 2

+(N − 1)l

Length of total messages (5N − 2)|G|
+2N · l

(3N − 2)|G|
+2N · l

(6N − 2)|G|
+N · l

Communication cost (bits) 5440N − 2048 3392N − 2048 6304N − 2048
Energy Consumption (mJ) 46.053N + 141.190 121.810N + 17.077 152.115N + 35.694
1 The authors of [15] believe, in their scheme, the number of parameters in received messages is N + 4. However, the authors of [27]
point out that this value is incorrect and give a new value, which is 4(N − 1). We further recounted the number of parameters in received
messages based on two types of parameters, i.e., identities, and points on group G1 or G2. The results are shown in the Table 3, which is
2(N − 1)|G|+ 2(N − 1)l. The total number of parameters is 2(N − 1) + 2(N − 1) = 4(N − 1), which is the same as the value provided
by [27]; 2 In the schemes [11,15], each group member’s secret parameter of group keys is encrypted separately by other members’ public keys,
and the encrypted parameters are published. The scheme [11] assumes that each group member only receives the parameters encrypted by
his/her public key, while the scheme [15] assumes that group members receive all the encrypted parameters. For comparison, we adopt the
assumption in the scheme [11] and recalculate the length of received messages in scheme [15]. Compared with [15], the recalculated length
of received messages is smaller.

7.3. Energy Consumption

The computational and communication costs are the main factors that impact the
energy consumption. We adopt the energy consumption values of cryptographic operations
and transmission data provided by Tan et al. [28] and Xu et al. [27], where a “Strong ARM”
microprocessor running at 133 MHz performing a scalar multiplication, a point addition,
hash function and bilinear pairing consumes 8.8, 0.001085, 0.000108 and 47 mJ, respectively.
An IEEE 802.11 Spectrum24 WLAN card requires 0.00066 mJ for the transmission of 1 bit
and 0.00031 mJ for the reception of 1 bit.

Then, we calculate the energy consumption of our protocol, which is (5N)× 8.8 +
(7N− 4)× 0.001085+ 3× 47+(3N + 1)× 0.000108+((N + 2)× 1024+ 2× 160)× 0.00066+
((5N − 2) × 1024 + (2N) × 160) × 0.00031 = (46.053N + 141.190) mJ. From Table 3,
the energy cost of the scheme in [11] is (121.810N + 17.077) mJ and the one of the scheme
in [15] is (152.115N + 35.694) mJ. Our protocol is more efficient than [11,15], when N ≥ 2
and N ≥ 1. The reason is the same as explained in Section 7.2.

8. Conclusions

To solve the efficiency problem of the existing cross-domain AAGKA protocols, this
paper proposed a distributed IB-CD-AAGKA protocol with batch verification. The security
analysis shows that our work achieves some typical security properties, i.e., secrecy,
known-key security, and partial forward secrecy. Furthermore, the performance analysis
indicates that the IB-CD-AAGKA protocol has lower computational and energy costs than
those of [11,15]. With strong security and efficient performance, the proposed protocol is
suitable for some resource-constrained environments, e.g., mobile computing networks.
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