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Abstract: Long Range (LoRa) communication is widely adapted in long-range Internet of Things
(IoT) applications. LoRa is one of the powerful technologies of Low Power Wide Area Networking
(LPWAN) standards designed for IoT applications. Enormous IoT applications lead to massive traffic
results, which affect the entire network’s operation by decreasing the quality of service (QoS) and
minimizing the throughput and capacity of the LoRa network. To this end, this paper proposes a
novel cluster throughput model of the throughput distribution function in a cluster to estimate the
expected value of the throughput capacity. This paper develops two main clustering algorithms
using dense LoRa-based IoT networks that allow clustering of end devices according to the criterion
of maximum served traffic. The algorithms are built based on two-common methods, K-means and
FOREL. In contrast to existing methods, the developed method provides the maximum value of
served traffic in a cluster. Results reveal that our proposed cluster throughput model obtained a
higher average throughput value by using a normal distribution than a uniform distribution.

Keywords: Internet of Things; dense networks; LPWAN; LoRa; clustering; throughput; capacity; QoS

1. Introduction

Currently, in the era of the IoT [1], communication technologies have significantly
expanded to reach a variety of industries. Consequently, providing low-power and long-
distance communication networks has become an essential component of many appli-
cations within smart cities, such as waste management [2], supply chain [3], Industrial
Internet of Things [4], smart metering [5], and traffic control. Low Power Wide Area
Networking (LPWAN) is an effective way for such applications to overcome these cost,
energy, and complexity challenges, especially when such applications require covering
large geographic areas. One of the attracted extensive attentions for LPWAN technologies
today is Long Range (LoRa) [6]. The communication model of LoRa can be considered a
better alternative for short-range and cellular communications in different applications and
will offer notable features, such as low data rates, long-range, and low power consumption.
The LoRa technology provides a high flexibility network by introducing long-range com-
munication at low cost and communication specifications (e.g., bit rate, throughput, and
delay). Network flexibility is an important issue that is related to LoRa network design [7].

However, a dense number of deployed devices in a large geographical area lead to
a significant increase in subscriber traffic intensity. The demand from large retailers is
growing to offer enhanced quality of services (QoS) and channel capacity, which is difficult
for network operators [8]. The main trends in the development of LoRa networks consist
of the rise of LoRa capacity and the number of users served.

Information 2021, 12, 76. https://doi.org/10.3390/info12020076 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-1165-7812
https://doi.org/10.3390/info12020076
https://doi.org/10.3390/info12020076
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12020076
https://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/12/2/76?type=check_update&version=2


Information 2021, 12, 76 2 of 20

In some cases, these processes lead to a decrease in the QoS requirements. To ensure
the required QoS in LoRa networks’ design, it is necessary to resort to various methods
to guarantee the sufficiency of the relevant resources, such as reducing the service area of
LoRa gateways, increasing their number, and maximizing the throughput and capacity
of the LoRa networks [9]. It can be shown that the previous problems are highly related
and simultaneously affect QoS in LoRa networks performance. These problems should be
solved considering the peculiarities of the placement of end devices in the service area,
possibly considering their movements. When organizing LoRa end devices connection, it
is required to solve the problem of ensuring QoS traffic within the cluster and between
network elements and certain elements of clusters.

The clustering methods consist of selecting a certain number of clusters and selecting
a structure that provides the maximum possible traffic QoS. The clustering problem’s
solution is similar to the optimization problem’s solution in which a certain metric is
minimized (maximized). Such a metric may be throughput and channel capacity.

This paper analyzes the channel capacity between the cluster member (CM) and the
cluster head (CH). We develop a cluster throughput model to estimate the expected value
of the throughput capacity and develop clustering methods to make a rational choice of the
algorithm depending on the distribution of end devices, which allows obtaining a cluster
throughput capacity value close to the maximum. The main contributions of this paper are
summarized as follows:

• The channel capacity analysis between the CM and the CH showed its dependence on
the distribution of end devices. Remarkably, the results have shown that a larger average
throughput is achieved with a normal distribution than with a uniform distribution;

• A cluster throughput model has been developed to estimate the throughput capacity’s
expected value when forming the cluster of end devices, which allows using it in the
end devices’ clustering problems;

• Clustering methods have been developed to make a rational choice of the algorithm de-
pending on the distribution of end nodes, which allows obtaining a cluster throughput
capacity value close to the maximum.

The rest of the paper is presented in several sections: Section 2 presents the related
work and motivation. The LoRa technology overview is detailed in Section 3. Section 4
illustrates the problem statement. Section 5 presents the system description. Section 6
presents the clustering methods. Evaluation results based on two-common methods, K-
means and FOREL, are presented in Section 7. Section 8 offers the discussion, and lastly, in
Section 9, we make a conclusion and discuss future work.

2. Related Work and Motivation

Recent works on LoRa and Long Rang Wide Area Networking (LoRaWAN) have
mainly dealt with LoRa performance evaluation in terms of capability [10,11], perfor-
mance [12], lifetime [13], latency [14], and parameter setting [15,16] for industrial monitor-
ing applications. For example, in [7], a temperature monitoring application is proposed.
Dynamic Line Rating (DLR) for an Overhead Transmission Line (OTL) system is monitored
as it relies on the weather, temperature, and inclination measurements. Here, OTL moni-
toring is carried by a vision system, which is further transmitted by LoRa communication.
Communication is carried between the vision system and supervisory control and data
acquisition (SCADA) system. This paper illustrates that QoS has a vital function in the
received data reliability.

The paper in [17] aims to determine the scalability of the LoRa technology. For that,
a high density of sensors is deployed in IoT environments for smart city applications.
When the network scale is increased, the data transmission system has been affected.
This paper finalizes that the data transmission system can be improved by focusing on
optimal transmission policies, including the spreading factor (SF) allocation. Significantly,
SF allocation is affected by distance with gateway and other factors. With an increase in
network scale, a single gateway fails to ensure better data transmission efficiency.
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The work in [18] constructs an infrastructure that is capable of tracking and moni-
toring the environmental system. LoRa technology is used for tracking applications to
overcome energy-related limitations. As this system is planned to be implemented in
coastal applications, multiple gateways are deployed. With the multiple gateways, this
work attains the required level of connectivity and coverage in the network. Received
signal strength indicator (RSSI) is considered for SF allocation, and the data is encrypted
for security reasons.

The paper in [19] proposed an adaptive data rate (ADR) algorithm for improving
error performance in rough channels resulting in extending the range of the network,
the problem addressed by this paper to enhance the scalability, robustness, and fairness
between nodes of the network by reducing the number of the data messages in the up-
link direction as well as the medium access control (MAC) command messages in the
down-link direction by using ADR algorithm. ADR algorithm in this paper is effective in
stable channel conditions with a small-scale network, but the main motive of LoRa is in
highly variable conditions. Thus, ADR algorithm in this work does not include in large
complex networks.

To improve QoS in LoRa, the authors in [20] first derived the IoT node’s mathematical
model. From the mathematical model, the closed-form formula is derived to characterize
the node performance. Then, the performance is maximized by optimizing the performance
of IoT nodes. For formulating nodes performance, the Markov chain model is utilized.
Then, the optimal transmission policy is derived based on the mathematical model of the
node. The work in [20] considered both types of data, including normal data and emergency
data. For both data, performance is optimized by a genetic algorithm (GA) and simulated
annealing (SA) algorithm. Although normal and emergency types are considered, the same
fitness function is formulated for both types. However, different types of data require
different QoS levels, which is not achieved in this work. GA and SA update the parameters.
GA is complex in nature and difficult to handle scalable problems, while SA is very slow
and sensitive to even small changes in the input values. Thus, the optimal parameter
assignment for all packets by GA and SA is relatively tricky. Parameters are updated by
clustering algorithms, which are efficient since it learns the environment continuously.

Complementary to the presented related works, this paper focuses particularly on
throughput capacity in LoRa networks and provides a solution to maximize throughput
capacity value and build solutions to achieve the QoS requirements by developing cluster-
ing algorithms for distributing and managing LoRa gateways for smart city application
and IoT dense networks.

3. LoRa Technology Overview

In [21], the proprietary LoRa physical layer (PHY) technique is possessed via Semtech
Corporation. In [22], LoRa Alliance has specified LoRaWAN as the medium access control
(MAC) layer protocol. This section described more specific details of LoRa technology,
LoRaWAN, and the main characteristics in the following subsection.

3.1. LoRa Physical Layer

The LoRa modulation has several parameters: (i) spreading factor (SF); (ii) bandwidth
(BW); (iii) chirp spread spectrum (CSS); code rate (CR) [23]. In LoRa modulation, informa-
tion is transmitted in symbols, the length of which Ts depends on using (SF). Each symbol
is a sinusoidal signal, the frequency of which is cyclically shifted within a bandwidth (BW).

In LoRa modulation, the symbol duration Ts and bit rate (Rb) can be calculated as
following [24]:

Rb = SF ∗ BW
2SF ∗CR, (1)

Ts(s) =
2SF

bw
, (2)
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where SF refers to the spreading factor, and BW is bandwidth. The transmitted symbol rate
Rs is calculated as Rs(Symbol/ sec) = 1

Ts = bw
2SF . Thus, the chip rate Rc can be defined as

Rc(chips/ sec ) = Rs ∗ 2SF, since, as we previously stated, Rc = bw.
LoRa modulation also comprises a variable error correction scheme that enhances the

signal transmission robustness at the expense of redundancy. Therefore, the data nominal
bit rate, Rb, can be defined as the following [23]:

Rb(bps) =
SF ∗ bw

2SF

(
4

4 + CR

)
, (3)

where CR is for error correction and equal to 4/5, 4/6, 4/7, and 4/8.
Another critical parameter is the receiver sensitivity, which indicates the lowest power

level of the received LoRa signal that the receiver can detect and demodulate. Based on
the LoRa Semtech designer’s guide, the receiver sensitivity of LoRa can be calculated as
ρ(dBm) = −174 + 10logBW + NF + SNR.

Where ρ is the receiver sensitivity, NF is the receiver’s noise figure, and SNR is the
signal-to-noise ratio of the received signal. Table 1 indicates the nominal bit rate and the
receiver sensitivity for the bandwidth of 125 kHz. For the values in Table 1, the maximum
communication range of the LoRa is around 10 km.

Table 1. Transmission speed and receiver sensitivity from spreading factor (SF).

Bandwidth (kHz) SF Nominal Bit Rate Rb (bps) Sensitivity (ρ)(dBm)

125 6 9375 −118
125 7 5469 −123
125 8 3125 −126
125 9 1758 −129
125 10 977 −132
125 11 537 −134
125 12 293 −137

As a LoRa network operates at a frequency of 868 MHz, bandwidth of 125 kHz, the
payload of 8 bytes, and a preamble of 6, the payload of 8 bytes, and a preamble of 6, the
number of symbols in the physical layer data block can be specified as following [24]:

pqyloadSymNb = 8 + max
(

ceil
(

8PL− 4SF + 28 + 16CRC− 20H
4(SF− 2DE)

)
(CR + 4), 0

)
, (4)

where ceil (x) maps to the smallest integer that is greater than the value of x, SF is the
spreading factor, CRC is the cyclic redundancy check, H is the header mode, DE is the data
rate, CR is the coding rate, and PL is the number of payload bytes of the physical layer
block and can be determined based on the payload of the application layer FRM as

PL = 12 + FRM

where FRM is the payload of the application layer.
CRC denotes the payload’s existence, and it is fixed to either 0 or 1 to refer to the off

and on statuses. The header mode is also fixed to either 0 or 1; H = 0, when the explicit
header mode is utilized, and H = 1 when the implicit header mode is authorized.

The total duration of the LoRa frame Tframe can be calculated of the sum of the
transmission time of the preamble Tpreamble and the payload Tpayload as the following:

Tframe = Tpreamble + Tpayload. (5)

The preamble time can be calculated as follows:

Tpreamble =
(

npreamble + 4, 25
)
∗ Ts, (6)
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where npreamble is the programmable length of modem registers.
The payload duration can be calculated as follows:

Tpayload = payloadSymNb ∗ Ts. (7)

Summing up, the total frame duration can be calculated by adding both
Equations (6) and (7).

Tframe =
(

npreamble + 4, 25
)
∗ Ts + payloadSymNb ∗ Ts. (8)

Thus, the value of the frame duration changes with the different values of the spread-
ing factor. Table 2 indicates the different values of the up-link frame duration time at the
different values of the SF used by LoRa systems. Furthermore, Table 3 shows the same for
one confirmatory frame.

Table 2. Values of up-link frame duration at various values of SF used by Long Range (LoRa).

SF bw
(kHz)

Ts
(ms) npreamble

FRM
(byte)

PL
(byte) H CRC DE CR Payload-

SymNb
Tpreamble

(ms)
Tpayload

(ms)
TULframe

(ms)

6 125 0.51 6 8 20 0 1 0 1 48 5.25 24.48 29.73
7 125 1.02 6 8 20 0 1 0 1 43 10.5 43.86 54.36
8 125 2.05 6 8 20 0 1 0 1 38 20.99 77.9 98.89
9 125 4.1 6 8 20 0 1 0 1 33 41.98 135.3 177.28
10 125 8.19 6 8 20 0 1 0 1 33 83.97 270.27 354.24
11 125 16.38 6 8 20 0 1 0 1 28 167.94 458.64 626.58
12 125 32.77 6 8 20 0 1 0 1 28 335.87 917.56 1253.43

Table 3. Calculation of the transmission time of one confirmatory frame.

SF bw
(kHz)

Ts
(ms) npreamble

FRM
(byte)

PL
(byte) H CRC DE CR Payload-

SymNb
Tpreamble

(ms)
Tpay-load

(ms)
TULframe

(ms)

6 125 0.51 6 0 12 1 1 0 1 28 5.25 14.28 19.53
7 125 1.02 6 0 12 1 1 0 1 28 10.5 28.56 39.06
8 125 2.05 6 0 12 1 1 0 1 23 20.99 47.15 68.14
9 125 4.1 6 0 12 1 1 0 1 23 41.98 94.3 136.28
10 125 8.19 6 0 12 1 1 0 1 18 83.97 147.42 231.39
11 125 16.38 6 0 12 1 1 0 1 18 167.94 294.84 462.78
12 125 32.77 6 0 12 1 1 0 1 18 335.87 589.86 925.73

3.2. LoRaWAN MAC Layer

LoRaWAN is a network protocol designed for many LPWAN applications that use
unlicensed frequency bands for transmission. Its standard was published in 2015 and
describes the data link layer protocol, while the physical layer protocol is proprietary and
belongs to the transmitter manufacturer. Figure 1 shows the defined protocol of LoRaWAN
via the LoRa Alliance [22].

LoRaWAN devices are categorized into three classes: A, B, and C. Class A is primary,
based on the “asynchronous ALOHA” [25] access method, and is required to be supported
by all devices. All LoRaWAN sensors, when turned on, work according to class A and can
switch to other classes if such a physical possibility is available and upon agreement with
the server. Class B is based on the periodic distribution of service information from the
server and access to the channel on a schedule. This assumes that devices can consume
more power than Class A devices, which will allow them to listen to periodic messages
from the server. Class C is based on constant listening of the channel by sensors.
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A LoRaWAN network architecture contains end devices, network servers, and LoRa
gateways, as shown in Figure 2 [26]. The connection between the gateways and the server
is reliable and fast, and the gateways are connected to sensors wirelessly using LoRa
technology. The server is the coordinator of the network, and the gateways play the role
of repeaters between the sensors and the server—having received a frame via a wireless
connection, the gateway encapsulates the frame in an IP packet and transmits it to the
server and, similarly, transmits the packets from the server to the sensors.
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3.3. Calculation of Packet Arrival Rate

Packets from different end nodes arrive at the gateways in a Poisson process [27].
In turn, the gateway receives the packets and, as a response, transmits a confirmation
packet. Unconfirmed packets are re-transmitted, also forming a Poisson stream. Since a
huge number of nodes are located in the network, thus the probability that several nodes
transmit simultaneously is high. This probability can be calculated as follows:

The probability of the fact that during the transmission of one packet T in the air, there
are still k packets from other nodes is determined as

P(k) =
λkexp−λ

k!
, (9)

where P (k) is the probability of k packets in the air, transmitted in parallel, and λ is the
arrival rate of packets in time T. When the number of parallel packets on the air is zero, i.e.,
k = 0, there is no collision. The packet is successfully transmitted to the base station or the
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gateway. In this case, the probability of successful transmission of a packet, Psuccessful, is
defined as

Psuccessful = exp−2λ. (10)

Therefore, the probability of unsuccessful transmission, which is indicated as the loss
probability, can be calculated as

Ploss(λ) = 1− exp−2λ, (11)

where Ploss is the loss probability that also indicates the collision probability. The effect of
variations of the rate of arrival packets on the collision probability is illustrated in Figure 3.

Information 2021, 12, x FOR PEER REVIEW  8  of  22 
 

 

   

(a)  (b) 

Figure 3. Dependence of (a) the average number of packets C that is successfully transmitted and (b) the probability of 

losses from collisions P from the intensity λ. 

Thus, the average number of packets that are successfully transmitted during a time 

T, where the intensity λ can be determined as 

‐2λ
C = λ * P = λ * exppackets successful ,  (12)

where Cpackets refers to the average number of packets that are successfully transmitted. 

Figure 3 shows the effect of packetsʹ arrival rate on the average number of successfully 

transmitted packets. 

3.4. Calculation Gateway Capacity 

Consider a network LoRa operating at a frequency of 868 MHz and a bandwidth of 

125 kHz. The number of radio‐frequency channels Nf is equal to 8. It is assumed that the 

nodes transmit a packet of 8 bytes of payload and a preamble with six symbols with a 

transmission  rate  of  two  packets  per  hour.  The  admissible  probability  of  loss  due  to 

collisions is 2%. If two nodes or more transmit their packets simultaneously at the same 

SF spreading factor, a collision is likely to occur. 

The  total  transmission  time  of  one  packet  can  be  calculated  by  adding  the  total 

up‐link and down‐link times. The up‐link time is the packet transmission time from the 

node  to  the  gateway,  while  the  down‐link  time  is  the  transmission  time  of  the 

confirmation packet  from  the gateway  to  the node. For a  certain  spreading  factor,  the 

total transmission time of a packet, TSF, can be calculated as 

T = T + TSF SF‐UL‐pack SF‐DL‐pack
,  (13)

where TSF‐UL‐pack  is  the  total up‐link  time, and TSF‐DL‐pack  is  the  total down‐link  time. The 

LoRa gatewayʹs capacity can be defined as the total number of packets that the gateway 

serves per day. This may be represented by the throughput and can be calculated as 


N * 3600 * λENpack 2%

Throughput = N * P *SF SFf TSF

,  (14)

where NENpack is the total number of packets transmitted by one end node per day, λ2% is 

the rate of arrival of packets at a probability of packet loss Ploss of 2, Nf is the total number 

of radio channels deployed by the LoRa network, and PSF is the of using certain SF. Based 

on the results of Figure 3, the value of λ2% is equal to 0.01. 

Figure 3. Dependence of (a) the average number of packets C that is successfully transmitted and (b) the probability of
losses from collisions P from the intensity λ.

Thus, the average number of packets that are successfully transmitted during a time T,
where the intensity λ can be determined as

Cpackets = λ ∗ Psuccessful = λ ∗ exp−2λ, (12)

where Cpackets refers to the average number of packets that are successfully transmitted.
Figure 3 shows the effect of packets’ arrival rate on the average number of successfully
transmitted packets.

3.4. Calculation Gateway Capacity

Consider a network LoRa operating at a frequency of 868 MHz and a bandwidth of
125 kHz. The number of radio-frequency channels Nf is equal to 8. It is assumed that
the nodes transmit a packet of 8 bytes of payload and a preamble with six symbols with
a transmission rate of two packets per hour. The admissible probability of loss due to
collisions is 2%. If two nodes or more transmit their packets simultaneously at the same SF
spreading factor, a collision is likely to occur.

The total transmission time of one packet can be calculated by adding the total up-link
and down-link times. The up-link time is the packet transmission time from the node to
the gateway, while the down-link time is the transmission time of the confirmation packet
from the gateway to the node. For a certain spreading factor, the total transmission time of
a packet, TSF, can be calculated as

TSF = TSF−UL−pack + TSF−DL−pack, (13)
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where TSF-UL-pack is the total up-link time, and TSF-DL-pack is the total down-link time. The
LoRa gateway’s capacity can be defined as the total number of packets that the gateway
serves per day. This may be represented by the throughput and can be calculated as

Throughput = Nf ∗ ΣSFPSF ∗
NENpack ∗ 3600 ∗ λ2%

TSF
, (14)

where NENpack is the total number of packets transmitted by one end node per day, λ2% is
the rate of arrival of packets at a probability of packet loss Ploss of 2, Nf is the total number
of radio channels deployed by the LoRa network, and PSF is the of using certain SF. Based
on the results of Figure 3, the value of λ2% is equal to 0.01.

4. Problem Statement

More cluster members should be expected to result in more significant savings in end
devices’ network resources. However, the number of end devices in a cluster is limited
by the CH throughput and traffic generated and their physical location relative to the CH.
Due to the radio channel’s peculiarities, the channel resource between the cluster member
and the CH may be different for different members or CH and the characteristic of the
expected channel quality for the cluster members.

We assume different scenarios and selection criteria choices, both cluster members
and CH. For example, we can follow the maximum throughput, uniform distribution
among the cluster members or the maximum cluster members, and consider or predict
users’ traffic intensity. To choose one or another scenario, we need to know the resulting
solution’s characteristics.

We will characterize the cluster by the throughput between the cluster members
and CH and the achievable data transfer rate. We will analyze the throughput of cluster
members with different laws of end device distribution. Different clustering methods can
provide different solutions in terms of the distribution of end devices within the cluster.

5. System Description

Building IoT applications provide a high-quality environment due to the massive
amount of data collected through many sensors. Such sensors installed in monitoring sites
will collect and analyze information about the air level, soil and water pollution; noise level,
the level of reservoirs and rivers. All the information received from these heterogeneous
applications generates a single LoRa network to provide a high QoS for all traffic types
within the LoRa network. The QoS is measured as the packet reception ratio (PRR) function
and throughput of the LoRa network. Thus, we must characterize the throughput value
made in terms of the QoS. We will consider the throughput as an objective metric among
the network elements tij. In our study, we also considered the head node (HN) of the cluster
has already been determined without considering the clustering methods. We assumed the
HN communication zone is a disk with a radius R, centered at the CH location, as shown
in Figure 4.
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We considered LoRa technology as a communication method among end nodes. We
have to specify the nature of dependence tij on the network parameters. On the way
of signal propagation to the receiver from the transmitter occurs environmental energy
absorption, whereby the output signal at the receiver is significantly reduced, i.e., signal
attenuation occurs. There are different attenuation models, taking into account various
factors such as distance, carrier frequency, and obstacles in the path of signal propagation.
One common attenuation model is described as

A(d) := 20 log
(

λ

4πd

)
(dB). (15)

The signal strength depends on the power of the transmitter. The majority of LoRa
equipment has 25 mW transmitters. To describe the transmitter power, a relative value
(power level) is often used, with the power of 1 mW, in decibels, defined as

Ptx := 10 log 10
(

P
10−3

)
(dBm), (16)

where P is the transmitter power (W).
The signal power at the receiver input will be determined as follows:

Prx(d) = Ptx −A(d), (17)

where Prx is the transmitter output signal power, and A(d) is the signal loss from the
distance that can be calculated according to the formula (15). Using the data from Table 4
and Formula (17), we can plot a graph of the dependence of the data rate on the distance,
as shown in Figure 5. The signal/noise + noise (SINR) and SNR values are the dependent
data transmission rate on signal power.

Table 4. Dependence LoRa gateway’s range on the receiver’s sensitivity when using the ITU-RP.1238-
5 attenuation model [28].

SF 6 7 8 9 10 11 12

RSSI (dBm) −118 −123 −126 −129 −132 −134 −137
Bitrate (bit/s) 9375 5469 3125 1758 977 537 293
Distances (m) 270 333 410 506 623 716 824
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Every parameter determined above impacts the channel throughput and can be chosen
as a metric in a clustering task. In this work, we analyze throughput in a cluster.
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In Figure 5, the throughput value depends on receiving and, in practice, has consider-
able dispersion.

In urban conditions for indoor application where there is a dense building, it is
possible to apply the decay model ITU-RP.1238-5 for premises:

L(d) = 20 log(f) + Nlog(d) + Lf(n)− 28, (18)

where d is the distance in (m); n = 33—remote power loss factor; f is the center frequency
of the signal (MHz); Lf (n) = 24 is the loss factor due to the passage of the signal through
the obstacle (dB).

Considering the attenuation model, we depict the throughput dependency on the
distance by the Gaussian function (Figure 5) [29].

t̂(d) = t̂(L(d)), (19)

t(d) =


0 d < 0

tmax exp−
d2

2c2 0 ≤ d ≤ R

0 d > R

, bit/s, (20)

where d is the distance (m); tmax is the maximum data transmission rate (bit/s); c is the curve
half-width (m); R = arg{ t̂(d) = 0 } (m) is the radius from CH to HN communication zone.

Since the throughput, according to the given model, depends on the distance, which to
an arbitrarily chosen point should be considered as a random variable, then the throughput
is a distribution function t can be calculated as

F(t) =
x

Dt

f(x, y)dxdy, (21)

where f(x, y) refers to the users distribution function on a dick with radius R, Dt is the
range of t values.

The probability density t is defined as

f(t) =
dF(t)

dt
. (22)

The mathematical expected value t is

M(t) =
t0∫

0

t·f(t)dt. (23)

In our clustering model, we consider different types of user distributions, as discussed
in Sections 5.1 and 5.2.

5.1. Uniform Distribution

We will presume that end nodes’ uniform distribution is specified in the service area
with a circle S and radius R (S = πR2). Thus, end nodes are distributed over the interval
0 ≤ r ≤ R. The radius of the circle R can be defined as a solution to the following equation:

R = arg{ t̂(d) = 0 } (M). (24)

The probability density function f(r), in this case, is constant and will be close to the
uniform distribution for the distribution of end nodes inside the circle S:

f(r) =
1
S
=

1
πR2 . (25)
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For the functional dependence of the throughput t on the distance between gateways
has the form (20), that is

t(d) = tmax exp−
d2

2c2 . (26)

We can express from (20) d = c
√
−2 ln

(
t

tmax

)
(M).

According to (21), throughput distribution function F(t) on a circle with radius R will
be determined as

F(t) =
2π∫
0

R∫
c
√
−2 ln ( t

tmax )

1
S rdrdθ = 1

2πR2 r2

∣∣∣∣∣∣
R

c
√
−2 ln

(
t

tmax

) · 2π =

= 1
R2

(
R2 + 2c2 ln

(
t

tmax

))
= 1 + 2c2

R2 ln
(

t
tmax

) (27)

Based on (22), the probability density function of the throughput can be shown as

f(t) =
dFt(r)

dr
=

d
dr

(
1 +

2c2

R2 ln
(

t
tmax

))
=

2c2

R2t
. (28)

Probability density functions and throughput distribution are shown in Figure 6.
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For the LoRa standard, the mathematical expectation of the throughput M (t) in the
communication zone between end nodes according to (23) will be calculated as

M(t) =
tmax∫

tmin

t · 2c2

R2t
dt = 2 · c2

R2 (tmax − tmin) bit/s. (29)

When approximating the throughput function on the distance by using a uniform
distribution of end nodes in the communication zone, the mathematical expectation of the
throughput for the LoRa standard is 2654 bit/s.

5.2. Normal Distribution

Assuming that end nodes are randomly distributed in the communication area, then
the distribution of end nodes over the communicated area is random, and a random value
can describe their coordinates in each point on the surface, i.e., such a distribution can be
given by a pair of random, independent coordinates x and y. Then the F(t) of the end nodes
distribution can be defined as the joint distribution function of the random values x and y.
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In this case, we will consider the normal distribution of end nodes with a scattering center
at the center of the circle representing the communication area. Equation (30) defines the
density distribution in both coordinates (x and y):

f(x, y) =
1

2πσ2 exp−
x2+y2

2σ2 , where
√

x2 + y2 = r, (30)

where σ is the standard deviation (RMS).
For throughput analysis, we will assume that the probability of a point falling inside

the circle of radius R is equal to 1, i.e., we will only consider users within the circle. The law
of normal distribution is unlimited in both coordinates x and y. This assumption introduces
a certain error; this error, a truncated normal distribution was used, which is bounded in
both coordinates by the radius R. This distribution cannot be normal since it is bounded.
The distribution of users within the communication area described by a circle S can be
described by the “truncated normal” distribution [29].

f(x, y) = K(σ, R) · 1
2πσ2 exp−

x2+y2

2σ2 , (31)

where
K(σ, R) =

1
s

SR

1
2πσ2 · exp−

x2+y2

2σ2 dxdy
. (32)

Here SR denotes the service area bounded by the circle with radius R.
Based on the obtained expressions, we find the F(t) inside the circle with radius R. For

this, from (19) and (20), we obtain d = c
√
−2 ln

(
t

tmax

)
.

Then from (20), according to (31) and (32), the throughput distribution function can
be determined as

F(t) = K(σ, R)
2π∫
0

R∫
c
√
−2 ln ( t

tmax )

1
2πσ2 · exp−

r2

2σ2 · r drdθ =

= K(σ, R) 1
2π · exp−

r2

2σ2 2π

∣∣∣∣∣∣∣∣
R

c
√
−2 ln

(
t

tmax

) =

= K(σ, R)

((
t

tmax

) c2

σ2 − exp−
R2

2σ2

)
.

(33)

Based on the obtained expression (33), the throughput probability density, according
to (34), will be determined as

f(t) = K(σ, R)
c2

σ2tmax

(
t

tmax

) c2

σ2−1
. (34)

Figure 7 shows the probability density and throughput distribution function results.
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From the expression for the throughput probability density in (34), an expression for
the mathematical expectation of the throughput value can be defined as

M(t) =
t0∫

0

t · f(t)dt = K(σ, R)
c2

σ2 + c2

tmax − tmin

(
tmin

tmax

) c2

σ2

. (35)

For the LoRa standard, the value of M (t) at σ of RMS 100, 200, 250 m takes the values
of 8520, 6680, and 5750 bps, respectively.

6. Clustering Method Selection

We will consider a network of 20 thousand nodes in a field with 10 km sides. The
coordinates of the nodes are distributed randomly according to a uniform distribution
law. The maximum range of the lock is 824 m (from Table 4). We use two clustering
methods [30] to the specifics of the projected communication network described by radio
signal attenuation models and the distribution of subscriber traffic on the served area the
previous section. The formation of a cluster consists of choosing a group of end devices and
distributing their functionality within the cluster. The solution of the clustering problem
is similar to the solution of the optimization problem in which some metric d(m, pm) is
minimized (maximized), which characterizes the "distance" between a cluster member and
the cluster center pm = 1

|c| ∑
m∈c

m. Throughput, distance, and energy efficiency can act as

such a metric. A dynamic programming method is used for the solution, which minimizes
d2(m, pm) across all clusters.

C = min ∑
c∈C

∑
m∈c

d2(m, pm). (36)

For the formation, it is necessary to determine the method for finding an optimal
solution. The QoS for traffic within the cluster between the CH and the network depends
on the throughput of the channels between the cluster members and between the CH and
LoRa Gateway and the traffic intensity generated by end devices.

Clustering algorithms K-means Algorithm 1 and FOREL Algorithm 2 are used to
optimize communication network capacity.

{xi, yi} = argmin
xi,yi

k

∑
j=1

nj

∑
r=1

d
(
Cj, ej,r

)
, i = 1 . . . k, (37)
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where d
(
Cj, ej,r

)
is the distance between the center of mass of the j-th cluster Cj and the r-th

element of the j-th cluster ej,r;
When interpreting K-means algorithm as an optimization problem, its objective func-

tion can be expressed as follows:

M =
k

∑
i=1

∑
xj∈Si

(
xj − µi

)2, (38)

where k is the number of clusters;
Si—defines a set of objects (elements) of the i-th cluster;
µi—point of the center of mass of the i-th cluster (coordinates of the point of the center

of mass);
xj—object of the j-th cluster (object coordinates).

Algorithm 1. K-means

Require: The k is a number of clusters, C1, C2, . . . .CK points that corresponds to the devices, CMJ
j = 1,...,k—centers of clusters (mass centers).
Input: Set K random points I = {I1, I2, . . . , In} Output: Centers (C1, . . . .CK) Clist List of Clusters.
Procedure: Mode selection and K-Means clustering Algorithm.
Choose K initial centers CM J =m1m2, . . . , mk.
For: CJ < = CMJ do
Set new centers of mass m̂1, m̂2, . . . , m̂k /*using Equations (39) or (40) */
If m̂1, m̂2, . . . , m̂k = m1m2, . . . , mk
Then
Set m1 is new centers of mass /*using Equations (39) or (40) */
Each object Xi is assigned to the nearest Ci; for the resulting groups, the centers of mass are
calculated.
Transition CM (CI = CM).
End for
fix Cj as the centers of the masses of the clusters, and Xi as the elements of the J cluster
End procedure.

Algorithm 2. FOREL

Require: The R is a communication rage (radius of the service area), the cluster number i = 1. C1,
C2, . . . .CK points that corresponds to the devices, CMJ j = 1, ..., k—centers of clusters (mass
centers).
Input: Set K random points I = {I1, I2, . . . , In}.
Output: Centers (C1, . . . CK) Clist List of Clusters.
Procedure: Mode selection and FOREL clustering Algorithm.
Choose K initial centers CM J = m1m2, . . . , mk.
For: True do
for all Xi points at a distance of CI < = R calculate the center of mass (CM)/*using equations (39)
or (40) */
while: Ci = CM
Transition CM (CI = CM).
End while
fix Cj as the centers of the masses of the clusters, and Xi as the elements of the J cluster
End for
End procedure

The difference
(
xj − µi

)
is the Euclidean distance between the cluster object and the

center of the given cluster’s mass.
When using K-means algorithm for two-dimensional space, i.e., when each of the

objects has two characteristics (x and y) coordinates, each object can be considered a point
on the flatness, characterized by its two coordinates (xj, yj).
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The coordinates of the center mass of the j-th cluster is defined as the average value
for each of the coordinates:

Cj =
{

xj, yj

}
, xj =

1
nj

nj

∑
r=1

xj,r, yj =
1
nj

nj

∑
r=1

yj,r, (39)

where nj is the number of elements in the j-th cluster xj,r, yj,r are the coordinates of the r-th
element of the j-th cluster.

Along with coordinates, each object can be characterized by a certain numerical
parameter mj. Taking into account the last coordinates of the center mass of the cluster will
be defined as the coordinates of the center of mass of a flat figure as

x(µ)i =
1

m(Σ)
i

ni

∑
j=1

mjxj, y(µ)
i =

1

m(Σ)
i

ni

∑
j=1

mjyj, m(Σ)
i = ∑

j∈Si

mj. (40)

The fundamental difference between the FOREL method and the K-means method is
that the FOREL algorithm does not specify the number of clusters but assumes specifying
the cluster size R.

When using this algorithm, expression (37) is minimized. The coordinates of the
centers of mass of clusters are determined, which can be taken as positions for placing
gateways.

7. Evaluation Results

Using the FOREL and K-means clustering methods, a network consisting of 25 clusters
was obtained as a result of modeling. The simulation results for both clustering methods
are illustrated in Figure 8a FOREL and Figure 8b K-means.
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To compare the two considered clustering methods for LoRa networks, we consider
the distribution of cluster members relative to the cluster’s center as the comparison
metric. Distribution is obtained by simulation modeling. For center-of-mass, we used the
following expression:

s = gmj −Cmi, i = 1 . . . |C|, j = 1 . . . ni, mj ∈ ci, (41)
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where Cmi, is the center-of-mass coordinate of cluster i; gmj is the coordinate of mj element
of ci cluster; ci is the cluster i; gmj is the element j of cluster i; ni is the number of elements
within the cluster i, and |C| is the number of clusters.

It can be seen from the above results that the resulting clusters differ significantly in
shape and size. This solution is quite obvious since the clustering problem with a high
density of users was close to covering the service area with several circles (the minimum
number of circles). Naturally, suppose the circles have the same radius. In that case, it is
impossible to avoid their intersections, which ultimately leads to the formation of clusters
of different shapes with different numbers of elements.

Figure 9 shows the relative distribution of nodes in the considered cluster for both
considered clustering algorithms. The vertical axis in Figure 9 represents the number
of nodes, while the horizontal axis indicates the relative distance between nodes and
the cluster center. The negative value of the relative distance in Figure 9 shows that the
nodes are located at the right side of the cluster center. As indicated in Figure 9, the main
distribution of the nodes is located around the cluster center for both clustering methods.
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Thus, it is possible to determine the average number of nodes in each SF zone; accord-
ing to Table 4, Figure 10 indicates the average number of nodes in each SF zone for various
clustering methods.

Information 2021, 12, x FOR PEER REVIEW 18 of 22 
 

 

  
(a) (b) 

Figure 9. Relative distribution of nodes in the clusters for (a) FOREL clustering method and (b) K-mean clustering method. 

Thus, it is possible to determine the average number of nodes in each SF zone; ac-
cording to Table 4, Figure 10 indicates the average number of nodes in each SF zone for 
various clustering methods. 

  
(a) (b) 

Figure 10. The average number of nodes in different SF zones (in percent, %) for (a) K-mean clustering method and (b) 
FOREL clustering method. 

We calculate the capacity of the LoRa gateway for the two clustering methods dis-
cussed above, where the nodes are distributed differently by the area of the radio coverage 
zones. For FOREL = {45.96%; 8.54%; 9.47%; 11%; 12.34%; 6.7%; 5.99%} and for K-means 
{53.75%; 11.25%; 11.76%; 11.24%; 8.7%; 2.3%; 1.0%} as shown in Figure 11. 

Figure 10. The average number of nodes in different SF zones (in percent, %) for (a) K-mean clustering method and (b)
FOREL clustering method.



Information 2021, 12, 76 17 of 20

We calculate the capacity of the LoRa gateway for the two clustering methods dis-
cussed above, where the nodes are distributed differently by the area of the radio coverage
zones. For FOREL = {45.96%; 8.54%; 9.47%; 11%; 12.34%; 6.7%; 5.99%} and for K-means
{53.75%; 11.25%; 11.76%; 11.24%; 8.7%; 2.3%; 1.0%} as shown in Figure 11.
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The LoRa gateway’s capacity can be calculated for FOREL and K-means clustering
methods as shown in using Equation (14). Table 5 indicates this value and the total number
of nodes.

Table 5. Calculation of the capacity of the LoRa gateway.

Clustering
Method NENpack (Per Day) λ2% Throughput

Number of
Connected

Devices to a
Gateway

FOREL 24 0.01 79.223 3300
K-means 24 0.01 92.292 3845

Thus, to build a LoRa network that handles 20,000 end devices with the above-
introduced characteristics, five to six gateways are needed to deploy the clustering algo-
rithm, either FOREL or K-means.

The experiments showed that with a huge number of clusters, the K-means method
allows obtaining results with a normal distribution of nodes across clusters and a higher
throughput than the FOREL method. The network nodes are uniformly distributed in the
service area.

By applying the above-proposed model, the average throughput value with a normal
distribution is 8520 bit/s and with a uniform distribution is 2654 bit/s. Thus, to further
assess the effectiveness of our solution, we compare our model with the literature. Table 6
describes a comparison of our proposed model with the literature for throughput values.
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Table 6. Comparison of our proposed results with the literature for throughput values.

Existing Work Throughput (t) bit/s Uniform
Distribution

Throughput (t) bit/s Normal
Distribution

[19] 2122 4522
[20] 2206 4653

[Proposed] 2654 8520

8. Discussion

Before obtaining the results achieved, clustering is to save network resources and
improve the QoS. In both cases, the criterion for forming the cluster should take into
account the available resources, transfer traffic from end nods, and QoS requirements.

The results presented in the previous section analysis of the channel capacity between
the CM and the CH showed its dependence on the distribution of end nodes. In particular,
the results showed that a larger average throughput value is achieved with a normal
distribution than with a uniform distribution.

Cluster analysis algorithms can be applied to find partial solutions to selecting the
coordinates of access points, considering the nature of the distribution of traffic sources
over the served territory and CH nodes’ choice.

Applying the algorithms of cluster analysis, necessary to the specifics of the projected
communication network, which is described by models of radio signal attenuation and the
model of distribution of subscriber traffic on the served area, thus the solutions, which are
obtained in the previous section as a result of cluster analysis application, are the partial
solutions of the optimization problem in communication network capacity.

Simulation of network clustering based on FOREL and K-means algorithm in the
above section showed that these algorithms allow forming clusters from local groups of
end nodes. The cluster size is given by the parameter R and the number of clusters selected,
taking into account the availability and quality of communication.

To form clusters of LoRa end devices based on the bandwidth of the channels between
the HN and CM can be used known methods of clustering objects. It is possible to use
clustering methods based on finding the centroid, evaluating connectivity, density.

Our simulation results of two centroid clustering methods showed that the law of
elements distribution in clusters depends on the number of clusters. With a relatively huge
number of clusters, the service area’s distribution elements are close to the normal law and
relatively small to the uniform law.

The clustering method and parameters’ choice is reflected in the distribution of cluster
elements and the throughput between cluster elements and HN.

9. Conclusions and Future Work

This paper proposed a novel cluster throughput model to estimate the expected
throughput value in clusters of end devices built using LoRa networks. In contrast to
known models, it allows for the description of the throughput distribution function in a
cluster of end devices.

We developed clustering algorithms using dense LoRa-based IoT networks that allow
clustering of end devices according to the criterion of maximum served traffic. The algo-
rithms are built based on two-common methods, K-means and Forel. In contrast to existing
methods, the developed method provides the maximum value of served traffic in a cluster.

Results highlight our solution’s effectiveness that our proposed model achieved a larger
average throughput value with a normal distribution than with a uniform distribution.

Future work shall consider a novel clustering algorithm for achieving a higher level of
flexibility so that the network will support the insertion and cutting of network devices and
shall consider more QoS metrics. Furthermore, the LoRa network will have the flexibility
level that enables the set-up of new applications.
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