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Abstract: Out‑of‑vocabulary (OOV) words are the most challenging problem in automatic speech
recognition (ASR), especially for morphologically rich languages. Most end‑to‑end speech recog‑
nition systems are performed at word and character levels of a language. Amharic is a poorly
resourced but morphologically rich language. This paper proposes hybrid connectionist tempo‑
ral classification with attention end‑to‑end architecture and a syllabification algorithm for Amharic
automatic speech recognition system (AASR) using its phoneme‑based subword units. This algo‑
rithm helps to insert the epithetic vowel እ[1], which is not included in our Grapheme‑to‑Phoneme
(G2P) conversion algorithm developed using consonant–vowel (CV) representations of Amharic
graphemes. The proposed end‑to‑end model was trained in various Amharic subwords, namely
characters, phonemes, character‑based subwords, and phoneme‑based subwords generated by the
byte‑pair‑encoding (BPE) segmentation algorithm. Experimental results showed that context‑depen‑
dent phoneme‑based subwords tend to result in more accurate speech recognition systems than
the character‑based, phoneme‑based, and character‑based subword counterparts. Further improve‑
ment was also obtained in proposed phoneme‑based subwords with the syllabification algorithm
and SpecAugment data augmentation technique. The word error rate (WER) reduction was 18.38%
compared to character‑based acoustic modeling with the word‑based recurrent neural network lan‑
guage modeling (RNNLM) baseline. These phoneme‑based subword models are also useful to im‑
prove machine and speech translation tasks.

Keywords: Amharic; automatic speech recognition; connectionist temporal classification with atten‑
tion; natural language processing; low resource language; out‑of‑vocabulary

1. Introduction
The use of conventional hidden Markov models (HMMs) and deep neural networks

(DNNs) of automatic speech recognition (ASR) systems in the preparation of a lexicon,
acoustic models, and language models results in complications [1]. These approaches also
require linguistic resources, such as a pronunciationdictionary, tokenization, andphonetic
context dependencies [2]. In contrast, end‑to‑end ASR has grown to be a popular alterna‑
tive to simplify the conventional ASR model building process. End‑to‑end ASR methods
depend on paired acoustic and language data, and train the acoustic model with a single
end‑to‑end ASR algorithm [3]. As a result, the approach makes it feasible to construct
ASR systems. The end‑to‑end ASR system directly transcribes an input sequence of acous‑
tic features (F) to an output sequence of probabilities for tokens (p) such as phonemes and
characters [4].
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Various types of end‑to‑end architectures exist for ASR [5,6], such as connectionist
temporal classification (CTC) [7], recurrent neural network (RNN) transducer [8], attention‑
based encoder‑decoder [9], and their hybrid models [10,11]. The CTC method is used
to train recurrent neural networks (RNNs) without knowledge of the prior alignment be‑
tween input and output sequences of different lengths. The CTC model can also make
a strong assumption between labels, and the attention‑based model trains a decoder de‑
pending on the previous labels. End‑to‑end speech recognition systems are extensively
used and studied formultiple tasks and languages, such as English,Mandarin, or Japanese.
Considering a hybrid system is useful due to the advantage of the constrained CTC align‑
ment in a hybrid CTC‑attention end‑to‑end ASR system [6,12,13].

Most languages have insufficient data because obtaining speech data with their cor‑
responding transcribed text is costly [14]. In contrast, automatic speech recognition (ASR)
requires a large quantity of training data to perform recognition well [15]. In addition
to low data resources, out‑of‑vocabulary words are also a significant challenge in auto‑
matic speech recognition systems. End‑to‑end ASR methods typically rely only on paired
acoustic and language data. Without additional language data, they can suffer from data
out‑of‑vocabulary (OOV) issues [16].

Our proposed CTC‑attention end‑to‑end model is applied to the Amharic language,
which ismorphologically rich but poorly resourced [17]. It is the official working language
of the Federal Democratic Republic of Ethiopia. This language is one of the Semitic lan‑
guages [18] and one of the phonetic languages spoken in easternAfrica. It is also the second
most widely spoken Semitic language in the world following Arabic [19]. Amharic scripts
originate from the Ge’ez alphabet, which lacks capitalization [20]. These Amharic script
graphemes are a combination of a consonant and a vowel. Hence, Amharic generally has
275 characters/graphemes composed of consonant–vowel (CV) syllables [21]; samples of
Amharic graphemes are shown in Appendix A. The Amharic language mainly consists of
seven vowels [18], namely ኧ[ә], ኡ[u], ኢ[i], ኣ[a], ኤ[e], እ[1], ኦ[o]. This language has 32 con‑
sonants [18,22] that are categorized based on their articulation stops (14), fricatives (8),
affricatives (3), nasals (3), liquids (2), and glides (2). These consonants are indicated in
Appendix B with their corresponding International Phonetic Alphabet (IPA) representa‑
tions.

Most Amharic speech recognition studies have been conducted using conventional
HMM [22–24] and DNN [25] approaches. In the DNN approach, convolutional neural
networks (CNNs) and RNNs with long‑short term memory (LSTM) have been used [25].
A training speech corpus of 40.2 h collected by the IntelligenceAdvancedResearch Projects
Activity (IARPA) Babel project was used in both CNN and RNN techniques [25]. The OOV
percentage was 11.7% and the minimum word error rate (WERs) registered were 42.1%
and 42.0% using LSTM and CNN techniques, respectively.

Based on our reading, Amharic language speech recognition using the end‑to‑end
system has not yet been reported. Among end‑to‑end ASRmethods, considering a hybrid
end‑to‑endASR system is useful to our study due to the advantage of the constrained CTC
alignment and attentionmechanism trains based on the context of previous labels [6,12,13].

In this work, we focus on the OOV problem in speech recognition with different
Amharic language units. CTC‑attention end‑to‑end speech recognition is also proposed
for modeling these units. Among language units, characters, phonemes, and subword
units are directly used for acoustic modeling. Subword units are sequences of characters,
phonemes, and phonemeswith an epenthesis vowel inserted by a syllabification algorithm.
These subwords are generated by a byte‑pair‑encoding (BPE) segmentation algorithm. Al‑
though a CTC‑attention model with phoneme‑based subword modeling is explicitly re‑
quired for Amharic language, it has not yet been explored, and a syllabification algorithm
could make a vital contribution to Amharic end‑to‑end speech recognition systems. The
main contributions of this paper are summarized as follows:
1. In addition to Amharic reading speech of the ALFFA (African Languages in the Field:

speech Fundamentals and Automation) dataset [22], we prepared additional speech
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and text corpora, which cover various data sources. These data provide good cover‑
age of the morphological behavior of Amharic language.

2. CTC‑attention end‑to‑end ASR architecture with phoneme mapping algorithms is
proposed to model subword level Amharic language units to resolve the problem of
OOV words in Amharic automatic speech recognition (AASR).

3. We explored the effects of OOV words by considering the most frequently occurring
words in different vocabulary sizes, namely, 6.5 k, 10 k, 15 k, and 20 k, in character‑
based and phoneme‑based end‑to‑end models.

4. Evaluating and analyzing the speech recognition performance was performed using
various meaningful Amharic language modeling units such as phoneme‑recurrent
neural network language modeling (RNNLM), character‑RNNLM, and word‑
RNNLM. These language models help to explore the effects of context‑dependent
and independent RNNLMs in end‑to‑end speech recognition models.

5. The performance speech recognition results were compared and better results were
found in phoneme‑based subwords generated by the BPE segmentation algorithm.
These phonemes include the Amharic epithetic vowel እ[1] inserted by syllabification
algorithms during preprocessing (phoneme mapping) of our dataset.
The remainder of the paper is organized as follows: Related studies of end‑to‑end

ASR with various subword units are discussed in Section 2. A description of the dataset
used in the current study and its preprocessing, and an overview of the proposed end‑to‑
end speech recognition approaches, is provided in Section 3. Experiment parameter setups
and results are noted in Section 4, and a discussion of the results is provided in Section 5.
Conclusions and future work are presented in Section 6.

2. Related Work
To date, various studies of end‑to‑end speech recognition systems have been used in

various languages and corpora. In this section, we review end‑to‑end ASR studies con‑
ducted based on character‑based, phoneme‑based, and subword‑based models.

Inaguma et al. [26] used acoustic‑to‑word (A2W) and acoustic‑to‑character (A2C) end‑
to‑end speech recognition systems for OOVdetection. TheA2Cmodelwas used to recover
OOV words that are not covered by the A2W model through accurate detection of OOV
words. To resolve OOV words, external RNNLM was developed in different standard
vocabulary‑sized Switchboard corpora (SBCs) and further improvement was achieved by
recovering OOV words.

Boyer and Rouas [12] used CTC, location‑based attention, and hybrid CTC‑attention
for character and sub‑words generated by subword segmentation algorithms as acoustic
modeling units. RNNLMwas used in French language units, such as characters, subword
units, and words of 50 k vocabulary size. Finally, minimum character error rates (CERs)
andWERs were obtained in hybrid CTC‑attention with character modeling units and sub‑
word modeling units, respectively.

Hori et al. [3] investigated an end‑to‑end speech recognition approach with different
word‑basedRNNLMwith vocabulary sizes, namely 20K, 40K, and 65K of the LibriSpeech
and Wall Street Journal (WSJ) corpora. Zeyer et al. [27] compared the grapheme‑based
and phoneme‑based output labels via commonly used CTC and attention‑based end‑to‑
end models. Single phonemes and multiple phonemes without context and with BPE to
obtain phoneme‑based subwordswere used, respectively. This experimentwas conducted
on a 300 h Switchboard corpus. The results showed that phoneme‑based models and the
grapheme‑based model were competitive.

Wang et al. [28] used phoneme‑based subwords found in byte‑pair‑encoding (BPE)
for end‑to‑end speech recognition as modeling units. They used a pronunciation dictio‑
nary to convert transcriptions into phoneme sequences by maintaining the word bound‑
aries and trained the hybrid CTC‑attention acoustic model using phoneme BPE targets.
Multi‑level language model‑based decoding algorithms were also developed based on a
pronunciation dictionary. Experimental results show that phoneme‑based BPEs tend to
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yield more accurate recognition systems than the character‑based counterpart on Switch‑
board corpora.

Xiao et al. [29] used a hybridCTC‑attention end‑to‑endASR system tomodel subword
units obtained by the byte‑pair‑encoding (BPE) compression algorithm. These subword
models can model longer contexts and are better able to resolve the OOV problem on the
LibriSpeech database than a character‑based system. The subword‑based CTC‑attention
showed a significant improvement of 12.8% WER relative reduction over the character‑
based hybrid CTC‑attention system.

Yuan et al. [30] used a hybrid CTC‑attention model for speech recognition purposes.
A byte‑pair‑encoding (BPE) compression algorithm was also used for generating the sub‑
word units. Attention smoothing was used to acquire more context information during
subword decoding. The subword‑based models resolved the OOV problem on the Lib‑
riSpeech corpus.

Schuster and Nakajima [31] used closed dictionary and infinite dictionary models for
Korean and Japanese voice searches with Google. They also addressed the challenges of
scoring results in multiple script languages because of ambiguities due to the existence
of many pronunciations per character, especially in the Japanese Unicode. Finally, the
infinite vocabulary based on theword‑piece segmenter resulted in a systemwith relatively
low complexity to maintain and update.

Huang et al. [32] explored RNN‑transducer, CTC, and attention‑based end‑to‑end
models. Word, character, and word‑piece modeling units were used. All end‑to‑end ex‑
perimental results showed that word‑pieces achieved better results than words and char‑
acters. Label smoothing and data augmentation techniques were also used to improve the
performance of the recognition on Switchboard/CallHome databases.

Das et al. [33] proposed aCTC end‑to‑endmodel combinedwith attention, self‑attenti‑
on, hybrid, and mixed‑unit of word and letters to resolve the hard alignment and OOV
problems of the word‑based CTCmodel. These word‑based CTCmodels only address fre‑
quently occurring words and the remaining words are tagged as OOV. These OOV prob‑
lems are solved in a hybrid CTC by treating words as whole word units and OOVs are
decomposed into a sequence of frequent words and multiple letters.

Zhang et al. [34] proposed a hybrid ASR system of CTC training and word‑pieces.
They simplified the conventional frame‑based cross‑entropy training using an engineering
pipeline in addition to recognition accuracy. They also used word‑piece modeling units to
improve runtime efficiency because word‑pieces were able to use a larger stride without
losing accuracy.

In general, the above literature usedword‑pieces [32–34] or subwords to resolve OOV
problems in each corpus, and most of these studies used CTC‑attention ASR modeling.
The subword units were words, characters, phonemes, and subwords generated by the
BPE segmentation algorithm. The BPE segmentation algorithm was also used to obtain
subwords of character and phoneme sequences as modeling units. The minimum word
error rate was registered using phone‑based subwords [27–30]. In some studies, various
vocabulary sizes were also used to explore the OOV of words [3,26]. Studies on Amharic
ASR systems were also conducted using conventional ASR systems [22,24,25] and with
Amharic syllabification [23]. In the current research, we extended our Amharic ASR study
in an end‑to‑end method with all subword units. In addition to subword unit modeling,
we considered the epithetic vowel እ[1], which is found in speech utterance but not in the
transcribed Amharic text, during Amharic syllabification. Including the epithetic vowel
እ[1] in phoneme‑based subwords has not yet been explored in CTC‑attention end‑to‑end
ASR modeling, thus making our study unique.
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3. Dataset and Methods
3.1. Dataset and Data Pre‑Processing
3.1.1. Dataset

We used the Amharic reading speech database collected for speech recognition pur‑
poses in the conventional ASR approaches [22], and an additional 2 h reading speech con‑
taining 999 sentences was used. These reading speech corpora were collected from dif‑
ferent sources to maintain variety, such as political, economic, sport, and health news;
the Bible; fictions; and Federal Negarit Gazeta and penal codes. Numbers and abbrevi‑
ations were converted to their Amharic word representations. All contents of a corpus
were set up using morphological concepts. Reading speech corpora of the corresponding
texts were prepared using a 16 kHz sampling frequency, 16 bit sample size, and 256 kb
bitrates with a mono channel. Its training speech was 22 h recorded by 104 speakers and
a collection of 11,874 sentences. We used a text corpus prepared by [22], which consists
of 120,262 sentences (2,348,150 tokens or 211,120 types). This text corpus was prepared to
train the language model and to derive the vocabulary for the pronunciation dictionaries.
The models’ evaluations took place with a vocabulary size of 5 k, which contains 360 sen‑
tences arranged by [22].

Data augmentation is a method of increasing training data in poorly resourced lan‑
guages [35]. It is used to address the scarcity of resources and to increase the performance
of their ASR systems [36]. It is also one of the most effective means of making commuta‑
tive end‑to‑end automatic speech recognition (ASR) with a conventional hybrid approach
in low‑resource tasks [37]. Data augmentation is a common strategy adopted to increase
the quantity of training data. It is a key ingredient in state‑of‑the‑art systems for speech
recognition. Due to the widespread adoption of neural networks in speech recognition
systems, large speech databases are required for training such a deep architecture, which
is very useful for small data sets [36].

SpecAugment is a type of data augmentation in which data is augmented using three
approaches, namely, timewarping, frequencymasking, and timemasking [38]. In our pro‑
posed end‑to‑end ASR system, these three approaches were combined by increasing the
size of FBank features [38] and delivered as inputs to the bi‑directional long‑short term
memory (BLSTM) encoder. BLSTM can read inputs backward and forwards, which en‑
ables it to use future context to recognize speech more accurately

3.1.2. Text Corpus Pre‑Processing
The grapheme‑based text corpuswas prepared as explained in Section 3.1.1. Amharic

graphemes or characters are a combination of consonant and vowel phonemes [23]. These
Amharic graphemes are directly used in character‑basedASR, but text corpus pre‑processi‑
ng is required for phoneme‑based speech recognition systems.

A phoneme‑based text corpus was also prepared using the G2P conversion algorithm
(Algorithm 1) and phoneme normalization list. Some Amharic graphemes have the same
pronunciation representation, but the speech recognition task requires unique pronuncia‑
tion. Phonemes that have the same pronunciation were used to normalize the text corpus
at the phoneme‑level. These phonemes are structured in the following groups: (ህ, ሕ, ኅ,
and ኽ) to ህ, (እ and ዕ) to እ, (ሥ and ስ) to ስ, and (ፅ and ጽ) to ጽ. A phoneme normalization list
was prepared and normalized based on their unique pronunciations.

In addition to the basic Amharic graphemes, labiovelar and labialized graphemes
were also included in G2P conversion lists with their corresponding representation of
phonemes. These graphemeswere represented in two or three CV phonemes; for example,
ቋ/qwa/ is a labialized grapheme represented as a combination of the basic phoneme ቅ/q/
with the rounded vowelው ኣ/wa/. Ultimately, the normalized phoneme‑based corpus was
found through the normalization process, and used for phoneme‑level languagemodeling
during our experiment. The overall phoneme‑based corpora preparations of our study are
indicated in Figure 1.
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Algorithm 1: Amharic Grapheme‑to‑Phoneme (G2P) Conversion algorithm

Input: Grapheme‑based Amharic text corpus
Output: Phoneme‑based Amharic text corpus
1: Index text file = 0; repeat
2:  For each indexed file f in text corpora normalize the text corpus using unique phonemes
3:   If grapheme is not unique phonemes
4:    Replace each Grapheme G by its CV phoneme representation using G2P conversion

list:
     Grapheme G← phoneme with CV phoneme pattern
5:   Else
6:    Keep its phoneme representation
7:   End if
8:  End for
9: index ++;
10: until the process is applied to all files

Figure 1. The overall text pre‑processing using a phoneme‑mapping algorithm.

Extending to the G2P conversion algorithm, the Amharic syllabication algorithm con‑
sidered for epenthetic vowel እ[1] insertion and overall text pre‑processing with the syllab‑
ification algorithm is presented in Figure 2. The two significant challenges of G2P conver‑
sion are epenthesis and gemination due to the failure of Amharic orthography to show
epenthetic vowels and geminated consonants. Amharic is a syllabic language in which
graphemes are represented by consonant–vowel (CV) combinations [23]. However, all
Amharic graphemes are not represented in CV sequences. In Amharic, all graphemes
(231 in total) and seven labiodental graphemes are represented in CV syllables, but twenty
Labiovelar and eighteen labialized graphemes are represented as either two or three com‑
binations of CV syllables. Amharic has different syllable patterns, such as V, VC, CV, and
CVC, and these are considered syllabification rules. These templates/rules embrace gemi‑
nation and consonant clusters.

A syllabification algorithm developed for the Amharic languagewas proposed in [39]
and all syllabification algorithm templates or rules were included for epenthetic vowel
insertion. Rules of Amharic syllables are V, CV, VC, CVC, VCC, and CVCC [40]. This
syllabification used principles of sonority hierarchy andmaximum onset to develop a rule‑
based syllabification algorithm. This algorithm considers the epenthesis vowel እ[1] and
gemination of the Amharic language. The summary of observed sequences of consonants
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with their corresponding epenthesis is indicated in the following six epenthetic vowel እ[1]
insertion rules:
1. # CC       #C1C
2. CCC       CC1C
3. C1C1C (CC:)    C1C11C (C:1C)
4. CC1C1(CC:)    C1C1C1 (C1C:)
5. C1C1C2C2 (C:C:)  C1C11C2C2 (C:1C:)
6. CC#        C1C#
where # indicates the final position, otherwise medial or initial positions, and subscripts 1
and 2 indicate the germination sequences.

The syllabification algorithm was implemented in our study using these epenthetic
vowel insertion rules. An epenthetic vowel insertion algorithm or procedure was adopted
from [39] with minor modification and improvement. Finally, a phoneme‑based text cor‑
pus with an epenthetic vowel was prepared using the G2P algorithm for our further ex‑
periment.

Figure 2. Overall text pre‑processing using a syllabification algorithm.

3.2. Methods
This section briefly overviews the CTC, attention, and hybrid CTC‑attention end‑to‑

endASRmodels [10,41]. Because thesemodels are proposed for training/modeling, decod‑
ing, and evaluating [42] Amharic language units, an explicit overview of their functionali‑
ties is required.

3.2.1. CTC Model
The CTC model is used to map speech input frames into corresponding output la‑

bels [43], which is used to optimize the prediction of a transcription sequence. When the
length of the output labels is shorter than the length of the input speech frames, a CTC
path is introduced to have an identical length as that of the input speech frames by adding
a “blank” symbol as an additional label and allowing repetition of labels to map the label
sequence into the CTC path. This forces the output and input sequences to have identical
lengths [44].
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Let F be the input feature vectors of a given acoustic input sequence and F = F1, F2,
. . . , FT in the given time of T. In the end‑to‑end speech recognition system, Pr (P|F) =
Pr (P1|F), . . . , Pr (PL|F) are the output labels of posterior probability sequence vectors.
The posterior sequence length’s output labels are represented as Pr (Pi|F) at the given
position in [45]. Pr(Pi|F) is the posterior probability vector dimension in the N number of
target labels. In our paper, we used phonemes, characters, and subwords as output labels
which can be generated from speech waveforms. In end‑to‑end ASR, the length (L) of the
output labels is shorter than that of the input speech frames (T), and is the most typical
challenge of speech recognition systems. For this typical purpose, a special blank was
introduced during CTC training and inserted between two consecutive labels. This label
also allows for the repetition of labels. P is a label sequence that is expanded to Ψ(p), with
the same input sequence length. The label sequence posterior probability (p) is calculated
and the sums of posterior probabilities are the possible paths Ψ(p). There are limitations
of input sequences in which each label’s posterior probabilities in the output sequence are
independent of each other. Based on these concepts, the CTC loss can be calculated as:

Pr(P/F) = ∑
π∈Ψ(p )

Pr(π/F) = ∑
π∈Ψ(p )

T

∏
i=1

Pr(πi/F) (1)

where Pr (πi|F) represents posterior probabilities calculatedwith amulti‑layer bi‑direction‑
linebreak al RNN. CTC loss is calculated efficiently with the forward‑backward algorithm
by configuring its gradient network parameters. In CTC‑based end‑to‑endmodels, each la‑
bel’s probability is independent because their relationship is not learned explicitly during
training. The loss function can be decomposed further using a conditional independence
assumption, using the product of the posteriors of each frame, as [33]:

Pr(p/F) =
T

∏
i=1

(πi/F) (2)

The shared BLSTM encoder networks are used in CTCmodel architecture. Themono‑
tonic alignment of speech and label sequences is forced by the forward‑backward algo‑
rithm of the CTC model. This forward‑backward algorithm helps to speed up the align‑
ment of language units.

During decoding, it is straightforward to generate the decoded sequence using greedy
decoding by simply concatenating the labels corresponding to the highest posteriors and
merging the duplicate labels, and then removing the “blank’ labels. Thus, there is neither
a language model nor any complex graph search in greedy decoding.

3.2.2. Attention‑Based Model
The attention‑based end‑to‑endASR approach is the othermethod ofmapping speech

utterances into their corresponding label sequences [46–48]. This approach has encoder‑
decoder subnetworks, such as in Listen, Attend, and Spell (LAS), where a neural network
learns to transcribe speech utterances to characters [49]. The encoder transforms the acous‑
tic feature sequences of a speech to the length (T) of the sequence representation. The de‑
coder transcribes high‑level features (H) generated by the shared encoder into a p output
label sequence with the attention‑basedmodel. Based on the conditional probability of the
label pu given the input feature H and the previous labels p1:u−1, the decoder calculates the
likelihood of the label sequence using the chain rule [8,50]:

Pr(p/F) = ∏
u

Pr(pu/H, p1:u−1) (3)

In every step u, the decoder generates a context vector cu based on all input features
H and attention weight bu∑l:

cu = ∑
l

bu, l Hl (4)
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Attention mechanisms can be divided into various types. Among these attention
types, location‑aware attention has a good score record in [12,45]. The attention weight
bu = (bu,1, bu,2, . . . , bu,l) is obtained from location‑based attention energies eu,l as follows:

bu,l = so f tmax (eu,l) (5)

eu,l = ωTtanh(Wqu−1 + V hl + M fu,l + b) (6)

fu = F ∗ bu−1 (7)

where ω, V, W, b, M are trainable parameters, qu−1 is the state of the RNN decoder. *
denotes the one‑dimensional convolution along the frame axis, l, with the convolution
parameter, F, to produce the features fu = (fu,1, fu,2, . . . , fu,l). We can predict the RNN
hidden state qu and the next output pu with the context vector cu in Equations (8) and (9),
respectively.

qu = LSTM(qu−1, pu−1, cu) (8)

pu = FullyConnected(qu, cu) (9)

where the LSTM function here is implemented as a unidirectional LSTM layer and the fully
connected function indicates a feed‑forward fully‑connected network. In attention‑based
end‑to‑end speech recognition, special symbols sos and eos are added to the decoder mod‑
ule, and denote start‑of‑sequence and end‑of‑sequence, respectively. The decoder stops
the generation of new output labels when eos is emitted.

3.2.3. CTC‑Attention Model
The CTC model contains conditional independent assumptions between labels and

the attentionmechanismyields an output by aweighted sumof all inputswithout the guid‑
ance provided by alignments. The CTC model can learn a monotonic alignment between
acoustic features and sequence of labels using its forward‑backward algorithm, which
helps the encoder to converge more quickly. An attention‑based decoder has also helped
to learn dependencies among targeted sequences [29]. Hence, the CTC‑attention model
has advantages of both CTC and attention‑based models, and was used for our study. The
overall architecture of the CTC‑attention model is presented in Figure 3.

In the CTC‑attention model, the advantages of both CTC and attention‑based models
are utilized, namely the better alignment of input‑output sequences and consideration of
the context prior sequences, respectively. It combines both the CTC loss and the cross‑
entropy loss of the attention modeling mechanism calculated between the predicted label
and targeted correct label sequences [10]. Assuming F = (F0, F1, F2, F3, F4, F5, F6, F7, . . . ,
FT) is the input sequence of the acoustic feature and p = (p1, p2, . . . , pu) is the corresponding
sequence of the output symbol, the transcription between F and p is modeled by the CTC‑
attention end‑to‑end ASR approach.

Assume that Pu ϵ {1, . . . , N}, where represents the number of different label units. In
end‑to‑end speech recognition approaches, the feature sequence (i.e., u < T) is longer than
the sequence length of the output label. The CTC‑attention model uses a shared recurrent
neural network (usually LSTM) encoder to produce a high‑level representation hidden
layer H = (H0, H1, H2, H3, . . . , HL) of the input sequence F, and L represents the index of
a downsampled frame.

H = Encoder(F) (10)

In the CTC‑attention end‑to‑endmodel, the objective function is used to train a locatio
n‑based attention model [6]. In the CTC‑attention architecture overall diagram, the shared
BLSTM with CTC and attention encoder networks are used. The monotonic alignment
of speech and label sequences is forced by the attention model and forward‑backward al‑
gorithm of the CTC model rather than the attention model only. This forward‑backward
algorithm helps to speed up the language units’ alignment compared to solely using data‑
driven attention methods. Because this CTC‑attention model contains both CTC and at‑
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tention models, it is also known as multi‑task learning (MTL). The CTC‑attention model
equation with λ CTC‑weight is presented in Equation (11) and its logarithmic linear com‑
binations are presented in Equation (12).

LMTL = LCTC + (1− λ )Latt (11)

LMTL = λ logPrCTC + (1− λ) logPratt(p/F) (12)

where λ values: 0 ≤ λ ≤ 1 and att represents attention.

Figure 3. Connectionist temporal classification (CTC)‑attention based end‑to‑end model.

This CTC‑attention model is used with RNNLM to decode various language units,
such as words, characters, phonemes, and subwords generated by the BPE segmentation
algorithm. The CTC‑attention model is used to address the OOV word issue because in
CTC modeling only frequent words are used as target units. With the exception of these
frequent words, other words are tagged as OOV words. Those OOV words cannot be
included during networkmodeling, implying that they are excluded during the evaluation
of a speech recognition system.

3.3. Our Proposed Speech Recognition System
Feature extraction techniques, acoustic modeling, and language modeling are the

main components of our proposed end‑to‑end automatic speech recognition system. Fea‑
ture extraction takes place at the front‑end of the speech recognition system. The SpecAug‑
ment data augmentation technique is used during our feature extraction to increase the
training data and to overcome overfitting problems due to the poorly resourced Amharic
dataset. The feature extraction process takes place as explained in Section 3.1.1.

Acousticmodeling and languagemodeling are back‑endprocesses of the speech recog‑
nition system. Acoustic modeling is also the main component of the ASR system and one
of themethods outlined in Section 3.2. Among thosemodels, the CTC‑attentionmodelwas
selected, and combines the advantages of CTC and attention mechanisms, as indicated in
Section 3.2.3.
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Language modeling is the most vital component of our proposed system because it
considers epithetic vowels, which are not found in transcribed Amharic text but exist in
speech utterances. Due to the inclusion of these epithetic vowels, the phoneme‑level of our
text data pre‑processing is unique. The syllabification algorithm is used in addition to our
G2P conversion algorithm, as indicated in Section 3.1.2. Finally, the phoneme‑based BPE
segmentation algorithm is applied for our subword‑based end‑to‑end model, and these
are used as the language units of RNN language modeling. The outputs of our proposed
system are useful for machine and speech translation tasks. The overall architecture of the
new proposed end‑to‑end Amharic speech recognition is presented in Figure 4.

Figure 4. The architecture of the new proposed end‑to‑end Amharic automatic speech recognition (ASR) system.

4. Experiment Parameter Setups and Results
4.1. Parameter Setups and Configuration

In our experiments, a computer with a GPU (GeForce RTX 2080) and 64 GB memory
were used to perform the speech recognition system’s training and testing phases. The
Espnet toolkit with Pytorch backend was used for both language and acoustic modeling,
and the Kaldi tool was used for data preparation. Acoustic features were extracted from
utterances of datasets for training and testing of end‑to‑end ASR systems of our Amharic
speech corpus. FBANK+pitch features were extracted from the speech utterances. Input
features of allmodelswere 80‑dimensional feature vectors, and their delta and acceleration
coefficients were used as acoustic features [51]. On these features, non‑overlapping frame
stacking was applied and new superframes were made by stacking and skipping three
frames. Utterance level mean normalization was also applied to the features.

The training was performed over 20 epochs using Pytorch modeling with a batch size
of 30. During training, maxlen‑in and maxlen‑out were set at 800 and 150, respectively. In
our experiment, the location‑based attention mechanism, which was found to outperform
in [12,45], was used in the hybrid CTC‑attention architecture. The encoder consists of four
BLSTM shared layers, with 320 cells used in our model. Its convolutional features were ex‑
tracted by 10 centered convolution filters with 100 widths. The 0.2 dropout rate was used
during the training of each BLSTM layer [9]. The sub‑sampling was set as “1_2_2_1_1”.
The decoder was also set with 320 cells of one layer LSTM, 320 tanh nodes of a hidden
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layer, 300 decoding units, and a softmax output layer. The type of end‑to‑end model was
determined by CTC‑weight (λ ) and was described in terms of multi‑task learning (mtlal‑
pha). The value of mtlalpha was set as 0.5 for the hybrid CTC‑attention end‑to‑end model.

In our languagemodeling, settings weremade depending on the language units used.
For word LM, a 1‑layer RNN architecture with 1000 units, sgd optimization, 300 batch size
and 40 maximum length were set. Unlike word LM, a two‑layer RNN architecture with
650 units in each layer, Adam optimization, 1024 batch size, and 650 maximum lengths
were set for both character and phoneme LMs. For all LMs, the number of epochs and
patience were set as 20 and 3, respectively.

TheAdaDelta algorithmwasusedwith 0.1 language smoothing and anAdammethod
with standard settings was used for optimizing networks. Label smoothing was used as
a regularization mechanism to protect the model from making overconfident predictions.
This helps the model to have higher entropy during its forecast, and allows the model
to be more adaptable. The ground truth label distribution was smoothed with a uniform
distribution over all labels.

In all of our end‑to‑end models, the minibatch size was set to 30. The network param‑
eters were also initialized with random values drawn from a uniform distribution with a
range of (−0.1, 0.1). Providing long input sequences can slow convergence at the begin‑
ning of training. Therefore, input data were sorted by the length of frames before creating
mini‑batches. In all end‑to‑end CTC, attention mechanism, and hybrid ASR models, the
decoding process was performed in a beam size of 20 and language weight (lm‑weight) of
1.0. The BPE segmentation algorithm was used to extract subword units from all training
data and the size of subword units was set to 500.

4.2. Experiment Results
We trained our end‑to‑end CTC‑attentionASR system using various vocabulary sizes.

These vocabulary sizes were selected based on frequently occurring Amharic words. We
also considered the OOV rates of less than 10% during vocabulary size selection. The
vocabulary sizes were arranged in five intervals to determine the effects of OOV words
on our small‑sized text corpus. The SpecAugment data augmentation technique was also
used to resolve the problem of smaller training data size and to make our system more
robust. The models were evaluated with our test data without an OOV rate.

After the training and decoding process, the experiment results are discussed below
for three main categories, namely, character‑based acoustic modeling with word‑RNNLM
and character‑RNNLM, phoneme‑based acousticmodelingwithword‑RNNLMandphon‑
eme‑RNNLM, and subword‑based language units generated by BPE segmentation algo‑
rithm in characters, phonemes, and phonemes with epithetic vowel acoustic modeling.
The hybrid of the CTC and attention‑based model takes advantage of the two models in
combination. The CTC model in conjunction with a location‑based attention decoder also
helps the network to accelerate the training [30]. The discussions of each training and their
decoding results are presented as character‑based, phoneme‑based, and subword‑based
end‑to‑end ASR models. The results of each end‑to‑end model are discussed individually
and character‑based results are considered as the baseline of our study.

4.2.1. Character‑Based Baseline End‑to‑End Models
In our character‑based experiment, word‑based RNNLMs were used to investigate

the recognition performance in various vocabulary sizes. The training processes took place
in various vocabulary sizes, such as 6.5 k, 10 k, 15 k, and 20 k, and decodedwithword‑level
RNNLM. These vocabulary sizes are parts of the training text data as used in Wall Street
Journal (WSJ) and Switchboard (SWBD) corpora in [28]. Word sequences are easily gen‑
erated in a word‑based model by picking their corresponding posterior spikes. Limiting
Amharic vocabularies is a challenging task due to itsmorphological behavior [52]. Further‑
more, determining their corresponding size of OOV rate percentage was also a challenge.
All OOV rates generatedwith their corresponding vocabulary sizeswere evaluated in a 5 k
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evaluation test size. Continuous CER and WER reductions were obtained from small to
large vocabularies, but their corresponding OOV rates were reduced automatically. The
results were evaluated using the CTC‑attention end‑to‑end method in terms of character
error rate (CER) and word error rate (WER) matrices. The minimum results were regis‑
tered at 20 K vocabulary size and the overall results with different vocabulary sizes are
indicated in Table 1.

Table 1. Character‑based end‑to‑end model results in different vocabulary sizes.

Language
Unit

Vocabulary
Size LM Acoustic

Model
CER
(%)

WER
(%)

character 6.5 k Word‑RNNLM CTC‑attention 28.09 39.30
character 10 k Word‑RNNLM CTC‑attention 26.91 37.60
character 15 k Word‑RNNLM CTC‑attention 25.60 37.01
character 20 k Word‑RNNLM CTC‑attention 25.21 36.80

Our experiment extended character‑based acoustic modeling with its corresponding
character‑RNNLM. The experiment was also continued with and without the SpecAug‑
ment data augmentation technique. The SpecAugment augmentation technique with a
combination of 5 maximum timewarping, 30 frequencymask, and 40 timemaskwas used,
and reduction of CER was achieved as indicated in Table 2.

Table 2. Character‑based end‑to‑end model results with character recurrent neural network lan‑
guage modeling (RNNLM).

Language
Unit LM Acoustic

Model
CER
(%)

WER
(%)

characters Character‑RNNLM CTC‑attention 24.90 44.02
characters Character‑RNNLM CTC‑attention + SpecAugment 23.80 41.00

Data augmentation techniques such as SpecAugment help to make poorly resourced
languages be competitive in end‑to‑end methods [37] by increasing the size of training
data. Characters are the language units used during character‑based language modeling
for character‑based end‑to‑end ASR. A total of 233 characters were used during this ASR
after the normalization process [53].

TheminimumCER andWER achievedwere 23.80% and 41.00%, respectively, in CTC‑
attention with SpecAugment and character‑RNNLM. In comparison to the above word‑
RNNLM results, the WER increased. Unlike WER, CER was reduced due to its context‑
independent character‑level LM [54]. The results suggest continuation of our experiment
using other subword units, such as phonemes and subword units generated by segmenta‑
tion algorithms that consider their contexts.

4.2.2. Phoneme‑Based End‑to‑End Models
Phoneme‑based end‑to‑end ASR models are vital to improve the speech recognition

system by addressing the variations of graphemes for similar pronunciation representa‑
tions. In [55], an aligner with a pronunciation dictionary usedwhat was called the Pronun‑
ciation Assisted Subword Modeling (PASM) method. This method adopts fast alignment
to align with the pronunciation lexicon file and the result was also used to determine the
common correspondence between subword units and phonetic units. In our phoneme‑
based speech recognition, all 39 Amharic phonemes were used as a language unit and
phoneme level language modeling was also developed. A grapheme‑to‑phoneme (G2P)
conversion algorithm was applied to the prepared grapheme‑based text corpus to gener‑
ate a phoneme‑based text corpus. A sample of text conversion with three sentences is
presented as follow:
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Grapheme text:
1. እውቅና ን ማግኘቴ ለ እኔ ትልቅ ክብር ነው
2. ምን ለማ ለት ነው ግልጽ አድርገው
3. ከዚያ በ ተጨማሪ የ ስልጠና ውን ሂደት የሚ ያሻሽል ላቸው ይሻሉ

Their corresponding converted phoneme texts:
1. እውቅንኣ ን ምኣግኝኧትኤ ልኧ እንኤ ትልቅ ክብር ንኧው
2. ም ን ልኧምኣ ልኧት ንኧው ግልጽ ኣድርግኧው
3. ክኧዝኢይኣ ብኧ ትኧጭኧምኣርኢ ይኧ ስልጥኧንኣ ውን ህኢድኧት ይኧምኢ ይኣሽኣሽል ልኣችኧው ይ ሽኣልኡ

Our phoneme‑based experiment is an extension of the above character‑based exper‑
iment. Phoneme‑based end‑to‑end modeling with word‑RNNLM in an experiment with
four vocabulary sizes was conducted in our study. All results showed a reduction in word
error rates; the overall phoneme error rate (PER) and word error rate (WER) results are
presented in Table 3. In our phoneme‑based CTC‑attention end‑to‑end ASR model, WER
reduction of 13.30% was achieved in 20 k vocabulary size compared to the above speech
recognition results of the character‑based with word‑RNNLM baseline.

Table 3. Phoneme‑based end‑to‑end model results in different vocabulary sizes.

Language
Unit

Vocabulary
Size LM Acoustic

Model
PER
(%)

WER
(%)

phoneme 6.5 k Word‑RNNLM CTC‑attention 18.68 26.13
phoneme 10 k Word‑RNNLM CTC‑attention 17.36 24.26
phoneme 15 k Word‑RNNLM CTC‑attention 16.8 24.29
phoneme 20 k Word‑RNNLM CTC‑attention 16.1 23.50

Our phoneme‑based experiment was extended with its corresponding phoneme‑
based RNNLM. This experiment was also continued with and without the SpecAugment
data augmentation technique. This experiment was a continuation of the second experi‑
ment, andminimumPER (14.60%) andWER (34.01%)were achieved inCTC‑attentionwith
Spec‑Augment, as indicated in Table 4. This result showed a 9.2% word error rate reduc‑
tion compared to character‑based with character‑RNNLM. Finally, our phoneme‑based
CTC‑attention with SpecAugment CER (10.61%) and WER (2.79%) error rate reductions
were achieved compared to the above baseline character‑basedwithword‑RNNLMspeech
recognition results. The WER was unlike PER due to its context‑independent phoneme‑
level LM [54]. The results again suggest continuing our experiment in context‑dependent
subword‑based modeling generated by the BPE segmentation algorithm.

Table 4. Phoneme‑based end‑to‑end modeling with phoneme‑RNNLM decoding results.

Language
Unit LM Acoustic

Model
PER
(%)

WER
(%)

Phoneme Phoneme‑RNNLM CTC‑attention 15.80 36.20
Phoneme Phoneme‑RNNLM CTC‑attention + SpecAugment 14.60 34.01

4.2.3. Subword‑Based End‑to‑End Models
In our subword‑based end‑to‑end modeling, three different Amharic subwords were

considered, namely, character‑based subwords, phoneme‑based subwords, and phoneme‑
based subwords with epithetic vowels inserted by a syllabification algorithm. These sub‑
words were obtained by the byte‑pair‑encoding (BPE) segmentation algorithm based on
the most frequent pairs of units [56]. Like our previous experiments, a hybrid CTC‑
attention‑based end‑to‑end speech recognition system that works without any dictionary
or lexicon was used. Subword units were used as language modeling units. Compared
to the character‑based and phoneme‑based systems, the proposed subword‑based system



Information 2021, 12, 62 15 of 22

significantly reduces both the CER andWER. The overall results of all subword modeling
are presented in Table 5.

Table 5. Character‑based and phoneme‑based subword decoding results.

Language
Unit

Subword
Unit

Acoustic
Model

C/PER
(%)

WER
(%)

Subword character CTC‑attention 21.60 34.70
CTC‑attention +
SpecAugment 16.90 31.30

Phoneme‑based subword phoneme CTC‑attention 15.80 22.60
CTC‑attention +
SpecAugment 14.60 21.40

Proposed phoneme‑based
with epenthesis subword Phoneme CTC‑attention 12.61 20.30

CTC‑attention +
SpecAugment 12.80 18.42

Subword units of size 500 were extracted from training data. The subword‑based
CTC‑attention acoustic modeling with SpecAugment system results were found to be
31.30%, 21.40%, and 18.42% WER using characters, phonemes, and phonemes, respec‑
tively, with epenthesis vowel subword sequences. The data augmentation technique also
showed a slight improvement in all subword level speech recognition systems. The min‑
imum PER obtained was 16.90%, 14.60%, and 12.61% in SpecAugment and subword se‑
quences of characters, phonemes, and phonemes with epenthetic vowels, respectively.
The sparseness problem was also evident during phoneme‑based subword units and PER
increased slightly. This problemwas addressed by removing somephonemes during train‑
ing and using the data augmentation technique. As a result, PER improved and the per‑
formance was almost equal to that of the previous result.

Finally, we compared the word error rate results concerning our objective, namely,
reducing out‑of‑vocabulary (OOV) words. Better results were obtained in subword units
with the BPE algorithm in our CTC‑attention end‑to‑end speech recognition system. Our
final phoneme‑basedmodels performed better than our final character‑basedmodels. Out‑
of‑vocabulary (OOV) words were reduced using subwords as a decoding unit [57].

We also compared the WER results of character‑ and phoneme‑based ASR systems
without context versus character‑based subwords and phoneme‑based subwords. We
found that subword units were best able to reduce WERs both in phoneme and character
levels [27]. Character‑based subword models have been used in previous research, how‑
ever, phoneme‑based subwords, particularly using a syllabification algorithm forAmharic,
represent a new model of speech recognition. These subwords are used to achieve a mini‑
mum word error rate by reducing OOV words while maintaining their simplicity in end‑
to‑end methods.

5. Discussion
Our proposedCTC‑attention end‑to‑endAASRwas evaluated using characters, phon‑

emes, character‑based subwords, and phoneme‑based subwords. These proposedmodels
are discussed using OOV words in terms of WER obtained in word‑RNNLM, character‑
RNNLM, phoneme‑RNNLM, and subwords obtained in the BPE segmentation algorithm.
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We compared theWER of character‑based and phoneme‑based end‑to‑end ASRmod‑
els in different vocabularies obtained using the most frequently occurring words. Their
correspondingword‑RNNLMwas also prepared for decoding purposes. The results show
ed that the performance of the phoneme‑based CTC‑attention method was significantly
better than the character‑based performance because the former supports pronunciation‑
based labels. These pronunciation‑based dictionaries are found using the G2P conversion
algorithm because pronunciation dictionaries are used directly, like in conventional ASR
approaches.

Due to the Amharic language’s morphological richness, the OOV problem is evident
in both character‑based and phoneme‑based word‑RNNLM. Comparison of their WER
with corresponding OOV rate is shown in Figure 5. The result shows that the WER de‑
creased when the OOV rate was reduced. The phoneme‑basedWERwas significantly less
than the character‑basedWER because phonemes are assisted by pronunciation [55]. This
result suggests our experiment should be continued with OOV reduction techniques.

Figure 5. The word error rate (WER) and out‑of‑vocabulary (OOV) percentages in both CTC and
CTC‑attention.

To reduce the OOV words, the experiment continued with character‑RNNLM and
phoneme‑RNNLM. These language models do not consider their context like word‑
RNNLM. The result showed the worst WER due to context‑independent characters and
phonemes [54], but minimum CER and PER were registered. This indicates that the OOV
word problem was not resolved, and further experiments are required at the subword
level.

Subword‑based models have shown excellent results for machine translation
(MT) [58]. The BPE segmentation algorithm is used in these models, and phoneme BPEs
have been compared in terms of contiguous characters and phonemes [28]. Better results
are obtained in subword units with BPE in our CTC‑attention end‑to‑end speech recogni‑
tion system. Our final phoneme‑based models, which consider the epithetic vowels, per‑
form better than our final character‑based models, including the phoneme‑based BPEs.
Out‑of‑vocabulary (OOV) words were reduced using subwords as a decoding unit as per
our proposal [57]. In general, better results are found in phoneme‑basedmodels compared
to character‑based models, and phoneme‑based subword unit results are also better than
those of character‑based subword (BPE) units [27].
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We compared the character‑based and phoneme‑based WERs using different vocab‑
ularies, which were based on the most frequently occurring words. These results showed
that the performance of the phoneme‑basedCTC‑attentionmethodwas significantly better
than that of the character‑based method because the latter is supported by pronunciation‑
based labels. These pronunciation‑based dictionaries are found using the G2P conversion
algorithm because pronunciation dictionaries are used directly, like om non‑end‑to‑end
approaches.

In addition to theCERandPERof our proposedCTC‑attentionmethod, CTC‑attention
with SpecAugment is helpful in accelerating the convergence during training; its training
and validation losses are indicated in Figure 6. It can be observed that its losses became
more robust and consistent as the number of epoch size increased up to 20.

Figure 6. Phoneme‑based CTC‑attention with SpecAugment loss functions.

We also observed that the input‑output alignment was appropriately learned. The
input‑output alignment sequences are shown from the beginning with almost a spectro‑
gram representation of the utterance. When the training extends in different epochs, we
observed the gap of alignments. This gap indicates that there were missing phonemes that
can be analyzed in terms of deletion, insertion, and substitution during training [59]. The
final training result indicates that the alignment became monotonic [9]. The monotonic
sample alignment for utterance “የተለያዩ የትግራይ አውራጃ ተወላጆች ገንዘባቸውን አዋጥተው የልማት ተቋማትን
እንዲመሰርቱ ትልማ አይፈቅድም” is indicated in Figure 7.
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Figure 7. A phoneme‑based alignment index in the CTC‑attention model at the 20th epoch.

6. Conclusions and Future Works
In this paper, we proposed a subword modeling method with CTC‑attention end‑

to‑end speech recognition at the phoneme‑level, which was obtained with grapheme‑to‑
phoneme (G2P) conversion algorithms. We investigated the use of phoneme‑based sub‑
words in Amharic end‑to‑end ASR. During grapheme‑to‑phoneme conversion, a syllabifi‑
cation algorithm was considered for epenthesis and subword‑based decoding as an exten‑
sion of phoneme‑ and character‑based subword systems. These end‑to‑end models were
also trained using a 22 h speech dataset developed for speech recognition system and eval‑
uated using a 5 k testing dataset. Character and phoneme Amharic language units were
used as acoustic modeling units in end‑to‑end speech recognition approaches. To inves‑
tigate the effects of OOV words in a speech recognition system, word‑level RNNLMs in
different vocabulary sizes, namely, 6.5 k, 10 k, 15 k, and 20 k, were also developed in both
grapheme and phoneme levels due to the variation of out‑of‑vocabulary words. Context‑
independent character‑based and phoneme‑based RNNLM was developed for decoding
purposes, andminimumCERs and PERswere obtained, respectively. The experimentwas
continued using subwordmodeling via the BPE segmentation algorithm. These subwords
reduced OOV words and the minimum WER results were recorded. These results were
31.30%, 21.40%, and 18.42% in character‑based subwords, phoneme‑based subwords, and
phoneme‑based subwords with epithetic vowels, respectively. Finally, the experiment
results showed that a phoneme‑based BPE system with a syllabification algorithm was
effective in achieving higher accuracy or minimum WER (18.42%) in the CTC‑attention
end‑to‑end method.

As future work, transformer‑based end‑to‑end models will be used to obtain cover‑
age to reduce the errors of the recognition system. A greater corpus size is also required
in all end‑to‑end models; thus, collecting more data to increase the corpus size is a nec‑
essary task. In addition to minimizing the error rates, reducing latency while ensuring
performance is an important research issue for end‑to‑end ASR models. From the per‑
spective of the BPE segmentation algorithm, subwords types in addition to BPE can be
explored and incorporated into subword regularization [42], which has been shown to im‑
prove character‑based subword systems. We also plan to investigate the application of the
proposed method in hybrid ASR, machine translation, and speech translation.
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Appendix A

Table A1. Samples of Acmharic writing script/grapheme.

Consonants
1st Order 2nd Order 3rd Order 4th Order 5th Order 6th Order 7th Order

ә u i a e 1 o

h ሀ ሁ ሂ ሃ ሄ ህ ሆ
l ለ ሉ ሊ ላ ሌ ል ሎ
m መ ሙ ሚ ማ ሜ ም ሞ
s ሠ ሡ ሢ ሣ ሤ ሥ ሦ
r ረ ሩ ሪ ራ ሬ ር ሮ
. . . . . . . .
f ፈ ፉ ፊ ፋ ፌ ፍ ፎ
p ፐ ፑ ፒ ፓ ፔ ፕ ፖ

Appendix B

Table A2. Amharic consonants are arranged based on articulation.

Manner of Articulation Voicing Labial Dental Palatal Velar Glottal

stops

Voiceless P ፕ t ት k ክ Kw ኰ ? ዕ
Voiced b ብ d ድ g ግ gw ጐ

glottalized p’ ጵ t’ ጥ q ቅ qw ቈ
rounded h ህ

fricatives

Voiceless f ፍ s ስ š ሽ
Voiced v ቭ z ዝ ž ዥ

glottalized s’ ጽ hw ኈ
rounded

Affricative

Voiceless č ች
Voiced ğ ጅ

glottalized č’ ጭ
rounded

Nasals voiced m ም n ን ň ኝ

Liquids Voiceless r ር
voiced l ል

Glides w ዉ y ይ
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