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Abstract: Sensing and mapping its surroundings is an essential requirement for a mobile robot.
Geometric maps endow robots with the capacity of basic tasks, e.g., navigation. To co-exist with
human beings in indoor scenes, the need to attach semantic information to a geometric map, which
is called a semantic map, has been realized in the last two decades. A semantic map can help robots
to behave in human rules, plan and perform advanced tasks, and communicate with humans on
the conceptual level. This survey reviews methods about semantic mapping in indoor scenes. To
begin with, we answered the question, what is a semantic map for mobile robots, by its definitions.
After that, we reviewed works about each of the three modules of semantic mapping, i.e., spatial
mapping, acquisition of semantic information, and map representation, respectively. Finally, though
great progress has been made, there is a long way to implement semantic maps in advanced tasks for
robots, thus challenges and potential future directions are discussed before a conclusion at last.

Keywords: semantic mapping; mobile robots; indoor scenes; acquisition of semantic information;
map representation

1. Introduction

Sensing and modeling its surroundings is an essential requirement for a mobile robot.
When moving through an indoor environment, a robot needs to plan a safe path to the
destination, without collisions with obstacles. To build a map of its surroundings, the
robot needs to integrate perceived data based its localization. At the same time, the robot
has to compare its observation with the map to localize itself. This coupled problem is
known as Simultaneous Localization And Mapping (SLAM). With the advances of SLAM,
great progress has been made in spatial mapping. Geometric maps, generated by the
spatial mapping, contain spatial information about the environment, either metric or
topological, which allows a mobile robot to localize itself, plan a path, and avoid collisions
with obstacles. Nowadays, spatial maps are popularly implemented in mobile robots.

With the improvement of life quality of human beings and the development of tech-
nology of robotics, especially for mobile robots, there is a trend that more robots will be
introduced into domestic life [1], taking sweeping robots as an example. To co-exist with
human-beings, robots face a series of challenges. First, a robot should behave in human
rules, an unreasonable behavior may rise the antipathy of hosts, like standing a long time
in front of a door or following the host too closely. Second, a robot may have to interact
with the environment as some complex tasks are required, like a robot may be asked to go
to another room with a door closed, the robot has to open the door to arrive the destination.
Third, it is reasonable for a mobile robot to understand oral commands from its hosts, like
“fetch an apple from the fridge”. It is intractable for a mobile robot to handle those orders,
with only spatial information of its surroundings.
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The reason, preventing a mobile robot from applying in those situations, is that
there is a gap between human beings and robots. A robot, equipped with a computer or
microcomputer, tends to store and represent its environment in a mathematical way. While
for human-beings, conceptual knowledge is preferred in the description of the environment
and communication with others. For example, when asked to fetch a bottle of fresh milk, a
person would walk to a refrigerator in a kitchen, and then open the door of the refrigerator
to find whether there is a bottle of milk, while it could be problematic for a robot, as the
robot has none of the prior knowledge about those concepts, such as kitchen, refrigerator,
and milk bottle. A robot can perform such tasks with help of a human, by interpreting that
information into a mathematical presentation, namely the geometric coordinates of those
entities. Semantic mapping is a potential way to help robots to coexist with human beings,
as it bridges the semantic gap by attaching semantic information to geometric maps.

Nowadays, semantic mapping in outdoor scenes has been developed quickly, due
to its successful implementations in self-driving cars. In applications of self-driving cars,
constructed geometric maps are segmented into several predefined categories, such as
roads, trees, and pedestrians. While semantic mapping in indoor scenes faces different
challenges. Indoor scenes are the main environment for human everyday life, thus there
are more chances for a robot to interact with and serve humans. Besides, compared with
several specific categories to be concerned in outdoor scenes, indoor scenes can be labeled
by diverse place categories and placed with various kinds of objects. Additionally, human
activities can make a change in their surroundings. For example, a person can introduce
novel objects, discard useless objects, or change the positions of some instances. Thus,
semantic mapping in indoor scenes has attracted the attention of many scholars in the
research field of robotics. This work focuses on semantic mapping in indoor scenes and
makes an effort to provide a comprehensive overview.

There are some other works, whose topics are related to semantic mapping, as listed
in Table 1. Reference [2] is the first work to define a semantic map for robotics formally.
The authors evaluated three topical semantic representations by this definition. The
survey [3] is a comprehensive work, which reviewed the topic of semantic mapping of
robotics, both in indoor and outdoor scenes. In this survey, references about semantic
mapping were categorized by their primary characteristics. Furthermore, applications of
semantic mapping are also introduced. While reference [4] focused on semantic information
extraction from visual data. In [5], the history and trends of SLAM were introduced, and
semantic mapping is reviewed as one of map representation. Reference [6] also surveyed
the works of semantic maps, and focuses on their application in the navigation task. This
survey is different from those works in three aspects. First, as mentioned above, we focus
on semantic mapping in indoor scenes, as it faces different challenges with outdoor scenes.
Second, both typical and recent semantic mapping methods are included in this survey,
as listed in Table 2. Third, we try to review the semantic mapping system from a new
perspective. Semantic mapping is divided into three modules, namely spatial mapping,
acquisition of semantic information, and map representation, according to its definitions.

Table 1. Previous surveys related to semantic maoping for robotics.

Reference Topic Year

Paulus and Lang [2] Definition of Semantic Mapping 2014
Kostavelis and Gasteratos [3] Semantic Mapping 2015
Liu et al. [4] Semantic Information Extraction 2016
Cadena et al. [5] History and Trends of SLAM 2016
Crespo et al. [6] Semantic Navigation 2020
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Table 2. References about semantic mapping, each work is depicted in six aspects.

Reference Sensors SLAM methods Acquisition Method Content Map Representation Applications

[7] sonar ring, laser, color camera - simplified instances and reference object and room categories two hierarchies -

[8] 3D laser range 6D SLAM reference and model matching plain label and instance category - -

[9] 2D laser and a camera GMapping text detection and OCR room information - -

[10] Hokuyo laser range and
Wearable motion sensors

- reference furniture type - -

[11] laser scans, cameras, odometer EKF SLAM instance recognition and inference and
property classification

instance category, room category
and geometric property

4-layer architecture reasoning about
unexplored area

[12] RGBD camera - 2D instance segmentation instances category - -

[13] Depth camera SLAM++ instance matching instance category - augmented reality and
relocalization

[14] RGBD camera - human-robot interaction * world knowledge and
domain knowledge

-

[15] RGBD camera - dense scene segmentation object category and background - -

[16] RGB camera LSD SLAM CNN based 2D segmentation object category and background - -

[17] RGBD camera GMapping place classification scene category - behave in human rules

[18] RGBD camera KinectFusion CNN based 2D segmentation object category and background - -

[19] RGBD camera graph-based SLAM [20] CNN and SVM object category - -

[21] RGBD camera ORB SLAM SSD object category - -

[22] RGBD camera DVO SLAM [23] CNN-based semantic segmentation object category and background - -

[24] RGBD camera Kinect Fusion FCN sementic segmentation object category and background - -

[25] RGBD camera ORB SLAM Faster RCNN object category and poses - -

[26] RGBD camera - Mask R-CNN object category - -

[27] RGBD camera voxblox [28] PSPNet and Mask-RCNN object category and background - -

[29] Sonar and stereo camera - R-FCN object category - semantic navigation

[30] RGBD camera ORB SLAM CRF-RNN semantic segmentation object category - -
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The rest of this paper is organized as follows. In Section 2, we try to answer the
question, What is a semantic map, by two definitions of a semantic map for robotics in
earlier literature. According to its definitions, the typical mapping process is introduced and
divided into three modules. Each of the three modules is reviewed in the next three sections
respectively. Next, we discussed challenging open issues and potential future directions of
semantic mapping. At last, the main contributions of this work are briefly concluded.

2. Definitions of Semantic Map

As many researchers believe that a map, designed and constructed for complex tasks
for mobile robots, should be attached with semantic information, the concept semantic
map has been proposed. Before we go further into semantic mapping, there is an essential
question, i.e., What is a semantic map for robotics. To answer this question, two formal
definitions of a semantic map are found in previous works.

In [8], a semantic map for robotics is defined as follows:

“A semantic map for a mobile robot is a map that contains, in addition to spatial
information about the environment, assignments of mapped features to entities of known
classes. Further knowledge about these entities, independent of the map contents, is
available for reasoning in some knowledge base with an associated reasoning engine.”

Another formal definition of semantic robotic map is stated in reference [2]:

“A semantic map for E limited to D is a tuple Msem = 〈M,L,A〉... A is a struc-
ture, which represents knowledge about the relationships between entities, classes, and
attributes, also known as common-sense knowledge about D. Generally, A can be defined
in an arbitrary way and has to allow for inference.”

where E is a mathematical description of the local environment, D is task domain, M is a
set of maps for E, and L is a set of links.

Despite the different terms and expressions in the two definitions, there are three
common characteristics in semantic mapping. First, a geometric map, containing geometric
information of an environment, is the main body of semantic mapping, as it is the base
for attaching semantic information, and serves for basic requirements of mobile robots,
e.g., localization, obstacles avoidance, and path plan. Second, semantic information, as
an extensive human-understandable description of environments, links physical entities
with conceptual elements in a common-knowledge base, and bridges the semantic gap
between humans and robots. Last, constructed geometric maps and acquired semantic
information should be organized in an appropriate structure, which endows a robot the
capacity of reasoning.

A typical binary grid map, built by a 2D laser scanner, can be viewed as a simple
semantic map, as shown in Figure 1, according to those three characteristics. In this type of
map, an environment is divided into regular grid cells, each cell is attached with a value,
either 0 or 1, which indicates whether the cell is occupied by obstacles. Other than applying
in the navigation task for robots, this information can be understood by human beings.

A typical semantic mapping pipeline is depicted in Figure 2. To build a semantic
map, a robot, equipped with different types of sensors, like 2D or 3D laser scanners,
RGB cameras, or RGBD cameras, constructs perception data into a geometric map, which
employs SLAM technology as a front end. This module is called spatial mapping in this
work. Next, the robot acquires semantic information from sensor data at the same time, or
from the constructed geometric map in an off-line manner. Thus links between the prior
common-sense knowledge base and elements in geometric maps are built through the
acquisition of semantic information. At last, constructed geometric maps and acquired
semantic information is organized into an appropriate representation, which enables a
robot to reason further information and plan advanced tasks. This is one of the two reasons
that semantic mapping is not a simple process of attaching semantic information to a
geometry map. The other reason is that spatial mapping and acquisition of semantic
mapping can benefit from each other. During spatial mapping, relative poses between
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sequential observation are obtained and can be employed to fuse semantic information,
which is detailed in Section 4.

Figure 1. The 2D binary grid map, with each cell set with a 0 (empty) or 1 (occupied).

Figure 2. The typical semantic mapping pipeline contains three modules, namely spatial mapping,
acquisition of semantic information, and map representation.

3. Spatial Mapping

Spatial mapping is the process to generate a geometric description of the environment
from raw sensor data. To build a geometric map of an environment automatically, a robot
needs the capacity of perception, which relies on equipped sensors. In the earlier era, 2D
and 3D laser scanners are the most popular sensors for robots. As high-precision distance
information can be obtained from reflection, in recent years, due to the popularity of
commercial RGBD cameras, RGBD cameras have been widely equipped in robots and
popularly utilized in spatial mapping. There is a significant advantage that RGBD cameras
can obtain not only geometry information but also visual information simultaneously.

During spatial mapping, sequential perception data are organized into a geometric
map incrementally. When the robot moves around in an unfamiliar scene, it localizes
itself based on its perception of the environment. On the other hand, the accumulation of
perception data is based on its localization. Thus, the two problems are coupled together
as Simultaneous Localization and Mapping (SLAM), which has attracted the attention of
scholars for more than 40 years, both filter-based [31,32] and graph-based [33] methods
have been developed.



Information 2021, 12, 92 6 of 14

Thanks to the quick development of SLAM, which produces a geometric map, almost
all works of semantic mapping take off-of-shelf SLAM methods as a front end. A particle
filter-based SLAM, GMapping [34] is widely employed to build a 2D grid map of environ-
ment [7,9,17]. Based on 6D SLAM [35], 3D perception data, obtained from a 3D laser in
a stop-scan-go fashion, is registered into a point cloud, via Iterative Closest Points (ICP)
algorithm. Besides, a loop closure scheme is introduced to eliminate accumulated errors [8].
An off-line grid mapping method [36] based on Sonar is employed in [29] to build a metric
map. In recent years, visual SLAM has attracted the interest of scholars. Reference [15]
employs the fovis library [37] as an visual odometer, the observed points from each RGBD
frame are projected into 3D constructed map, with Kalman filter. LSD SLAM [38] is em-
ployed in [16] to build a semi-dense map with an RGB camera, which is running on a CPU
at 25 Hz. ElasitcFusion [39] is employed in [18] to construct an surfel-based map. RGBD
version of ORB-SLAM2 [40] is employed in [21].

It should be addressed that, there is a difference between SLAM and spatial mapping.
A map in SLAM, as a compact representation of the environment, is mainly used for
localization, can be represented in a sparse or dense way. While for spatial mapping, a
geometric map serves for more tasks, e.g., navigation. Navigation is a fundamental and
vital requirement for an automatic mobile robot. A dense description is preferred as all
obstacles are placed on the map, which enables the robot to plan a collision-free path.

There are three main categories of geometric maps, namely metric, topological, or hybrid.
The direct outputs of SLAM are metric representations of an environment. a 2D metric map
is built in [10], which provides a spatial presentation to attach semantic information. In a 2D
planar environment, grid occupancy map is widely applied, as it has been proven its success
in navigation, with the assistance of layered costmap [41]. While in 3D scenarios, point
cloud [38] or surfel-based representation [12] are widely applied. While in other works [11],
the topological structure is extracted from a metric map to store geometric information of the
environment in a hybrid way. In which, a metric map is discretized into places, those places
are connected by a path, which generates a topological map of the environment.

4. Acquisition of Semantic Information

During or after spatial mapping, semantic information, as a human-understandable
description of the environment, is attached to geometric maps, which builds a bridge
between a spatial model of the environment and a common-sense knowledge base. In other
work, this process is called anchoring [7] or semantic information extraction [4]. By an-
choring, physical entities observed by sensors are attached to conceptual elements in a
knowledge base. While semantic information extraction focuses on object recognition or
detection from visual images. To unify the process of describing the environment in a
human-being understandable way, the term acquisition of semantic information is utilized
in this work, due to two differences. First, only objects and room categories are considered
in those works, while more information, such as temperature and humidity, can also enrich
the map with more semantic descriptions. Second, semantic information can be obtained
via diverse sensors and various methods. Thus, the acquisition of semantic information is
preferred in this work as it describes this process in a more general way.

As shown in Table 2, categories of objects and rooms are the most common semantic
information. The reason is that instances and rooms are the main elements in the real world,
which has distinguishable boundaries. For example, in [7], sensory data are abstracted
into two main physical entities, i.e., rooms, and objects. On the other hand, category
information is also a vital concept in human common-sense knowledge. Thus the bridge
between a geometric map and a common-sense knowledge base is built by categorizing
physical instances and rooms. Besides the categories, other semantic information also plays
an important role in robotic practical applications. For example, conceptual information is
often utilized in the exploration of unobserved objects, and geometric properties, such as
pose and size of objects, are necessary for pick and play tasks.
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There are plenty of ways to acquire that semantic information. We classify those
methods into three groups, namely human input, sensor-based, and inference, according
to different sources used in this process.

4.1. Human Input

The most intuitive way to create a semantic map is to acquire semantic information
by taking human input into the process. A semantic map can be generated by adding
conceptual information into a constructed geometric map by hand-coding. More auto-
matically, before exploring the environment, artificial landmarks, which encode semantic
information, are placed in the environment, or attached to big objects. A robot obtains
semantic information by moving around and detecting those landmarks. Reference [9] can
be viewed as one of the examples. A fully automatic method based on off-of-shelf text
detection and optical character recognition (OCR) is employed in [9]. A robot moves along
in the hallway, scans walls around it to detect text from room signs, and then recognizes
characters with an OCR system. Textual information, such as owner, capacity, and room
number, is extracted and attached to the generated geometric map.

Furthermore, human-robot interaction is employed in [14] as a source of semantic
information. In this work, instances are pointed with a commercial laser pointer, the robot
detects the dot and segments the instance based on its size as prior knowledge. Once the
instance is detected, both commands and object description are obtained through dialogue
with humans, which is enabled with an automatic speech recognition module.

There is an obvious advantage of taking human input as a semantic information
source. Information loss can be avoided as the information is transferred directly from a
human to a robot. Otherwise, the content of semantic information is not restricted, as a user
can add arbitrary knowledge to the map. However, the process is heavily dependent on
humans. To overcome this limitation, many automatic acquisition methods are proposed
based on sensor data or inference.

4.2. Sensor-Based Methods

In the early years, the object category is determined by instance recognition, with an
object database prepared beforehand. When mapping, robots observe the environment and
recognize predefined objects through visual or geometric features. To that end, RGB cam-
eras, 3D laser scanners, as well as RGB-D cameras are widely employed for the acquisition
of semantic information. Objects are recognized with BLORT toolkit [42] with prepared
object models. Reference [11] uses SIFT (Scale-Invariant Feature Transform) features to
recognize object instances, only six categories are considered, namely, a book, a cereal box,
a computer, a robot, a stapler, and a roll of toilet paper. SLAM++ [13] aims at building an
object-oriented map, with repeated instances represented in this map. An object database,
consisting of 3D models of instance, is prepared beforehand using KinectFusion [43], and
then instances are recognized with Generalized Hough Transform based on Point Pair
Features. In [8], after scene interpreting, planes are removed from the point cloud, objects
are detected with prior knowledge in an object database, using a trained Support Vector
Machine (SVM) or a Gentle Adaptive Boost Algorithm (Adaboost) [44] with features in
rendered depth and reflective images. While preparing such an object database can be
cumbersome, as there can be plenty of instances in an environment, and each category can
have diverse instances. Some works are focusing on extract general category information
by training on datasets with huge samples.

Besides instance recognition, there are some works focusing on scene interpreting
by semantic segmentation. Reference [12] extracts semantic information by segmenting
images pixel-wise, with a Random Forest. Both depth and color region features are taken
into consideration. Once objects are segmented in a single frame, class-wise surfels are
projected into a 3D reconstructed map based on camera trajectory estimated in spatial
mapping. Similar to [12], a 2D segmentation algorithm, based on Randomized Decision
Forests, is proposed to segment each RGBD frame in [15]. An RGBD frame is segmented
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via a trained Randomized Decision Forest, accelerated by well-designed features and a
keyframe-based scheme. A dense conditional random field is employed to improve spatial
consistency both in 2D and 3D refinement with visual and geometrical similarity.

Nowadays, with successful applications in computer vision, convolutional neural net-
works (CNNs) have attracted the attention of plenty of scholars in semantic mapping [45].
Reference [16] employed DeepLab v2 [46] to segment an RGBD frame, which is a dilated
convolution network, with spatial pyramid pooling to handle both small and large objects.
Similar to [12], keyframe-based scheme is also utilized in [16]. In [17], CNN based place
categorization method is combined with spatial mapping. The Places205 network [47]
is transferred to the real-world environment without any fine-tuning. To overcome the
close-set limitation, the network is expanded by adding a one-vs-all classifier with re-
normalization. CT-MAP was proposed by [25], in which not only object categories but
object poses are detected. In this work, Faster RCNN [48] is deployed as an object detector.
To boost object detection performance, category-level relations, which are obtained from
public datasets, are organized in the conditional random field (CRF) and temporal consis-
tency is also considered with the assumption that an object would stay in a short period.
Reference [21] combines ORB-SLAM2 with single-stage object detector Single-Shot Detector
(SSD) [4] to build an object-oriented meaningful map. The object detector is running in
every single RGB image, and a series of bounding boxes are returned. To segment objects
from depth images, the depth image is over segmented into super voxels, similar ones are
get together by construct an adjacency graph and cutting edges based on convex/concave
information. In sequential observation, object candidates are associated by measuring
Euler distance between each other. with the k-d tree to speed up. The single detection
labels are accumulated and determined by max value. R-FCN [36] is employed in [29] to
extract object category information. First, a point cloud is built with ORB SLAM [40] or
LSD SLAM [38]. Then, a user specifies a particular part of the point cloud, the robot moves
around to observe from different viewpoints to detect it. Objects are detected and projected
to a 2D occupy map. Then minimal bounding rectangles (MBRs) are used to represent
objects in the 2D occupy map.

Acquisition of semantic information is not a simple categorization problem. When
mapping, a robot moves around in the environment, a target object may be observed in
a series of frames from different viewpoints. To keep temporal consistency, sequential
information should be fused. For example, the Bayesian framework is employed to fuse
the label results of each frame in an incremental manner [15,17,22]. Besides, there are
some potential rules in indoor scenes based on human living habits, such as an oven is
more likely placed in a kitchen. Those contextual relations are vital cues to keep global
consistency. References [15,18,25] employ CRF to boost performance of categorization.

4.3. Inference

Instead of obtained from raw sensor data, some works try to extract semantic informa-
tion based on obtained semantic information, with help of implicit or explicit contextual
relations. In reference [7], the room categories are defined in a common-sense knowledge
base with NeoClass language, which enables a robot to reason the category of a room, based
on objects detected in this room via PTLplan [49]. Once the point cloud of the environment
is obtained, Random Sample Consensus (RANSAC) [50] is utilized to extract plains in
scenes in [8]. Those plains are labeled as walls, doors, floors, or ceilings, by a constraint
network, which contains geometric relations of each type of planes. This problem is solved
with Prolog. Instead of using low-level sensor data and monomodal information, a multi-
modal property-based reasoning architecture is proposed in [11], in which properties, such
as objects, and appearance, are obtained from sensor data directly, and serves as a mediate
level between lower sensory information and high-level conceptual. Both room categories
and properties are jointly estimated with a probabilistic chain graph model, which is a
generalization of Bayesian Networks and Markov Random Filed. The geometric properties
are classified by an Support Vector Machine (SVM), which is trained with a dataset of
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several room instances. The object-room relation can be obtained in the Open Mind Indoor
Common Sense database.

Despite based on conceptual information in the environment, authors in reference [10]
argued that there is a correlation between furniture type and human activities and proposed
a novel method to reason furniture type by human interaction. To that end, human
activities are recognized from multi-wearable motion sensors via neural networks and
hidden Markov models. Once activities are recognized, furniture type can be determined
by a predefined activity-furniture table.

As it is based on other obtained semantic information, the inference is employed
as a post-process following other acquisition methods. For example, when an oven is
discovered in the scene, the room can be inferred as a kitchen. The capacity of inference
relies on reasoning rules, thus it matters how to prepare contextual information, In [11],
Open Mind Indoor Common Sense is utilized to extract related conceptual information,
While some works extract such information from public computer vision dataset. In [17],
place categories are used to boost object recognition, with object-scene as prior knowledge,
extracted from NYU depth dataset.

5. Map Representation

Once a geometric map is built and semantic information is acquired, both spatial
information and conceptual information should be organized under certain rules. While
the main purpose of most works is to show the acquisition results of semantic information,
thus there is a way to attach semantic labels to physical elements in geometric maps
and those elements with different colors in visual representation. For example, authors
in [21] employ ORB-SLAM2 [40] to build a point cloud model of the environment, and
several kinds of objects are detected and shown in different colors. As a result of semantic
mapping, Reference [8] also labels scenes and objects with different colors. A semantic
map is constructed in [29] by inserting minimum bounding rectangles (MBRs) of an object
into the corresponding area. With semantic information attached to geometric maps, it is
straightforward to interpret semantic labels into geometric position, which enables a robot
the capacity of semantic navigation.

Besides simple attachment, there is some typical and sophisticated structure to rep-
resent a semantic map, which endows the capacity of reasoning. Hierarchy structure is a
popular way to represent environment information, with specific information placed in
lower levels, and the abstract in the upper. Two hierarchies are employed in reference [7].
One is for spatial information, and the other for conceptual. The former contains three
levels, local grid maps and object images are placed in the lowest level, the middle one is
a topological graph of places, and the top is a node of the whole space. The conceptual
hierarchy is coded beforehand with NeoClassic language. The top is a Thing node, includ-
ing two main branches, Room and Object, categories of rooms and objects are lying in the
third level and the lowest for specific instances. The links between spatial hierarchies and
conceptual hierarchies are built by anchoring.

In [11], the spatial knowledge is represented in a 4-layer structure, namely sensory
layer, place layer, categorical layer, and conceptual layer. With sensor data on the bottom
layer and abstract concept knowledge on the top layer. The sensory layer includes a metric
map of the environment. On the place level, a topological graph is maintained with places
as nodes, and paths as edges. Objects and landmarks are placed on the categorical layer, and
spatial properties and visual models are also included in this layer. The conceptual layer
contains the relations linking lower-level sensory information to common-sense knowledge,
as well as a static ontology of common-sense knowledge. As a probabilistic chain graph [51]
is employed in [11], a probability reasoning engine Loopy Belief Propagation [52] is utilized
to perform inference over semantic information.
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The map representation in [14] is divided into two parts. World knowledge contains
acquired knowledge of a certain environment. The other, named domain knowledge, con-
tains general knowledge in a task domain. In world knowledge, an occupancy grid map is
maintained, and cell maps are utilized to represent local areas, a topological map maintains
the graph model of the whole environment. Besides, instances with their categories and
properties are saved in this knowledge.

It can be concluded that a hierarchy structure is preferred in map representation. In a
hierarchy structure, the information in different levels of abstraction is clearly distinguished
by placing specific information on the lower layer, otherwise on higher. Ontology is
an appropriate way to represent conceptual knowledge, as other information, such as
properties and relations, are expressed in an organized way. An representation example of
indoor scene, which in shown in Figure 1, is depicted in Figure 3.

Figure 3. Presentation of a semantic map of the scene shown in Figure 1, a hierarchy structure of the
geometric map (left), and onlogy of common-sense knowledge (right).

6. Open Issues and Potential Directions

Though many impressive semantic mapping methods have been proposed, there
are still some limitations in implements of practical applications. Besides, there are some
potential directions for more advanced semantic mapping.

6.1. Heterogeneous Sensor Fusion

Currently, in the process of semantic mapping, lasers and cameras are widely em-
ployed in most works. There is still a potential to fuse different information from het-
erogeneous sensors. One impressive example is the success of Visual-Inertial Odometry
(VIO) [53,54], which fuses camera data with inertial measurement units to localize with
higher precision. Furthermore, with specific sensors, some further information can be
obtained directly. For example, equipped with a temperature sensor, a robot can get
temperature information. Tactile sensors are helpful to recognize objects when they are
not visually distinguished [55]. With multi-modal information, a more comprehensive
description of the environment can be generated.

6.2. Dynamic Scenes and Open World

As the main place of human activities, indoor scenes can change over time. Those
changes will pose challenges for semantic mapping. First of all, most geometric maps are
designed to model a scene in still mode. While for dynamic scenes, it is impossible to
map the environment at each time. Once a scene has been changed, the reconstructed map
will lose its effect. Moreover, a human may introduce novel objects into the environment,
which is known as open-world challenge [56]. There is a need for a robot to learn in an



Information 2021, 12, 92 11 of 14

incremental mode. To deal with this issue, [17] proposes an expandable classification
system by combining ConvNet with one-vs-all classifiers. Reference [14] also addressed
this problem, and proposed a method to add semantic information into a in an incremental
way. For map representation in dynamic scenes, few works have addressed this problem,
there is a need for an efficient way to represent a dynamic scene.

6.3. Cloud Robotics

In recent years, cloud robotics has attracted the attention of many researchers. There
are a few works that explore the potential to implement cloud robotics in semantic mapping.
For example, [56] introduces RoboEarth, which defines several recipes for robots, and has
shown its effect to build a semantic map with a cloud robot. While different scenes may
share similar knowledge, as there are some common rules, which are obeyed by different
people. Thus it can be researched to endow a robot with semantic mapping capacity with
the assistance of a cloud robot.

6.4. Task-Oriented Map Representation

Even though some typical map representations have been reviewed, it is still not
clear that how can we implement those representations in task planning. In the field
of computer science, a computer program consists of algorithms and data structures.
Compared with computer programming, one possible way to implement task planning is
to find a appreciate way to represent a robot task into a description of robot capacities and
a representation of a semantic map. Thus the problem can be decoupled into two parts.
one is a mathematical or logical description of robot capacity, and a map representation,
which should consist of necessary elements for task planning.

7. Conclusions

In this paper, semantic mapping in indoor scenes for mobile robots has been reviewed.
According to definitions in different works, semantic mapping consists of three modules,
namely spatial mapping, acquisition of semantic information, and map representation.

Dense SLAM technology is usually employed as a front-end to produce geometric
maps, with spatial information of the environment. Thus, spatial mapping benefits from
the impressive advances of SLAM technology, such as GMapping [34], ORB SLAM2 [40],
and ElasticFusion [39].

Semantic information in maps for mobile robots provides a human-understandable
description of the environment. Acquisition of semantic information builds a bridge
between physical elements in the environment and conceptual elements in a knowledge
base. At first, with prior knowledge of instances, object recognition is utilized to categorize
instances. While with the development of computer vision, vision-based segmentation on
each frame is implemented and frame-based segmentation results are fused incrementally
based on the Bayes framework. In recent years, due to advances in deep learning, there is a
trend to employ off-the-shelf networks in instance categorization or scene interpreting.

For map representation, many works represent a constructed map for visualization,
namely labeling semantic elements with different colors. While it is a clear way to show
semantic information acquisition results, but not intuitive to implement it in robot tasks,
while there is a consensus to represent knowledge in ontology. Some typical methods have
been proposed to utilize hierarchical layers to organize the different level of knowledge, by
placing abstract information in higher levels.

Despite the progress that has been achieved during the last decades, there is still a
long way to implement semantic mapping in more practical applications of mobile robots.
To that end, some future potential directions have been pointed out.
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