
 information

Article

Text Classification Based on Convolutional Neural Networks
and Word Embedding for Low-Resource Languages: Tigrinya

Awet Fesseha 1,2 , Shengwu Xiong 1,*, Eshete Derb Emiru 1,3 , Moussa Diallo 1 and Abdelghani Dahou 1

����������
�������

Citation: Fesseha, A.; Xiong, S.;

Emiru, E.D.; Diallo, M.; Dahou, A.

Text Classification Based on

Convolutional Neural Networks and

Word Embedding for Low-Resource

Languages: Tigrinya. Information

2021, 12, 52. https://doi.org

/10.3390/info12020052

Academic Editor:

Yannis Korkontzelos

Received: 18 November 2020

Accepted: 19 January 2021

Published: 25 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, China;
awet.fesseha@mu.edu.et (A.F.); eshetede@whut.edu.cn (E.D.E.); moussdiall@whut.edu.cn (M.D.);
dahou@whut.edu.cn (A.D.)

2 College of Natural and Computational Sciences, Mekelle University, Mekelle 231, Ethiopia
3 School of Computing, DebreMarkos University, DebreMarkos 269, Ethiopia
* Correspondence: xiongsw@whut.edu.cn

Abstract: This article studies convolutional neural networks for Tigrinya (also referred to as Tigrigna),
which is a family of Semitic languages spoken in Eritrea and northern Ethiopia. Tigrinya is a “low-
resource” language and is notable in terms of the absence of comprehensive and free data. Further-
more, it is characterized as one of the most semantically and syntactically complex languages in the
world, similar to other Semitic languages. To the best of our knowledge, no previous research has
been conducted on the state-of-the-art embedding technique that is shown here. We investigate which
word representation methods perform better in terms of learning for single-label text classification
problems, which are common when dealing with morphologically rich and complex languages. Man-
ually annotated datasets are used here, where one contains 30,000 Tigrinya news texts from various
sources with six categories of “sport”, “agriculture”, “politics”, “religion”, “education”, and “health”
and one unannotated corpus that contains more than six million words. In this paper, we explore
pretrained word embedding architectures using various convolutional neural networks (CNNs) to
predict class labels. We construct a CNN with a continuous bag-of-words (CBOW) method, a CNN
with a skip-gram method, and CNNs with and without word2vec and FastText to evaluate Tigrinya
news articles. We also compare the CNN results with traditional machine learning models and
evaluate the results in terms of the accuracy, precision, recall, and F1 scoring techniques. The CBOW
CNN with word2vec achieves the best accuracy with 93.41%, significantly improving the accuracy
for Tigrinya news classification.

Keywords: text classification; CNN; low-resource language; machine learning; word embedding;
natural language processing

1. Introduction

The rise of Internet usage has led to the production of diverse text data that are
provided by various social media platforms and websites in different languages. On the
one hand, English and many other languages are regarded as affluent languages for the
accessibility of the tools and data for numerous natural language processing tasks. On the
other hand, many languages are also deemed to be low-resource languages [1]. Similarly,
Negaish [2] and Osaman et al. [2,3] mentioned that Tigrinya is a “low-resource” language
because of its underdeveloped data resources, few linguistic materials, and even fewer
linguistic tools. Likewise, the lack of data resources for Tigrinya is manifested through the
absence of a Tigrinya standard text dataset, and this is a significant barrier for Tigrinya
text classification. Consequently, Tigrinya remains understudied from a natural language
processing (NLP) perspective and this imposes challenges for the advancement of Tigrinya
text classification research [3,4]. Tedla et al. [5] mentioned that unlike many other languages,
the use of Tigrinya is rare in wiki pages. These pages are used as raw sources to construct
unlabeled corpora (i.e., they are used for word embedding). Moreover, there are almost no

Information 2021, 12, 52. https://doi.org/10.3390/info12020052 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-7127-6256
https://orcid.org/0000-0003-2260-3526
https://orcid.org/0000-0001-5292-2902
https://doi.org/10.3390/info12020052
https://doi.org/10.3390/info12020052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12020052
https://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/12/2/52?type=check_update&version=2

Information 2021, 12, 52 2 of 17

available Tigrinya datasets (i.e., datasets that are not freely available) [6,7]. Nevertheless,
with the rise of Tigrinya textual data on the Internet and the need for an effective and
robust automated classification system becomes necessary. Recent data show that the
number of Internet users in Eritrea has increased by 5.66% (accessed September 2020,
https://www.internetworldstats.com/stats1.htm). Similarly, in Ethiopia, the Internet
growth rate is 204.72%. The two countries feature remarkable numbers of people that speak
Tigrinya [8]. In addition to these dramatic growth trends, no significant research has been
published for Tigrinya, unlike advanced studies on English, Arabic, and other languages.
Furthermore, the unique nature of Tigrinya is also challenging from a NLP perspective
due to its complex morphological structure, enormous number of synonyms, and rich
auxiliary verb variations in terms of the subject, tense, aspect, and gender, besides the
quantifiable availability of resources. Most of the characters in the language are inherited
from a Semitic language background. Very few studies have reported results for Tigrinya
NLP problems and these studies often report outcomes that have been found with small
datasets. A few studies with small datasets have been conducted with the use of (SVM,
decision tree, and others) machine learning techniques. Convolutional neural networks
(CNNs) have recently gained popularity in various artificial intelligence areas, including
image classification, face recognition, and other areas [9–11]. Kim et al. [12] demonstrated
good performance of CNNs in the field of natural language processing.

Additionally, given the importance and utilization of news articles, the capability of
the word embedding tool word2vec and associated CNNs for deep learning have been
examined in several studies [10,12]. Kim et al. [12] proved that pretrained word vectors in
sentence classification play vital roles by comparing word vectors with pretrained vectors.
Earlier, Mikolov et al. [13,14] proposed several word embedding techniques that consider
the meanings and contexts of words in a document based on two learning techniques,
specifically, the continuous bag-of-words (CBOW) and skip-gram techniques. however,
to the best of our knowledge, no previous research has been conducted with these state-
of-the-art embedding techniques with Tigrinya news articles. Furthermore, for Tigrinya
news articles, a comparison of the performance between skip-gram and CBOW techniques
has also not been presented. We aim to investigate which word representation techniques
perform better for learning in terms of solving Tigrinya single-label text classification
problems using pretrained word vectors generated with both the CBOW and skip-gram
techniques for FastText and word2vec. In this paper, we study Tigrinya text classification
using CNNs. We evaluate the performance of the word2vec and FastText CNN classification
models in terms of the training volumes and numbers of epochs and we contribute two
Tigrinya datasets, i.e., a single-label dataset and a large unlabeled corpus. Furthermore,
we explore the performances of various word embedding architectures [13] and CNNs [15]
for classifying Tigrinya news articles. We also evaluate the performance in terms of the
classification accuracies of the CNNs with pretrained word2vec and FastText models.
The experimental results show that word2vec significantly improves the classification
model accuracy by learning semantic relationships among the words. The results also
show that the CBOW CNN model with word2vec and FastText performs better than the
skip-gram CNN model.

The key contributions of this work are the following:

• We develop a dataset that contains 30,000 text documents labeled in six categories.
• We develop an unsupervised corpus that contains more than six million words to

support CNN embedding.
• This work allows an immediate comparison of current state-of-the-art text classifica-

tion techniques in the context of the Tigrinya language.
• Finally, we evaluate the CNN classification accuracy with word2vec and FastText

models and compare classifier performance with various machine learning techniques.

It is expected that the results of this study will reveal how the use of a given word
embedding model affects Tigrinya news article classification with CNNs. Furthermore,
CNNs are used in many research approaches for natural language processing research

https://www.internetworldstats.com/stats1.htm
https://www.internetworldstats.com/stats1.htm

Information 2021, 12, 52 3 of 17

problems because of their ability to learn complex feature representations as compared
with traditional machine learning approaches. We apply a CNN-based approach for
categorization at the sentence level based on the semantics extracted from the corpus.
We compare the FastText and word2vec pretrained vectors in terms of their impact on
text classification. Our results indicate that the word2vec CNN approach outperforms
the other approaches by 93.41% in terms of classification accuracy. The structure of this
paper is as follows: In Section 2, we present the research background and related works; in
Section 3, we present the research methodology; in Section 4, dataset construction and CNN
architecture are described; in Section 5, we detail the evaluation techniques; in Section 6,
we conclude the paper with a summary and discuss possible future work.

2. Background and Related Works
2.1. Previous Attempts for Tigrinya Natural Language Processing

We review existing works related to the proposed scheme, mainly considering previ-
ous attempts with the Tigrinya language. The majority of Tigrinya speakers live in Eritrea
and the northern part of Ethiopia (Tigray Province) in Africa’s horn, with an estimated
population of more than 10 million [16]. Tigrinya is ranked third among the widely-spoken
Semitic language families in the world, after Arabic and Amharic [17]. Despite Tigrinya
sharing similarity with most Semitic languages in several ways, Tigrinya has different
compound prepositions such as “

Information 2021, 12, x FOR PEER REVIEW 3 of 18

It is expected that the results of this study will reveal how the use of a given word
embedding model affects Tigrinya news article classification with CNNs. Furthermore,
CNNs are used in many research approaches for natural language processing research
problems because of their ability to learn complex feature representations as compared
with traditional machine learning approaches. We apply a CNN-based approach for cat-
egorization at the sentence level based on the semantics extracted from the corpus. We
compare the FastText and word2vec pretrained vectors in terms of their impact on text
classification. Our results indicate that the word2vec CNN approach outperforms the
other approaches by 93.41% in terms of classification accuracy. The structure of this paper
is as follows: In Section 2 , we present the research background and related works; in Sec-
tion 3, we present the research methodology; in Section 4, dataset construction and CNN
architecture are described; in Section 5, we detail the evaluation techniques; in Section 6,
we conclude the paper with a summary and discuss possible future work.

2. Background and Related Works
2.1. Previous Attempts for Tigrinya Natural Language Processing

We review existing works related to the proposed scheme, mainly considering pre-
vious attempts with the Tigrinya language. The majority of Tigrinya speakers live in Eri-
trea and the northern part of Ethiopia (Tigray Province) in Africa’s horn, with an esti-
mated population of more than 10 million [16]. Tigrinya is ranked third among the widely-
spoken Semitic language families in the world, after Arabic and Amharic [17]. Despite
Tigrinya sharing similarity with most Semitic languages in several ways, Tigrinya has dif-
ferent compound prepositions such as “ኣብልዕሉዓራት or ab leliarat” (on (top of) the bed),
which has the preposition ኣብ/ab, preposition ልዕሉ/leli, and noun ዓራት/arat.

Furthermore, Abate et al. [18] mentioned that Tigrinya is a highly inflected language
and features complex morphological characteristics due to basic word formations being
based on sequences of consonants expressed by “roots” and “template patterns.” Littell et
al. [19] stated that Tigrinya also shows both inflectional and derivational morphologies,
where the former pertains to the tense, mood, gender, person, number, etc. Simultane-
ously, the latter produces different case patterns that include voice, causative, and fre-
quentative forms. The presence of the two morphologies for the construction of enormous
numbers of variants for a single word through the prefix, infix, and suffix affixations leads
to the lack of data. Nonetheless, Tigrinya belongs to the set of low-resource languages that
are conveyed with minimal data, linguistic materials, and tools [4, 6].

Recently, a few researchers have attempted to challenge common corpora techniques,
as shown in Table 1. Some of the researchers have attempted to develop volumes of words,
tokens, or sentences. Furthermore, a few Tigrinya researchers have considered prepro-
cessing by using word stemming techniques and their impact on result accuracy [3]. In
their first attempt, Fisseha [20] developed a rule-based stemming algorithm with a dic-
tionary-based stemming method that found better results for feature selection with Tigri-
nya information retrieval tasks, despite the fact that most stemming methods give good
results. Overall, according to the Tigrinya NLP literature review, we have observed that
none of the researchers have implemented neural network approaches for the text classi-
fication of the Tigrinya language.

Table 1. Literature review of previous Tigrinya natural language processing (NLP) research papers.

Author Main Application Sentences/Tokens Year
Fisseha [20] Stemming algorithm 690,000 2011

Reda et al. [21] Unsupervised ML word sense disambiguation 190,000 2018
Osman et al. [3] Stemming Tigrinya words 164,634 2012
Yemane et al. [6] Post tagging for Tigrinya 72,000 2016

or ab leliarat” (on (top of) the bed), which has
the preposition

Information 2021, 12, x FOR PEER REVIEW 3 of 18

It is expected that the results of this study will reveal how the use of a given word
embedding model affects Tigrinya news article classification with CNNs. Furthermore,
CNNs are used in many research approaches for natural language processing research
problems because of their ability to learn complex feature representations as compared
with traditional machine learning approaches. We apply a CNN-based approach for cat-
egorization at the sentence level based on the semantics extracted from the corpus. We
compare the FastText and word2vec pretrained vectors in terms of their impact on text
classification. Our results indicate that the word2vec CNN approach outperforms the
other approaches by 93.41% in terms of classification accuracy. The structure of this paper
is as follows: In Section 2 , we present the research background and related works; in Sec-
tion 3, we present the research methodology; in Section 4, dataset construction and CNN
architecture are described; in Section 5, we detail the evaluation techniques; in Section 6,
we conclude the paper with a summary and discuss possible future work.

2. Background and Related Works
2.1. Previous Attempts for Tigrinya Natural Language Processing

We review existing works related to the proposed scheme, mainly considering pre-
vious attempts with the Tigrinya language. The majority of Tigrinya speakers live in Eri-
trea and the northern part of Ethiopia (Tigray Province) in Africa’s horn, with an esti-
mated population of more than 10 million [16]. Tigrinya is ranked third among the widely-
spoken Semitic language families in the world, after Arabic and Amharic [17]. Despite
Tigrinya sharing similarity with most Semitic languages in several ways, Tigrinya has dif-
ferent compound prepositions such as “ኣብልዕሉዓራት or ab leliarat” (on (top of) the bed),
which has the preposition ኣብ/ab, preposition ልዕሉ/leli, and noun ዓራት/arat.

Furthermore, Abate et al. [18] mentioned that Tigrinya is a highly inflected language
and features complex morphological characteristics due to basic word formations being
based on sequences of consonants expressed by “roots” and “template patterns.” Littell et
al. [19] stated that Tigrinya also shows both inflectional and derivational morphologies,
where the former pertains to the tense, mood, gender, person, number, etc. Simultane-
ously, the latter produces different case patterns that include voice, causative, and fre-
quentative forms. The presence of the two morphologies for the construction of enormous
numbers of variants for a single word through the prefix, infix, and suffix affixations leads
to the lack of data. Nonetheless, Tigrinya belongs to the set of low-resource languages that
are conveyed with minimal data, linguistic materials, and tools [4, 6].

Recently, a few researchers have attempted to challenge common corpora techniques,
as shown in Table 1. Some of the researchers have attempted to develop volumes of words,
tokens, or sentences. Furthermore, a few Tigrinya researchers have considered prepro-
cessing by using word stemming techniques and their impact on result accuracy [3]. In
their first attempt, Fisseha [20] developed a rule-based stemming algorithm with a dic-
tionary-based stemming method that found better results for feature selection with Tigri-
nya information retrieval tasks, despite the fact that most stemming methods give good
results. Overall, according to the Tigrinya NLP literature review, we have observed that
none of the researchers have implemented neural network approaches for the text classi-
fication of the Tigrinya language.

Table 1. Literature review of previous Tigrinya natural language processing (NLP) research papers.

Author Main Application Sentences/Tokens Year
Fisseha [20] Stemming algorithm 690,000 2011

Reda et al. [21] Unsupervised ML word sense disambiguation 190,000 2018
Osman et al. [3] Stemming Tigrinya words 164,634 2012
Yemane et al. [6] Post tagging for Tigrinya 72,000 2016

/ab, preposition

Information 2021, 12, x FOR PEER REVIEW 3 of 18

It is expected that the results of this study will reveal how the use of a given word
embedding model affects Tigrinya news article classification with CNNs. Furthermore,
CNNs are used in many research approaches for natural language processing research
problems because of their ability to learn complex feature representations as compared
with traditional machine learning approaches. We apply a CNN-based approach for cat-
egorization at the sentence level based on the semantics extracted from the corpus. We
compare the FastText and word2vec pretrained vectors in terms of their impact on text
classification. Our results indicate that the word2vec CNN approach outperforms the
other approaches by 93.41% in terms of classification accuracy. The structure of this paper
is as follows: In Section 2 , we present the research background and related works; in Sec-
tion 3, we present the research methodology; in Section 4, dataset construction and CNN
architecture are described; in Section 5, we detail the evaluation techniques; in Section 6,
we conclude the paper with a summary and discuss possible future work.

2. Background and Related Works
2.1. Previous Attempts for Tigrinya Natural Language Processing

We review existing works related to the proposed scheme, mainly considering pre-
vious attempts with the Tigrinya language. The majority of Tigrinya speakers live in Eri-
trea and the northern part of Ethiopia (Tigray Province) in Africa’s horn, with an esti-
mated population of more than 10 million [16]. Tigrinya is ranked third among the widely-
spoken Semitic language families in the world, after Arabic and Amharic [17]. Despite
Tigrinya sharing similarity with most Semitic languages in several ways, Tigrinya has dif-
ferent compound prepositions such as “ኣብልዕሉዓራት or ab leliarat” (on (top of) the bed),
which has the preposition ኣብ/ab, preposition ልዕሉ/leli, and noun ዓራት/arat.

Furthermore, Abate et al. [18] mentioned that Tigrinya is a highly inflected language
and features complex morphological characteristics due to basic word formations being
based on sequences of consonants expressed by “roots” and “template patterns.” Littell et
al. [19] stated that Tigrinya also shows both inflectional and derivational morphologies,
where the former pertains to the tense, mood, gender, person, number, etc. Simultane-
ously, the latter produces different case patterns that include voice, causative, and fre-
quentative forms. The presence of the two morphologies for the construction of enormous
numbers of variants for a single word through the prefix, infix, and suffix affixations leads
to the lack of data. Nonetheless, Tigrinya belongs to the set of low-resource languages that
are conveyed with minimal data, linguistic materials, and tools [4, 6].

Recently, a few researchers have attempted to challenge common corpora techniques,
as shown in Table 1. Some of the researchers have attempted to develop volumes of words,
tokens, or sentences. Furthermore, a few Tigrinya researchers have considered prepro-
cessing by using word stemming techniques and their impact on result accuracy [3]. In
their first attempt, Fisseha [20] developed a rule-based stemming algorithm with a dic-
tionary-based stemming method that found better results for feature selection with Tigri-
nya information retrieval tasks, despite the fact that most stemming methods give good
results. Overall, according to the Tigrinya NLP literature review, we have observed that
none of the researchers have implemented neural network approaches for the text classi-
fication of the Tigrinya language.

Table 1. Literature review of previous Tigrinya natural language processing (NLP) research papers.

Author Main Application Sentences/Tokens Year
Fisseha [20] Stemming algorithm 690,000 2011

Reda et al. [21] Unsupervised ML word sense disambiguation 190,000 2018
Osman et al. [3] Stemming Tigrinya words 164,634 2012
Yemane et al. [6] Post tagging for Tigrinya 72,000 2016

/leli, and noun

Information 2021, 12, x FOR PEER REVIEW 3 of 18

It is expected that the results of this study will reveal how the use of a given word
embedding model affects Tigrinya news article classification with CNNs. Furthermore,
CNNs are used in many research approaches for natural language processing research
problems because of their ability to learn complex feature representations as compared
with traditional machine learning approaches. We apply a CNN-based approach for cat-
egorization at the sentence level based on the semantics extracted from the corpus. We
compare the FastText and word2vec pretrained vectors in terms of their impact on text
classification. Our results indicate that the word2vec CNN approach outperforms the
other approaches by 93.41% in terms of classification accuracy. The structure of this paper
is as follows: In Section 2 , we present the research background and related works; in Sec-
tion 3, we present the research methodology; in Section 4, dataset construction and CNN
architecture are described; in Section 5, we detail the evaluation techniques; in Section 6,
we conclude the paper with a summary and discuss possible future work.

2. Background and Related Works
2.1. Previous Attempts for Tigrinya Natural Language Processing

We review existing works related to the proposed scheme, mainly considering pre-
vious attempts with the Tigrinya language. The majority of Tigrinya speakers live in Eri-
trea and the northern part of Ethiopia (Tigray Province) in Africa’s horn, with an esti-
mated population of more than 10 million [16]. Tigrinya is ranked third among the widely-
spoken Semitic language families in the world, after Arabic and Amharic [17]. Despite
Tigrinya sharing similarity with most Semitic languages in several ways, Tigrinya has dif-
ferent compound prepositions such as “ኣብልዕሉዓራት or ab leliarat” (on (top of) the bed),
which has the preposition ኣብ/ab, preposition ልዕሉ/leli, and noun ዓራት/arat.

Furthermore, Abate et al. [18] mentioned that Tigrinya is a highly inflected language
and features complex morphological characteristics due to basic word formations being
based on sequences of consonants expressed by “roots” and “template patterns.” Littell et
al. [19] stated that Tigrinya also shows both inflectional and derivational morphologies,
where the former pertains to the tense, mood, gender, person, number, etc. Simultane-
ously, the latter produces different case patterns that include voice, causative, and fre-
quentative forms. The presence of the two morphologies for the construction of enormous
numbers of variants for a single word through the prefix, infix, and suffix affixations leads
to the lack of data. Nonetheless, Tigrinya belongs to the set of low-resource languages that
are conveyed with minimal data, linguistic materials, and tools [4, 6].

Recently, a few researchers have attempted to challenge common corpora techniques,
as shown in Table 1. Some of the researchers have attempted to develop volumes of words,
tokens, or sentences. Furthermore, a few Tigrinya researchers have considered prepro-
cessing by using word stemming techniques and their impact on result accuracy [3]. In
their first attempt, Fisseha [20] developed a rule-based stemming algorithm with a dic-
tionary-based stemming method that found better results for feature selection with Tigri-
nya information retrieval tasks, despite the fact that most stemming methods give good
results. Overall, according to the Tigrinya NLP literature review, we have observed that
none of the researchers have implemented neural network approaches for the text classi-
fication of the Tigrinya language.

Table 1. Literature review of previous Tigrinya natural language processing (NLP) research papers.

Author Main Application Sentences/Tokens Year
Fisseha [20] Stemming algorithm 690,000 2011

Reda et al. [21] Unsupervised ML word sense disambiguation 190,000 2018
Osman et al. [3] Stemming Tigrinya words 164,634 2012
Yemane et al. [6] Post tagging for Tigrinya 72,000 2016

/arat.
Furthermore, Abate et al. [18] mentioned that Tigrinya is a highly inflected language

and features complex morphological characteristics due to basic word formations be-
ing based on sequences of consonants expressed by “roots” and “template patterns.”
Littell et al. [19] stated that Tigrinya also shows both inflectional and derivational mor-
phologies, where the former pertains to the tense, mood, gender, person, number, etc.
Simultaneously, the latter produces different case patterns that include voice, causative,
and frequentative forms. The presence of the two morphologies for the construction of
enormous numbers of variants for a single word through the prefix, infix, and suffix affix-
ations leads to the lack of data. Nonetheless, Tigrinya belongs to the set of low-resource
languages that are conveyed with minimal data, linguistic materials, and tools [4,6].

Recently, a few researchers have attempted to challenge common corpora techniques,
as shown in Table 1. Some of the researchers have attempted to develop volumes of
words, tokens, or sentences. Furthermore, a few Tigrinya researchers have considered
preprocessing by using word stemming techniques and their impact on result accuracy [3].
In their first attempt, Fisseha [20] developed a rule-based stemming algorithm with a
dictionary-based stemming method that found better results for feature selection with
Tigrinya information retrieval tasks, despite the fact that most stemming methods give
good results. Overall, according to the Tigrinya NLP literature review, we have observed
that none of the researchers have implemented neural network approaches for the text
classification of the Tigrinya language.

Table 1. Literature review of previous Tigrinya natural language processing (NLP) research papers.

Author Main Application Sentences/Tokens Year

Fisseha [20] Stemming algorithm 690,000 2011
Reda et al. [21] Unsupervised ML word sense disambiguation 190,000 2018
Osman et al. [3] Stemming Tigrinya words 164,634 2012
Yemane et al. [6] Post tagging for Tigrinya 72,000 2016

2.2. Text Classification

A conventional text classification framework consists of preprocessing, feature ex-
traction, feature selection, and classification stages. These applications have to deal with
several problems related to both the nature and structure of the underlying textual infor-

Information 2021, 12, 52 4 of 17

mation for languages by converting word variations into concise representations while
preserving most of the linguistic features. Similarly, Uysal et al. [22] also studied the
impact of preprocessing on language in both the text and language domains, where the
preprocessing affected the accuracy. They further concluded that the preprocessing step in
text classification is as essential as the feature extraction, feature selection, and classification
steps. Specifically, conventional approaches for text analysis use typical features, such as
bag-of-words [23], n-gram [24], and term frequency-inverse document frequency (TF–IDF)
methods [25] as input methods for machine learning algorithms such as Naïve Bayes (NB)
classifiers [26], K-nearest neighbor (KNN) algorithms [27], and support vector machines
(SVMs) [28] for classification. Text classification is based on the statistical frequency of
sentiment-related words extracted from tools such as lexicons [29]. Zhang et al. [29] pro-
vided an improved TF-IDF approach that used confidence, support, and characteristic
words to enhance the recall and accuracy for text classification.

It is easy to see how machine learning has become a field of interest for text classifica-
tion tasks, where machine-learning methods show great potential for obtaining linguistic
knowledge. Although statistical machine learning-based representation models have
achieved comparable performance, their shortcomings are apparent. First, these techniques
only concentrate on word frequency features and completely neglect the contextual struc-
ture information in text, making it a challenge to capture text semantics. Second, the success
of these statistical approaches in machine learning typically heavily depends on laborious
engineering feats and the use of enormous linguistic resources.

In recent years, there has been a complete shift from statistical machine learning to
state-of-the-art deep learning with text categorization models [30,31]. Zhang et al. [32]
mentioned that natural language-based text classification has a wide range of applications,
ranging from emotion classification to text classification. With their first design, Collobert
and Wetson [33] found that image preprocessing methods could also be used for natural
language preprocessing. Moreover, many researchers have applied neural networks to text
classification problems by using end-to-end deep neural networks to extract contextual
features from raw text data. Kim [12] adopted a method to capture local features from
different positions of words in sentences using various convolutional neural network
architectures. Similarly, Zhang et al. [34] designed a powerful method using character-level
information for text classification. Furthermore, Lai [35] also recommended recurrent
neural network models for contextual information, together with a convolutional neural
network. Most useful information from text is obtained through pooling technology
and also CNNs in conjunction with unsupervised word vectors on top of single-layer
convolutions and the use of relatively simple kernel convolutional kernels as fixed windows.
Pennington et al. [36] devised an approach based on a corpus that considered linear
substructures in word embedding space models such as word2vec via thorough training
with global word co-occurrence data.

For multi-label classifications with short texts, Parwez [37] mentioned that CNN
architectures introduce promising results by using domain-specific word embedding.
Tang et al. [38] stated that sentiment-based word embedding models should be designed
by encoding textual information along with word contexts, enabling the discernment of
opposite word polarities in related contexts. On the basis of the improved word embedding
methods where training is based on word-to-word co-occurrence in a corpus, a CNN is
used here to extract features in order to obtain excellent high-level sentence representa-
tions. Pennington et al. [36] introduced the GloVe model, which is an unsupervised world
log-bilinear regression model that is used for mastering the representations of relatively
uncommon words. Additionally, Joulin et al. [39] tried to show learning model repre-
sentations of vectors by mixing unsupervised and supervised techniques to research the
vectors of words to capture semantic information. In [40], it was shown that combining
a CNN with a RNN (recurrent neural networks) for the sentiment analysis of short texts
provide good results. In [25], a CNN was used, and character-level information was consid-
ered, to support word-level embedding. One of the contributions of this work is using an

Information 2021, 12, 52 5 of 17

end-to-end network that comprises four main steps, namely, word vectorization, sentence
vectorization, document vectorization, and then classification. We compare the results of
the proposed method with other machine learning approaches.

2.3. Word Embeddings

Word embedding is foundational to natural language processing and represents the
words in a text in an R-dimensional vector space, thereby enabling the capture of semantics,
semantic similarity between words, and syntactic information for words. Word embedding
approaches via word2vec have been proposed by Mikolov et al. [15]. Pennington et al. [36]
and Arora et al. [36,41] introduced Word2vec’s semantic similarity as a standard sequence
embedding method that translates natural language into distributed representations of
vectors; however, in order to overcome the inability of a predefined dictionary to learn rare
word representations, FastText [42] is also used for character embedding. The word2vec
and FastText models, which include two separate components (CBOW and skip-gram),
can capture contextual word-to-word relationships in a multidimensional space as a pre-
liminary step for predictive models used for semantics and data retrieval tasks [14,40].
Figure 1 shows that when the context words are given, the CBOW component infers the
target word, while the skip-gram component infers the context words when the input word
is provided [43]. In addition to that, the input, projection, and output layers are available
for both learning algorithms, although their processes of output formulation are differ-
ent. The input layer receives Wn =

{
W(c−2),W(c−1) ,, W(c+1), W(c+2)

}
as arguments,

where Wn denotes words. The projection layer corresponds to an array of multidimensional
vectors and stores the sum of several vectors. The output layer corresponds to the layer
that outputs the results of the vectorization.

Figure 1. Continuous bag-of-words (CBOW) and skip-gram architectures.

Information 2021, 12, 52 6 of 17

3. Research Methods and Dataset Construction
Research Methods

Figure 2 shows the research methodology. Generally, the first process is data collection,
where text data are collected from various sources. We created a single-label dataset
(Dataset 1) that used 90% of data for training and 10% for testing. We also considered an
unsupervised corpus (Dataset 2). Some text preprocessing steps were carried out before
the data were passed to the model. These steps included removing extra white spaces,
removing meaningless words, removing duplicate words, tokenization, cleaning, and the
removal of stop words. These steps provided unique and meaningful sequences of words
with unique identifications. With Dataset 2, we performed word embedding using FastText
and word2vec with both the CBOW and skip-gram algorithms. These algorithms were
trained with 100 dimensions and window sizes of 5 for both word embedding techniques
to capture meaningful vectors that were able to learn from the nature of our data type,
as well as from the morphological richness of the language. Using the preprocessed words,
the embedding layer learned distributed representations for input tokens and these tokens
had the same latent relationships. We applied a CNN-based approach to automatically learn
and classify sentences into one of the six categories in evaluation Dataset 1. CNNs require
inputs to have a static size and sentence lengths can vary greatly. Consequently, we used a
maximum average word length of 235. Finally, considering the categorical news articles,
based on the pretrained word vectors, we evaluated the accuracy, precision, recall, and F1
scores between methods. The methodology that we used is very close to that which was
proposed in [12].

Figure 2. Block diagram of the overall architecture of our method. CNN, convolutional neural network.

4. Dataset Construction and CNN Architecture
4.1. Single-Label Tigrinya News Articles Dataset

We obtained news articles from popular news sources via web scraping and manual
data collection techniques. We employed web-scraping tools (Selenium Python, requests,
Beautiful Soup, and PowerShell) for news accessible sources on the Internet (Figure
3a) and the number of articles for each categories as stated in (Figure 3b). Further-
more, we also collected news articles in the form of word documents from the Tigray
Mass Media Agency (a broadcast TV news agency) that transmitted on air from 2012 to
2018. The newly underlying corpus has six categories, i.e.,

Information 2021, 12, x FOR PEER REVIEW 6 of 18

3. Research Methods and Dataset Construction
Research Methods

Figure 2 shows the research methodology. Generally, the first process is data collec-
tion, where text data are collected from various sources. We created a single-label dataset
(Dataset 1) that used 90% of data for training and 10% for testing. We also considered an
unsupervised corpus (Dataset 2). Some text preprocessing steps were carried out before
the data were passed to the model. These steps included removing extra white spaces,
removing meaningless words, removing duplicate words, tokenization, cleaning, and the
removal of stop words. These steps provided unique and meaningful sequences of words
with unique identifications. With Dataset 2, we performed word embedding using
FastText and word2vec with both the CBOW and skip-gram algorithms. These algorithms
were trained with 100 dimensions and window sizes of 5 for both word embedding tech-
niques to capture meaningful vectors that were able to learn from the nature of our data
type, as well as from the morphological richness of the language. Using the preprocessed
words, the embedding layer learned distributed representations for input tokens and
these tokens had the same latent relationships. We applied a CNN-based approach to au-
tomatically learn and classify sentences into one of the six categories in evaluation Dataset
1. CNNs require inputs to have a static size and sentence lengths can vary greatly. Conse-
quently, we used a maximum average word length of 235. Finally, considering the cate-
gorical news articles, based on the pretrained word vectors, we evaluated the accuracy,
precision, recall, and F1 scores between methods. The methodology that we used is very
close to that which was proposed in [12].

Figure 2. Block diagram of the overall architecture of our method. CNN, convolutional neural network.

4. Dataset Construction and CNN Architecture
4.1. Single-Label Tigrinya News Articles Dataset

We obtained news articles from popular news sources via web scraping and manual
data collection techniques. We employed web-scraping tools (Selenium Python, requests,
Beautiful Soup, and PowerShell) for news accessible sources on the Internet (Figure 3a)
and the number of articles for each categories as stated in (Figure 3b). Furthermore, we
also collected news articles in the form of word documents from the Tigray Mass Media
Agency (a broadcast TV news agency) that transmitted on air from 2012 to 2018. The
newly underlying corpus has six categories, i.e., ስፖርት (“sport”), ሃይማኖት (“religion”),
ጥዕና (“health”), agriculture (“ሕርሻ”), politics (“ፖለቲካ”), and education (“ትምህርቲ”) (“”)
(https://github.com/canawet/Tigrigna-convoluation-using-
word2vechttps://github.com/canawet/Tigrigna-convoluation-using-word2vec).

(“sport”),

Information 2021, 12, x FOR PEER REVIEW 6 of 18

3. Research Methods and Dataset Construction
Research Methods

Figure 2 shows the research methodology. Generally, the first process is data collec-
tion, where text data are collected from various sources. We created a single-label dataset
(Dataset 1) that used 90% of data for training and 10% for testing. We also considered an
unsupervised corpus (Dataset 2). Some text preprocessing steps were carried out before
the data were passed to the model. These steps included removing extra white spaces,
removing meaningless words, removing duplicate words, tokenization, cleaning, and the
removal of stop words. These steps provided unique and meaningful sequences of words
with unique identifications. With Dataset 2, we performed word embedding using
FastText and word2vec with both the CBOW and skip-gram algorithms. These algorithms
were trained with 100 dimensions and window sizes of 5 for both word embedding tech-
niques to capture meaningful vectors that were able to learn from the nature of our data
type, as well as from the morphological richness of the language. Using the preprocessed
words, the embedding layer learned distributed representations for input tokens and
these tokens had the same latent relationships. We applied a CNN-based approach to au-
tomatically learn and classify sentences into one of the six categories in evaluation Dataset
1. CNNs require inputs to have a static size and sentence lengths can vary greatly. Conse-
quently, we used a maximum average word length of 235. Finally, considering the cate-
gorical news articles, based on the pretrained word vectors, we evaluated the accuracy,
precision, recall, and F1 scores between methods. The methodology that we used is very
close to that which was proposed in [12].

Figure 2. Block diagram of the overall architecture of our method. CNN, convolutional neural network.

4. Dataset Construction and CNN Architecture
4.1. Single-Label Tigrinya News Articles Dataset

We obtained news articles from popular news sources via web scraping and manual
data collection techniques. We employed web-scraping tools (Selenium Python, requests,
Beautiful Soup, and PowerShell) for news accessible sources on the Internet (Figure 3a)
and the number of articles for each categories as stated in (Figure 3b). Furthermore, we
also collected news articles in the form of word documents from the Tigray Mass Media
Agency (a broadcast TV news agency) that transmitted on air from 2012 to 2018. The
newly underlying corpus has six categories, i.e., ስፖርት (“sport”), ሃይማኖት (“religion”),
ጥዕና (“health”), agriculture (“ሕርሻ”), politics (“ፖለቲካ”), and education (“ትምህርቲ”) (“”)
(https://github.com/canawet/Tigrigna-convoluation-using-
word2vechttps://github.com/canawet/Tigrigna-convoluation-using-word2vec).

(“reli-
gion”),

Information 2021, 12, x FOR PEER REVIEW 6 of 18

3. Research Methods and Dataset Construction
Research Methods

Figure 2 shows the research methodology. Generally, the first process is data collec-
tion, where text data are collected from various sources. We created a single-label dataset
(Dataset 1) that used 90% of data for training and 10% for testing. We also considered an
unsupervised corpus (Dataset 2). Some text preprocessing steps were carried out before
the data were passed to the model. These steps included removing extra white spaces,
removing meaningless words, removing duplicate words, tokenization, cleaning, and the
removal of stop words. These steps provided unique and meaningful sequences of words
with unique identifications. With Dataset 2, we performed word embedding using
FastText and word2vec with both the CBOW and skip-gram algorithms. These algorithms
were trained with 100 dimensions and window sizes of 5 for both word embedding tech-
niques to capture meaningful vectors that were able to learn from the nature of our data
type, as well as from the morphological richness of the language. Using the preprocessed
words, the embedding layer learned distributed representations for input tokens and
these tokens had the same latent relationships. We applied a CNN-based approach to au-
tomatically learn and classify sentences into one of the six categories in evaluation Dataset
1. CNNs require inputs to have a static size and sentence lengths can vary greatly. Conse-
quently, we used a maximum average word length of 235. Finally, considering the cate-
gorical news articles, based on the pretrained word vectors, we evaluated the accuracy,
precision, recall, and F1 scores between methods. The methodology that we used is very
close to that which was proposed in [12].

Figure 2. Block diagram of the overall architecture of our method. CNN, convolutional neural network.

4. Dataset Construction and CNN Architecture
4.1. Single-Label Tigrinya News Articles Dataset

We obtained news articles from popular news sources via web scraping and manual
data collection techniques. We employed web-scraping tools (Selenium Python, requests,
Beautiful Soup, and PowerShell) for news accessible sources on the Internet (Figure 3a)
and the number of articles for each categories as stated in (Figure 3b). Furthermore, we
also collected news articles in the form of word documents from the Tigray Mass Media
Agency (a broadcast TV news agency) that transmitted on air from 2012 to 2018. The
newly underlying corpus has six categories, i.e., ስፖርት (“sport”), ሃይማኖት (“religion”),
ጥዕና (“health”), agriculture (“ሕርሻ”), politics (“ፖለቲካ”), and education (“ትምህርቲ”) (“”)
(https://github.com/canawet/Tigrigna-convoluation-using-
word2vechttps://github.com/canawet/Tigrigna-convoluation-using-word2vec).

(“health”), agriculture (“

Information 2021, 12, x FOR PEER REVIEW 6 of 18

3. Research Methods and Dataset Construction
Research Methods

Figure 2 shows the research methodology. Generally, the first process is data collec-
tion, where text data are collected from various sources. We created a single-label dataset
(Dataset 1) that used 90% of data for training and 10% for testing. We also considered an
unsupervised corpus (Dataset 2). Some text preprocessing steps were carried out before
the data were passed to the model. These steps included removing extra white spaces,
removing meaningless words, removing duplicate words, tokenization, cleaning, and the
removal of stop words. These steps provided unique and meaningful sequences of words
with unique identifications. With Dataset 2, we performed word embedding using
FastText and word2vec with both the CBOW and skip-gram algorithms. These algorithms
were trained with 100 dimensions and window sizes of 5 for both word embedding tech-
niques to capture meaningful vectors that were able to learn from the nature of our data
type, as well as from the morphological richness of the language. Using the preprocessed
words, the embedding layer learned distributed representations for input tokens and
these tokens had the same latent relationships. We applied a CNN-based approach to au-
tomatically learn and classify sentences into one of the six categories in evaluation Dataset
1. CNNs require inputs to have a static size and sentence lengths can vary greatly. Conse-
quently, we used a maximum average word length of 235. Finally, considering the cate-
gorical news articles, based on the pretrained word vectors, we evaluated the accuracy,
precision, recall, and F1 scores between methods. The methodology that we used is very
close to that which was proposed in [12].

Figure 2. Block diagram of the overall architecture of our method. CNN, convolutional neural network.

4. Dataset Construction and CNN Architecture
4.1. Single-Label Tigrinya News Articles Dataset

We obtained news articles from popular news sources via web scraping and manual
data collection techniques. We employed web-scraping tools (Selenium Python, requests,
Beautiful Soup, and PowerShell) for news accessible sources on the Internet (Figure 3a)
and the number of articles for each categories as stated in (Figure 3b). Furthermore, we
also collected news articles in the form of word documents from the Tigray Mass Media
Agency (a broadcast TV news agency) that transmitted on air from 2012 to 2018. The
newly underlying corpus has six categories, i.e., ስፖርት (“sport”), ሃይማኖት (“religion”),
ጥዕና (“health”), agriculture (“ሕርሻ”), politics (“ፖለቲካ”), and education (“ትምህርቲ”) (“”)
(https://github.com/canawet/Tigrigna-convoluation-using-
word2vechttps://github.com/canawet/Tigrigna-convoluation-using-word2vec).

”), politics (“

Information 2021, 12, x FOR PEER REVIEW 6 of 18

3. Research Methods and Dataset Construction
Research Methods

Figure 2 shows the research methodology. Generally, the first process is data collec-
tion, where text data are collected from various sources. We created a single-label dataset
(Dataset 1) that used 90% of data for training and 10% for testing. We also considered an
unsupervised corpus (Dataset 2). Some text preprocessing steps were carried out before
the data were passed to the model. These steps included removing extra white spaces,
removing meaningless words, removing duplicate words, tokenization, cleaning, and the
removal of stop words. These steps provided unique and meaningful sequences of words
with unique identifications. With Dataset 2, we performed word embedding using
FastText and word2vec with both the CBOW and skip-gram algorithms. These algorithms
were trained with 100 dimensions and window sizes of 5 for both word embedding tech-
niques to capture meaningful vectors that were able to learn from the nature of our data
type, as well as from the morphological richness of the language. Using the preprocessed
words, the embedding layer learned distributed representations for input tokens and
these tokens had the same latent relationships. We applied a CNN-based approach to au-
tomatically learn and classify sentences into one of the six categories in evaluation Dataset
1. CNNs require inputs to have a static size and sentence lengths can vary greatly. Conse-
quently, we used a maximum average word length of 235. Finally, considering the cate-
gorical news articles, based on the pretrained word vectors, we evaluated the accuracy,
precision, recall, and F1 scores between methods. The methodology that we used is very
close to that which was proposed in [12].

Figure 2. Block diagram of the overall architecture of our method. CNN, convolutional neural network.

4. Dataset Construction and CNN Architecture
4.1. Single-Label Tigrinya News Articles Dataset

We obtained news articles from popular news sources via web scraping and manual
data collection techniques. We employed web-scraping tools (Selenium Python, requests,
Beautiful Soup, and PowerShell) for news accessible sources on the Internet (Figure 3a)
and the number of articles for each categories as stated in (Figure 3b). Furthermore, we
also collected news articles in the form of word documents from the Tigray Mass Media
Agency (a broadcast TV news agency) that transmitted on air from 2012 to 2018. The
newly underlying corpus has six categories, i.e., ስፖርት (“sport”), ሃይማኖት (“religion”),
ጥዕና (“health”), agriculture (“ሕርሻ”), politics (“ፖለቲካ”), and education (“ትምህርቲ”) (“”)
(https://github.com/canawet/Tigrigna-convoluation-using-
word2vechttps://github.com/canawet/Tigrigna-convoluation-using-word2vec).

”), and education (“

Information 2021, 12, x FOR PEER REVIEW 6 of 18

3. Research Methods and Dataset Construction
Research Methods

Figure 2 shows the research methodology. Generally, the first process is data collec-
tion, where text data are collected from various sources. We created a single-label dataset
(Dataset 1) that used 90% of data for training and 10% for testing. We also considered an
unsupervised corpus (Dataset 2). Some text preprocessing steps were carried out before
the data were passed to the model. These steps included removing extra white spaces,
removing meaningless words, removing duplicate words, tokenization, cleaning, and the
removal of stop words. These steps provided unique and meaningful sequences of words
with unique identifications. With Dataset 2, we performed word embedding using
FastText and word2vec with both the CBOW and skip-gram algorithms. These algorithms
were trained with 100 dimensions and window sizes of 5 for both word embedding tech-
niques to capture meaningful vectors that were able to learn from the nature of our data
type, as well as from the morphological richness of the language. Using the preprocessed
words, the embedding layer learned distributed representations for input tokens and
these tokens had the same latent relationships. We applied a CNN-based approach to au-
tomatically learn and classify sentences into one of the six categories in evaluation Dataset
1. CNNs require inputs to have a static size and sentence lengths can vary greatly. Conse-
quently, we used a maximum average word length of 235. Finally, considering the cate-
gorical news articles, based on the pretrained word vectors, we evaluated the accuracy,
precision, recall, and F1 scores between methods. The methodology that we used is very
close to that which was proposed in [12].

Figure 2. Block diagram of the overall architecture of our method. CNN, convolutional neural network.

4. Dataset Construction and CNN Architecture
4.1. Single-Label Tigrinya News Articles Dataset

We obtained news articles from popular news sources via web scraping and manual
data collection techniques. We employed web-scraping tools (Selenium Python, requests,
Beautiful Soup, and PowerShell) for news accessible sources on the Internet (Figure 3a)
and the number of articles for each categories as stated in (Figure 3b). Furthermore, we
also collected news articles in the form of word documents from the Tigray Mass Media
Agency (a broadcast TV news agency) that transmitted on air from 2012 to 2018. The
newly underlying corpus has six categories, i.e., ስፖርት (“sport”), ሃይማኖት (“religion”),
ጥዕና (“health”), agriculture (“ሕርሻ”), politics (“ፖለቲካ”), and education (“ትምህርቲ”) (“”)
(https://github.com/canawet/Tigrigna-convoluation-using-
word2vechttps://github.com/canawet/Tigrigna-convoluation-using-word2vec).

”) (
https://github.com/canawet/Tigrigna-convoluation-using-word2vec) (https://github.com/
canawet/Tigrigna-convoluation-using-word2vec).

https://github.com/canawet/Tigrigna-convoluation-using-word2vec
https://github.com/canawet/Tigrigna-convoluation-using-word2vec
https://github.com/canawet/Tigrigna-convoluation-using-word2vec
https://github.com/canawet/Tigrigna-convoluation-using-word2vec

Information 2021, 12, 52 7 of 17

Figure 3. (a) Corpus website sources; (b) Number of articles per categories.

For the collected news articles, data were assigned to particular categories based on
manual categorization.

Our dataset consisted of 30,000 articles, and we split the dataset into subsets, i.e.,
24,000 articles for the training set and 6000 for the test set. We used 90% of articles in
the training set (3600 for each category) and 10% for testing (1000 articles for each class).
The training dataset was used to train the classifier and optimize the parameters, while the
test dataset (unseen to the model) was reserved for testing the built model and determining
the quality of the trained model. Statistics for the aforementioned dataset are given in
Table 2.

Table 2. Dataset summary.

Training
Instances

Validation
Instances

Category
(Class Labels)

Length
(Maximum)

Words
(Average)

Vocabulary
Size

30,000 6000 6 1000 235 51,000

4.1.1. Tigrinya Corpus Collection and Preparation

In NLP applications, the use of conventional features such as term frequency-inverse
document frequency (TF-IDF) has proven to be less efficient than word embedding [44].
Consequently, as a significant part of our contribution, we developed our own “Tigrinya
multi-domain” corpus via data collected from various sources. Our second dataset was
used to test the success of solving Tigrinya text classification problems and was used with
the word2vec model using Genism [45]. Figure 4 show the steps for constructing our
word embedding model Furthermore Figure 5 also shows similar model that apply to
our methodology.

Figure 4. Summary for Tigrinya word embedding. The left section of the figure describes the data collection process.
The middle section shows the data-preprocessing step. The right section describes the word embedding process.

Information 2021, 12, 52 8 of 17

Figure 5. Sentence classification using the CNN.

Table 3 shows a detailed summary of word embedding in terms of quantity. Further
information can be found in Appendix A.

Table 3. Detailed summary of the word embedding collection.

Number of documents 111,082

Number of sentences 17,000

Number of words (vocabulary) 6,002,034

Number of unique words 368,453

4.1.2. Data Preprocessing

In order to prepare text data well before input into the classification training models,
text preprocessing is an essential step. We applied the following steps to remove unrelated
characters and symbols:

• Removing stop words using Python, Figure 6 shows an example of common stop words;
• Tokenizing the texts using Python;
• Removing URLs and links to websites that started with “www.*” or “http://*”;
• Removing typing errors;
• Removing non-Tigrinya characters;
• We avoided normalization since it can affect word meanings, for example, the verb

“eat” in English is equivalently translated to the Tigrinya form “

Information 2021, 12, x FOR PEER REVIEW 8 of 18

Figure 5. Sentence classification using the CNN.

Table 3 shows a detailed summary of word embedding in terms of quantity. Further
information can be found in Appendix A.

Table 3. Detailed summary of the word embedding collection.

Number of documents 111,082
Number of sentences 17,000

Number of words (vocabulary) 6,002,034
Number of unique words 368,453

4.1.2. Data Preprocessing
In order to prepare text data well before input into the classification training models,

text preprocessing is an essential step. We applied the following steps to remove unrelated
characters and symbols:
• Removing stop words using Python, Figure 6 shows an example of common stop

words;
• Tokenizing the texts using Python;
• Removing URLs and links to websites that started with “www.*” or “http://*”;
• Removing typing errors;
• Removing non-Tigrinya characters;
• We avoided normalization since it can affect word meanings, for example, the verb

“eat” in English is equivalently translated to the Tigrinya form “በልዐ/bele”, and add-
ing the prefix “ke/ክእ” changes the word to “kebele/ክእበልዐ”, meaning to “let me eat”;

• Furthermore, we also prepared a list for mapping known abbreviations into counter-
part meanings, e.g., abbreviated “(bet t/t (ቤት ት/ቲ)” means “school/ትምህርቲ ቤት” and
abbreviated “betf/di (ቤት ፍ/ዲ)” means “justice office/ቤት ፍርዲ”.

Figure 6. Stop word examples.

/bele”, and adding
the prefix “ke/

Information 2021, 12, x FOR PEER REVIEW 8 of 18

Figure 5. Sentence classification using the CNN.

Table 3 shows a detailed summary of word embedding in terms of quantity. Further
information can be found in Appendix A.

Table 3. Detailed summary of the word embedding collection.

Number of documents 111,082
Number of sentences 17,000

Number of words (vocabulary) 6,002,034
Number of unique words 368,453

4.1.2. Data Preprocessing
In order to prepare text data well before input into the classification training models,

text preprocessing is an essential step. We applied the following steps to remove unrelated
characters and symbols:
• Removing stop words using Python, Figure 6 shows an example of common stop

words;
• Tokenizing the texts using Python;
• Removing URLs and links to websites that started with “www.*” or “http://*”;
• Removing typing errors;
• Removing non-Tigrinya characters;
• We avoided normalization since it can affect word meanings, for example, the verb

“eat” in English is equivalently translated to the Tigrinya form “በልዐ/bele”, and add-
ing the prefix “ke/ክእ” changes the word to “kebele/ክእበልዐ”, meaning to “let me eat”;

• Furthermore, we also prepared a list for mapping known abbreviations into counter-
part meanings, e.g., abbreviated “(bet t/t (ቤት ት/ቲ)” means “school/ትምህርቲ ቤት” and
abbreviated “betf/di (ቤት ፍ/ዲ)” means “justice office/ቤት ፍርዲ”.

Figure 6. Stop word examples.

” changes the word to “kebele/

Information 2021, 12, x FOR PEER REVIEW 8 of 18

Figure 5. Sentence classification using the CNN.

Table 3 shows a detailed summary of word embedding in terms of quantity. Further
information can be found in Appendix A.

Table 3. Detailed summary of the word embedding collection.

Number of documents 111,082
Number of sentences 17,000

Number of words (vocabulary) 6,002,034
Number of unique words 368,453

4.1.2. Data Preprocessing
In order to prepare text data well before input into the classification training models,

text preprocessing is an essential step. We applied the following steps to remove unrelated
characters and symbols:
• Removing stop words using Python, Figure 6 shows an example of common stop

words;
• Tokenizing the texts using Python;
• Removing URLs and links to websites that started with “www.*” or “http://*”;
• Removing typing errors;
• Removing non-Tigrinya characters;
• We avoided normalization since it can affect word meanings, for example, the verb

“eat” in English is equivalently translated to the Tigrinya form “በልዐ/bele”, and add-
ing the prefix “ke/ክእ” changes the word to “kebele/ክእበልዐ”, meaning to “let me eat”;

• Furthermore, we also prepared a list for mapping known abbreviations into counter-
part meanings, e.g., abbreviated “(bet t/t (ቤት ት/ቲ)” means “school/ትምህርቲ ቤት” and
abbreviated “betf/di (ቤት ፍ/ዲ)” means “justice office/ቤት ፍርዲ”.

Figure 6. Stop word examples.

”, meaning to “let me eat”;
• Furthermore, we also prepared a list for mapping known abbreviations into counter-

part meanings, e.g., abbreviated “(bet t/t (

Information 2021, 12, x FOR PEER REVIEW 8 of 18

Figure 5. Sentence classification using the CNN.

Table 3 shows a detailed summary of word embedding in terms of quantity. Further
information can be found in Appendix A.

Table 3. Detailed summary of the word embedding collection.

Number of documents 111,082
Number of sentences 17,000

Number of words (vocabulary) 6,002,034
Number of unique words 368,453

4.1.2. Data Preprocessing
In order to prepare text data well before input into the classification training models,

text preprocessing is an essential step. We applied the following steps to remove unrelated
characters and symbols:
• Removing stop words using Python, Figure 6 shows an example of common stop

words;
• Tokenizing the texts using Python;
• Removing URLs and links to websites that started with “www.*” or “http://*”;
• Removing typing errors;
• Removing non-Tigrinya characters;
• We avoided normalization since it can affect word meanings, for example, the verb

“eat” in English is equivalently translated to the Tigrinya form “በልዐ/bele”, and add-
ing the prefix “ke/ክእ” changes the word to “kebele/ክእበልዐ”, meaning to “let me eat”;

• Furthermore, we also prepared a list for mapping known abbreviations into counter-
part meanings, e.g., abbreviated “(bet t/t (ቤት ት/ቲ)” means “school/ትምህርቲ ቤት” and
abbreviated “betf/di (ቤት ፍ/ዲ)” means “justice office/ቤት ፍርዲ”.

Figure 6. Stop word examples.

)” means “school/

Information 2021, 12, x FOR PEER REVIEW 8 of 18

Figure 5. Sentence classification using the CNN.

Table 3 shows a detailed summary of word embedding in terms of quantity. Further
information can be found in Appendix A.

Table 3. Detailed summary of the word embedding collection.

Number of documents 111,082
Number of sentences 17,000

Number of words (vocabulary) 6,002,034
Number of unique words 368,453

4.1.2. Data Preprocessing
In order to prepare text data well before input into the classification training models,

text preprocessing is an essential step. We applied the following steps to remove unrelated
characters and symbols:
• Removing stop words using Python, Figure 6 shows an example of common stop

words;
• Tokenizing the texts using Python;
• Removing URLs and links to websites that started with “www.*” or “http://*”;
• Removing typing errors;
• Removing non-Tigrinya characters;
• We avoided normalization since it can affect word meanings, for example, the verb

“eat” in English is equivalently translated to the Tigrinya form “በልዐ/bele”, and add-
ing the prefix “ke/ክእ” changes the word to “kebele/ክእበልዐ”, meaning to “let me eat”;

• Furthermore, we also prepared a list for mapping known abbreviations into counter-
part meanings, e.g., abbreviated “(bet t/t (ቤት ት/ቲ)” means “school/ትምህርቲ ቤት” and
abbreviated “betf/di (ቤት ፍ/ዲ)” means “justice office/ቤት ፍርዲ”.

Figure 6. Stop word examples.

” and
abbreviated “betf/di (

Information 2021, 12, x FOR PEER REVIEW 8 of 18

Figure 5. Sentence classification using the CNN.

Table 3 shows a detailed summary of word embedding in terms of quantity. Further
information can be found in Appendix A.

Table 3. Detailed summary of the word embedding collection.

Number of documents 111,082
Number of sentences 17,000

Number of words (vocabulary) 6,002,034
Number of unique words 368,453

4.1.2. Data Preprocessing
In order to prepare text data well before input into the classification training models,

text preprocessing is an essential step. We applied the following steps to remove unrelated
characters and symbols:
• Removing stop words using Python, Figure 6 shows an example of common stop

words;
• Tokenizing the texts using Python;
• Removing URLs and links to websites that started with “www.*” or “http://*”;
• Removing typing errors;
• Removing non-Tigrinya characters;
• We avoided normalization since it can affect word meanings, for example, the verb

“eat” in English is equivalently translated to the Tigrinya form “በልዐ/bele”, and add-
ing the prefix “ke/ክእ” changes the word to “kebele/ክእበልዐ”, meaning to “let me eat”;

• Furthermore, we also prepared a list for mapping known abbreviations into counter-
part meanings, e.g., abbreviated “(bet t/t (ቤት ት/ቲ)” means “school/ትምህርቲ ቤት” and
abbreviated “betf/di (ቤት ፍ/ዲ)” means “justice office/ቤት ፍርዲ”.

Figure 6. Stop word examples.

)” means “justice office/

Information 2021, 12, x FOR PEER REVIEW 8 of 18

Figure 5. Sentence classification using the CNN.

Table 3 shows a detailed summary of word embedding in terms of quantity. Further
information can be found in Appendix A.

Table 3. Detailed summary of the word embedding collection.

Number of documents 111,082
Number of sentences 17,000

Number of words (vocabulary) 6,002,034
Number of unique words 368,453

4.1.2. Data Preprocessing
In order to prepare text data well before input into the classification training models,

text preprocessing is an essential step. We applied the following steps to remove unrelated
characters and symbols:
• Removing stop words using Python, Figure 6 shows an example of common stop

words;
• Tokenizing the texts using Python;
• Removing URLs and links to websites that started with “www.*” or “http://*”;
• Removing typing errors;
• Removing non-Tigrinya characters;
• We avoided normalization since it can affect word meanings, for example, the verb

“eat” in English is equivalently translated to the Tigrinya form “በልዐ/bele”, and add-
ing the prefix “ke/ክእ” changes the word to “kebele/ክእበልዐ”, meaning to “let me eat”;

• Furthermore, we also prepared a list for mapping known abbreviations into counter-
part meanings, e.g., abbreviated “(bet t/t (ቤት ት/ቲ)” means “school/ትምህርቲ ቤት” and
abbreviated “betf/di (ቤት ፍ/ዲ)” means “justice office/ቤት ፍርዲ”.

Figure 6. Stop word examples.

”.

Figure 6. Stop word examples.

Information 2021, 12, 52 9 of 17

4.1.3. Basic CNN Architecture
Sequence Embedding Layer

Similar to many other CNN models [30,46], as shown in Figure 6, which is based
on [12], a sequential text vector is obtained by concatenating the embedded vectors of the
component words. Equation (1) details our method of word embedding as:

X = X1⊕ X2 ⊕ X3 ⊕ . . . ⊕Xn (1)

We made the lengths of sentences equal by padding zero values to form a text matrix of
k× n dimensions with k tokens and n length-embedding vectors. As shown in Equation (1),
we can represent a concatenation operator to concatenate word vector Xi corresponding
to the ith word, and k represents the number of words/tokens present within the text.
We consider k with a fixed length here (k = 250). To capture the discriminative features
from low-level word embedding, the CNN model applies a series of transformations to the
input sentence Xi:n using convolution, nonlinearity activation, and pooling operations in
the following layers.

Convolutional Layer

Unique features in the convolutional layer are extracted as word vectors corresponding
to each filter and feature map from a different width-embedding matrix. Discriminative
word sequences are found during the training process. The extracted features have low-
level semantic features as compared with the original text, thus, reducing the number of
dimensions. The convolution word filter considers positions that are independent for every
word and filters at higher layers capture syntactic or semantic associations between phrases
that are far apart in a text.

A W ∈ Rm×n filter was applied to word sections to obtain high-level representations,
where m shifts with stride s through the embedding matrix to produce feature map ci
and where each Ci is calculated using Equation (2). In this equation, “∗” represents the
convolution operation, which represents word vectors from Xi to Xi+m−1 (i.e., m rows at
a time) from X covered by filter W using strides. Additionally, “bi” represents the biased
term and the activation function f is usually of a nonlinear form, such as a sigmoid or
hyperbolic tangent form. In our case, f represents the rectified linear unit (ReLU) activation
function as:

Ci = f (W × X i:i+m−1 + bi
)

(2)

The ReLU is applied to a layer to inject nonlinearity to the system by making all the
negative values zero for any input x, as shown in Equation (3):

f = max{0, 1} (3)

This helps increase the model training speed without any significant difference in accu-
racy. Once the filter F iterates over the entire embedding matrix, we obtain a corresponding
feature map as shown in Equation (4):

C(f) = [C 1, C2, . . . , Cn−m + 1] (4)

Pooling Layer

The convolutional layer outputs are, then, passed to the pooling layer, which aggre-
gates the information and reduces the representation through common statistical meth-
ods, such as finding the mean, maximum, and L2-norm. The pooling layer can alleviate
overfitting and produce vectors of sentences with fixed lengths. Suppose there are K

Information 2021, 12, 52 10 of 17

different filters, we aggregate the original information in feature maps by pooling as per
Equation (5):

Zpooled=

 pool(f(F1 ∗W + b))
...

pool(f(Fz ∗W + b)

 (5)

where Fi is the ith convolutional filter map with the bias vector Zpooled =
(
Zmax

1 , Zmax
2 · · · zmax

k
)
,

which is a learned new distributed representation of the input sentence. In this paper,
we utilize a max-over-time pooling operation, which selects global semantic features and
attempts to capture the most important feature with the highest value for each feature map.
Given a feature map zi, the pooling operation returns the maximum value zmax in map
zi, i.e., zmax = max, where ZI is the resulting feature corresponding to the filter. Therefore,
we can obtain vectors if the model employs K parallel filters with different window sizes.

Fully Connected Layer

In this layer, each neuron has full connections with all of the neurons in the previ-
ous layer. The connection structure is the same as with layers in classic neural network
models. Dropout regularization is applied to the fully connected layer to avoid overfitting,
and therefore improve the generalization performance. When training the model, neu-
rons that are dropped have a probability of being temporarily removed from the network.
Dropped neurons are ignored when calculating the input and output for both forward prop-
agation and backward propagation. Therefore, the dropout technique prevents neurons
from co-adapting too much by making the presence of any neuron unreliable.

Softmax Function

Finally, the vector representations in the fully connected layer are passed to the softmax
function, and the output of the softmax function is the probability distribution over the
labels. For example, the probability of label yi is calculated as per Equation (6):

P
(
y = j

∣∣ Ĉ, W, b′
)
= softmax

(
W∗
(
Ĉ or

)
+ b′

)
= exp((W∗(Ĉ or)+b′)

∑n
k exp(Wk∗

̂c or)+b′k

(6)

A categorical cross-entropy loss function was used to train the classifier to categorize
news articles into different categories by training the classifier via calculating gradients and
using backward propagation. The loss was calculated using Equation (7), where xi is the
ith element of the dataset, yi represents the predicted label of the element xi, t represents
the number of training samples, and θ describes the parameters:

J(θ) = −1
t

t

∑
i=1

log(P
(

Y = yi |x i
)
) (7)

5. Experiment and Discussion

In this section, we explore the performances of CNN models trained with word2vec
(CBOW and skip-gram) and CNN models trained with FastText (CBOW and skip-gram) for
news articles. We use the accuracy, recall, precision, and F1 score as performance metrics.
The expressions of these metrics are given as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

Information 2021, 12, 52 11 of 17

F1 score = 2 × precision × recall
precision + recall

(11)

where the number of real positives among the predicted positives is delineated by true
positive (TP) and true negative (TN) denotes the number of real negatives among the
predicted negatives. Similarly, false negative (FN) denotes the number of real positives
among the predicted negatives, and false positive (FP) denotes the number of real negatives
among the predicted positives. Therefore, accuracy denotes the proportion of documents
classified correctly by the CNN among all documents, and recall denotes the proportion of
documents that are classified as positive by the CNN among all real positive documents.
Precision denotes the percentage of documents that are real positives among documents
classified as positive by the CNN, and the F1 score denotes the average of the weighted
recall and precision scores.

5.1. CNN Parameter Values

The CNN parameters that were applied for the pretrained CBOW and skip-gram
models were adapted from the literature [12,47]. A grid hyperparameter optimization
search method was applied to find the optimum value, as shown in Tables 4 and 5 for
both word embedding and CNN parameter. The word vector dimension d was equal to
100. Four different window sizes (filter widths) were used. The use of 100 filters resulted
in 100 feature maps, and the convolution filter weights and softmax weights were taken
uniformly from the interval [−0.1, 0.1]. The maximum pooling size was 2, which was used
to pool high-level features from the feature maps, and the pooled values were concatenated
to produce a single vector at the fully connected dense layer which was used to calculate
class probabilities. The model was trained using the “Adam” learning rate method with
20 epochs to avoid overfitting using a callback function. We used the dropout parameter P
at the embedding layer with p = 0.15 and the L2 regularization parameter value of 0.03 for
the convolutional layer.

Table 4. Word embedding parameters.

Parameter Value

Word embedding size 100

Window size (filter size) 2, 3, 4, and 5

Number of filters for each size 100

Dropout probability at the embedding layer 0.15

Table 5. Parameters for our CNN.

Parameter Value

Epochs 20

Learning rate 0.001

Regularization rate 0.025

CNN dropout probability 0.2

Optimization Adam

5.2. Comparison with Traditional Models

We compared our CNN models with traditional machine learning models. The CNN
models were tested and compared with four of the most common machine learning models,
i.e., SVM, Naïve Bayes, decision tree, and random forest models with BOW features,
and considering unigrams where vector representation was carried out using TF-IDF
vectors. For the SVM models, models from the “sklearn” package in the scikit-learn
library were used, while for Naïve Bayes, we employed “MultinomialNB” from scikit-learn.

Information 2021, 12, 52 12 of 17

The Naïve Bayes model that we used was the one in the scikit-learn library. Similarly,
for the decision tree and random forest models, we used the modules from scikit-learn.
Furthermore, to deal with the sparsity of the feature matrix, all CNN algorithms were run
five times with the same parameter settings. Table 6 presents accuracy and training values,
where the experiment analysis showed that the CNN had featured better training accuracy,
while, among the traditional machine learning models, the random forest model showed
the best validation accuracy (SVM, naive Bayes, decision tree, and random forest).

Table 6. Training and validation accuracies between models.

Classifier Training Accuracy Validation Accuracy

Naïve Byes 0.9287 0.8658
Random Forest 0.9307 0.8356

SVM 0.9503 0.8452
Decision tree 0.9663 0.8123

CNN without embedding 0.9335 0.9141

5.3. Comparison of Pretrained Word2vec with CNN-Based Models

In this section, we compare the overall performance of word embedding, considering
both the CBOW and skip-gram models and without pretrained vector CNN model based
on the experiments. Figure 7 shows accuracy and F1 score comparisons for the generated
vectors with word2vec embedding, when the number of training volume were static with
22k news articles for the CNN with skip-gram, the CNN with CBOW, and the CNN with
pretrained vectors. The CBOW CNN showed the highest performance for all training
volumes, with 0.9341 and 0.9274 as the values for the accuracy and F1 score, respectively.
The CBOW CNN also delivered better performance in terms of accuracy in volume 16.
The skip-gram CNN also showed better performance in volume 20, while the other CNNs
trained without pretrained vector fluctuations at various volumes and ultimately decreased
in accuracy.

Information 2021, 12, x FOR PEER REVIEW 12 of 18

We compared our CNN models with traditional machine learning models. The CNN
models were tested and compared with four of the most common machine learning mod-
els, i.e., SVM, Naïve Bayes, decision tree, and random forest models with BOW features,
and considering unigrams where vector representation was carried out using TF-IDF vec-
tors. For the SVM models, models from the “sklearn” package in the scikit-learn library
were used, while for Naïve Bayes, we employed “MultinomialNB” from scikit-learn. The
Naïve Bayes model that we used was the one in the scikit-learn library. Similarly, for the
decision tree and random forest models, we used the modules from scikit-learn. Further-
more, to deal with the sparsity of the feature matrix, all CNN algorithms were run five
times with the same parameter settings. Table 6 presents accuracy and training values,
where the experiment analysis showed that the CNN had featured better training accu-
racy, while, among the traditional machine learning models, the random forest model
showed the best validation accuracy (SVM, naive Bayes, decision tree, and random forest).

Table 6. Training and validation accuracies between models.

Classifier Training Accuracy Validation Accuracy
Naïve Byes 0.9287 0.8658

Random Forest 0.9307 0.8356
SVM 0.9503 0.8452

Decision tree 0.9663 0.8123
CNN without embedding 0.9335 0.9141

5.3. Comparison of pretrained Word2vec with CNN-Based Models
In this section, we compare the overall performance of word embedding, considering

both the CBOW and skip-gram models and without pretrained vector CNN model based
on the experiments. Figure 7 shows accuracy and F1 score comparisons for the generated
vectors with word2vec embedding, when the number of training volume were static with
22k news articles for the CNN with skip-gram, the CNN with CBOW, and the CNN with
pretrained vectors. The CBOW CNN showed the highest performance for all training vol-
umes, with 0.9341 and 0.9274 as the values for the accuracy and F1 score, respectively. The
CBOW CNN also delivered better performance in terms of accuracy in volume 16. The
skip-gram CNN also showed better performance in volume 20, while the other CNNs
trained without pretrained vector fluctuations at various volumes and ultimately de-
creased in accuracy.

(A) (B)

Figure 7. CNN with word2vec. (A) Accuracy; (B) F1 score.

50

60

70

80

90

100

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

AC
CU

RC
Y

TRAINING VOLUME

CBOW
Skipgram
without pretrained vector
mean

50

60

70

80

90

100

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

F1
 S

CO
RE

Training volume

CBOW
Skipgram
without pretrained vector
mean

Figure 7. CNN with word2vec. (A) Accuracy; (B) F1 score.

5.4. Comparison of FastText Pretrained on CNN-Based Models

This section considers FastText word embedding vectors and compares the perfor-
mances among the CNNs. Figure 8 clearly shows that the CBOW-FastText model scored
better results than the skip-gram CNN even though it did not show significant differences
for almost all training volumes. The CNN with CBOW obtained values of 0.9013 and 0.9012

Information 2021, 12, 52 13 of 17

for the accuracy and F1 scores, respectively. The CBOW and skip-gram CNNs showed
higher performance at volume 14. The random CNN vectors subsequently decreased.

Figure 8. CNN results with FastText. (A) Accuracy; (B) F1 score.

We observed that the CBOW CNN trained with word2vec shows better performance
than the CBOW CNN trained with the skip-gram model. Nevertheless, CNN without
pretrained vector accuracy decreased when the number of volumes and epochs increased;
however, all CBOW CNN models showed better performance when the volumes and
epochs increased. The performance of the random CNN decreased with the absence of
pretrained data, which implies that there are direct relationships between word embedding
representations for text classification with CNNs. Table 7 shows the accuracy and F1
scores of a CNN with both word2vec and FastText. As compared with the CBOW CNN
for the vector in news articles, this model was less stable and required more epochs to
reach maximum performance. For example, when the training volume corresponded
to 24, the CNN with the vector in the news article exhibited an accuracy of 0.93 or more
when the epoch number corresponded to 17, although the CNN with the vector exhibited
an accuracy of 0.91. However, the skip-gram CNN with the vector did not exhibit any
significant difference in terms of the maximum values for the accuracy and F1 scores.
FastText also showed similar results to the CBOW CNN when we compared the vectors in
news articles when the training volume corresponded to 24, and the news articles exhibited
an accuracy of 0.90 or more when the number of epochs was 20.

Table 7. Comparison of the experimental results.

Pretrained
Vector Model with Pretrained Accuracy F1 Score Time for

Training (S)
Training
Volume Epochs

Word2vec
CNN + CBOW 0.9341 0.9151 2000 24 20

CNN + skip-gram 0.9147 0.9161 1865 24 17
CNN + without pretrained 0.7905 0.7809 900 16 13

FastText
CNN + CBOW 0.9041 0.9054 1980 24 20

CNN + skip-gram 0.8975 0.8909 1723 24 20
CNN + without pretrained 0.7941 0.7951 868 16 14

5.5. Comparison of CBOW Results Word2vec and FastText

Similarly, in Table 8 we compared pretrained word embedding results for the CBOW
models with the word2vec and FastText results. Subsequently, those algorithms showed
better results. The best results for news categories were found for sport category with the

Information 2021, 12, 52 14 of 17

word2vec CBOW model, obtaining values of 0.9301, 0.9312, and 0.9306 for the precision,
recall, and F1 scores, respectively. Meanwhile, the CBOW FastText model also showed that
sport category achieved values of 0.9202, 0.9214, and 0.9206 for the precision, recall, and F1
scores, respectively, which indicated that the sport category provided good results.

Table 8. Word2vec and FastText results by news categories.

Category Pretrained Word2vec (CBOW) Pretrained FastText (CBOW)
Precision Recall F1 Score Precision Recall F1 Score

Agriculture 0.8807 0.8834 0.8820 0.8607 0.8624 0.8615
Sport 0.9301 0.9312 0.9306 0.9202 0.9214 0.9206

Health 0.9212 0.9234 0.9222 0.9201 0.9202 0.9202
Education 0.9231 0.9311 0.9270 0.9031 0.9311 0.9168

Politics 0.9105 0.9151 0.9127 0.9105 0.9151 0.9127
Religion 0.9201 0.9113 0.9156 0.9001 0.9013 0.9006
Average 0.9438 0.9425 0.9150 0.9438 0.9425 0.9054

Table 4 shows that the CNNs showed better results than traditional machine learning
results due to the use of pretrained word vectors for enhancing the learning of word repre-
sentations. Additionally, CNN performance was meaningfully reduced in the absence of
pretrained word vectors (PWVs). This indicates that word relationships are significant fac-
tors for learning in this context. Moreover, in Figure 7, we compared two word embedding
models in terms of the accuracy and F1 scores and revealed that the CBOW CNN-CBOW
trained with word2vec and FastText shows higher performance than the skip-gram CNN
model, even though the output results were close between some models. Moreover, as in
Tables 6 and 7, this situation can be interpreted as the CBOW CNN model being better at
representing common words in the corpus considered here, since the skip-gram CNN algo-
rithm was better for learning rare words. In this paper, FastText and word2vec provided
better results for Tigrinya news article classification than the CBOW skip-gram and CBOW
word2vec models.

6. Conclusions

We have used word2vec and FastText techniques, and our results suggest that they
are among the best word embedding techniques in the field of NLP research. In this
study, we have evaluated word2vec and FastText in classification models by applying
CNNs to Tigrinya news articles. We observed that word2vec improved the classification
model performance by learning the relationships among words. We further compared and
analyzed both of the word2vec models with machine learning models. The current study
shows that the most successful word embedding method was the CBOW algorithm for
the news articles considered here. This study is expected to aid future studies on deep
learning in the field of Tigrinya text processing and natural language processing. The word
vectors and datasets created in this study contribute to the current literature on Tigrinya
text processing. In the future, we plan to address other embedding techniques, such as
GloVe, BERT, XLNET, and others. We also intend to find optimal solution methods for
large-scale word embedding problems, which is currently a time-consuming problem.

Author Contributions: Conceptualization, A.F.; data curation, A.F.; formal analysis, A.F., S.X., E.D.E.
and A.D.; funding acquisition, S.X.; investigation, A.F., E.D.E. and M.D.; methodology, A.F., E.D.E.
and M.D.; resources, S.X.; supervision, S.X.; validation, M.D.; writing—original draft, A.F.; writing—
review & editing, A.D. All authors have read and agreed to the published version of the manuscript.

Funding: The National Natural Science Foundation of China supported this work under grant
number 2017GF004.

Acknowledgments: We are very grateful to the Chinese Scholarship Council (CSC) for providing
financial and moral support and Mekelle University staff for their help during data collection.

Conflicts of Interest: The authors declare no conflict of interest.

Information 2021, 12, 52 15 of 17

Abbreviations

CNN Convolutional neural network
TF-IDF Term frequency-inverse document frequency
NLP Natural language processing
ML Machine learning
CBOW Continuous bag of words
ReLU Rectified linear unit
SVM Support vector machine
NB Naïve Bayes
KNN K-nearest neighbor
BOW Bag-of-words
PWV Pretrained word vector

Appendix A

Figure A1. Further information.

References
1. Al-Ayyoub, M.; Khamaiseh, A.A.; Jararweh, Y.; Al-Kabi, M.N. A comprehensive survey of arabic sentiment analysis.

Inf. Process. Manag. 2019, 56, 320–342. [CrossRef]
2. Negash, A. The Origin and Development of Tigrinya Language Publications (1886-1991) Volume One. 2016. Available online:

https://scholarcommons.scu.edu/cgi/viewcontent.cgi?article=1130&context=library (accessed on 20 January 2021).
3. Osman, O.; Mikami, Y. Stemming Tigrinya words for information retrieval. In Proceedings of the COLING 2012: Demonstration

Papers, Mumbai, India, 1 December 2012; pp. 345–352. Available online: https://www.aclweb.org/anthology/C12-3043
(accessed on 20 January 2021).

4. Tedla, Y.K.; Yamamoto, K.; Marasinghe, A. Nagaoka Tigrinya Corpus: Design and Development of Part-of-speech Tagged Corpus.
Int. J. Comput. Appl. 2016, 146, 33–41. [CrossRef]

5. Tedla, Y.K. Tigrinya Morphological Segmentation with Bidirectional Long Short-Term Memory Neural Networks and its Effect on English-
Tigrinya Machine Translation; Nagaoka University of Technology: Niigata, Japan, 2018.

6. Tedla, Y.; Yamamoto, K. Analyzing word embeddings and improving POS tagger of tigrinya. In Proceedings of the 2017
International Conference on Asian Language Processing (IALP), Singapore, 5–7 December 2017; pp. 115–118. [CrossRef]

7. Tedla, Y.; Yamamoto, K. The effect of shallow segmentation on English-Tigrinya statistical machine translation. In Proceedings
of the 2016 International Conference on Asian Language Processing (IALP), Tainan, Taiwan, 21–23 November 2016; pp. 79–82.
[CrossRef]

8. Stats, I.W. Available online: https://www.internetworldstats.com/ (accessed on 10 September 2020).
9. Kalchbrenner, N.; Blunsom, P.J. Recurrent convolutional neural networks for discourse compositionality. arXiv 2013,

arXiv:1306.3584.
10. Jiang, M.; Liang, Y.; Feng, X.; Fan, X.; Pei, Z.; Xue, Y.; Guan, R.J.N.C. Text classification based on deep belief network and softmax

regression. Neural. Comput. Appl. 2018, 29, 61–70. [CrossRef]
11. Kalchbrenner, N.; Grefenstette, E.; Blunsom, P.J. A convolutional neural network for modelling sentences. Neural. Comput. 2014.

[CrossRef]
12. Kim, Y. Convolutional neural networks for sentence classification. arXiv 2014, arXiv:1408.5882. [CrossRef]

http://doi.org/10.1016/j.ipm.2018.07.006
https://scholarcommons.scu.edu/cgi/viewcontent.cgi?article=1130&context=library
https://www.aclweb.org/anthology/C12-3043
http://doi.org/10.5120/ijca2016910943
http://doi.org/10.1109/IALP.2017.8300559
http://doi.org/10.1109/IALP.2016.7875939
https://www.internetworldstats.com/
http://doi.org/10.1007/s00521-016-2401-x
http://doi.org/10.3115/v1/P14-1062
http://doi.org/10.3115/v1/D14-1181

Information 2021, 12, 52 16 of 17

13. Mikolov, T.; Sutskever, I. Distributed representations of words and phrases and their compositionality. In Proceedings of the
Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 3111–3119.

14. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,
arXiv:1301.3781.

15. Lai, S.; Liu, K.; He, S.; Zhao, J.J.I.I.S. How to generate a good word embedding. IEEE Intell. Syst. 2016, 31, 5–14. [CrossRef]
16. T. S. International, in Tigrinya at Ethnologue, Ethnologue. 2020. Available online: http://www.ethnologue.com/18/language/tir/

(accessed on 3 March 2020).
17. Mebrahtu, M. Unsupervised Machine Learning Approach for Tigrigna Word Sense Disambiguation. Ph.D. Thesis, Assosa

University, Assosa, Ethiopia, 2017.
18. Abate, S.T.; Tachbelie, M.Y.; Schultz, T. Deep Neural Networks Based Automatic Speech Recognition for Four Ethiopian Languages.

In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 4–8 May 2020; pp. 8274–8278.

19. Littell, P.; McCoy, T.; Han, N.-R.; Rijhwani, S.; Sheikh, Z.; Mortensen, D.R.; Mitamura, T.; Levin, L. Parser combinators for Tigrinya
and Oromo morphology. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan, 7–12 May 2018.

20. Fisseha, Y. Development of Stemming Algorithm for Tigrigna Text; Addis Ababa University: Addis Ababa, Ethiopia, 2011.
21. Reda, M. Unsupervised Machine Learning Approach for Tigrigna Word Sense Disambiguation. Philosophy 2018, 9.
22. Uysal, A.K.; Gunal, S. The impact of preprocessing on text classification. Inf. Process. Manag. 2014, 50, 104–112. [CrossRef]
23. Wallach, H.M. Topic modeling: Beyond bag-of-words. In Proceedings of the 23rd international conference on Machine learning,

Haifa, Israel, 21–25 June 2010; pp. 977–984.
24. Gauging, D.M.J.S. Similarity with n-grams: Language-independent categorization of text. Science 1995, 267, 843–848.
25. Joachims, T.A. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization. Available online: https:

//apps.dtic.mil/docs/citations/ADA307731 (accessed on 20 January 2021).
26. McCallum, A.; Nigam, K. A comparison of event models for naive bayes text classification. In AAAI-98 Workshop on Learning for

Text Categorization; Citeseer: Princeton, NJ, USA, 1998; Volume 752, pp. 41–48.
27. Trstenjak, B.; Mikac, S.; Donko, D.J.P.E. KNN with TF-IDF based framework for text categorization. Procedia Eng. 2014,

69, 1356–1364. [CrossRef]
28. Joachims, T. Text categorization with support vector machines: Learning with many relevant features. In European Conference on

Machine Learning; Springer: Berlin/Heidelberg, Germany, 1998; pp. 137–142.
29. Yun-tao, Z.; Ling, G.; Yong-cheng, W. An improved TF-IDF approach for text classification. J. Zhejiang Univ. Sci. A 2005, 6, 49–55.
30. Johnson, R.; Zhang, T. Semi-supervised convolutional neural networks for text categorization via region embedding. Adv. Neural

Inf. Process. Syst. 2015, 28, 919–927.
31. Johnson, R.; Zhang, T. Supervised and semi-supervised text categorization using LSTM for region embeddings. arXiv 2016,

arXiv:1602.02373.
32. Zhang, L.; Wang, S.; Liu, B.; Discovery, K. Deep learning for sentiment analysis: A survey. Wiley Interdiscip. Rev. Data Min. Knowl.

Discov. 2018, 8, e1253. [CrossRef]
33. Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with multitask learning.

In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 160–167.
34. Zhang, X.; Zhao, J.; LeCun, Y. Character-level convolutional networks for text classification. In Proceedings of the Advances

in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 649–657. Available online:
https://arxiv.org/abs/1509.01626 (accessed on 20 January 2021).

35. Lai, S.; Xu, L.; Liu, K.; Zhao, J. Recurrent convolutional neural networks for text classification. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, Menlo Park, CA, USA, 25–30 January 2015.

36. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543. [CrossRef]

37. Parwez, M.A.; Abulaish, M.J.I.A. Multi-label classification of microblogging texts using convolution neural network. IEEE Access
2019, 7, 68678–68691. [CrossRef]

38. Tang, D.; Wei, F.; Qin, B.; Yang, N.; Liu, T.; Zhou, M.; Engineering, D. Sentiment embeddings with applications to sentiment
analysis. IEEE Trans. Knowl. Data Eng. 2015, 28, 496–509. [CrossRef]

39. Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T. Bag of tricks for efficient text classification. arXiv 2016, arXiv:1607.01759.
40. Wang, X.; Jiang, W.; Luo, Z. Combination of convolutional and recurrent neural network for sentiment analysis of short texts.

In Proceedings of the COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka,
Japan, 11–17 December 2016; pp. 2428–2437.

41. Arora, S.; Liang, Y.; Ma, T. A simple but tough-to-beat baseline for sentence embeddings. 2016. Available online: https:
//openreview.net/forum?id=SyK00v5xx (accessed on 20 January 2021).

42. Joulin, A.; Grave, E.; Bojanowski, P.; Douze, M.; Jégou, H.; Mikolov, T. Fasttext. zip: Compressing text classification models. arXiv
2016, arXiv:1612.03651.

43. Peng, H.; Song, Y.; Roth, D. Event detection and co-reference with minimal supervision. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 392–402.

http://doi.org/10.1109/MIS.2016.45
http://www.ethnologue.com/18/language/tir/
http://doi.org/10.1016/j.ipm.2013.08.006
https://apps.dtic.mil/docs/citations/ADA307731
https://apps.dtic.mil/docs/citations/ADA307731
http://doi.org/10.1016/j.proeng.2014.03.129
http://doi.org/10.1002/widm.1253
https://arxiv.org/abs/1509.01626
http://doi.org/10.3115/v1/D14-1162
http://doi.org/10.1109/ACCESS.2019.2919494
http://doi.org/10.1109/TKDE.2015.2489653
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx

Information 2021, 12, 52 17 of 17

44. Kulkarni, A.; Shivananda, A. Converting text to features. In Natural Language Processing Recipes; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 67–96. [CrossRef]

45. Řehůřek, R. Models.Word2vec–Deep Learning with Word2vec. Available online: https://radimrehurek.com/gensim/models/
word2vec.html (accessed on 16 February 2017).

46. Liu, J.; Chang, W.-C.; Wu, Y.; Yang, Y. Deep learning for extreme multi-label text classification. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan, 7–11 August 2017;
pp. 115–124. [PubMed]

47. Zhang, Y.; Wallace, B. A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classifica-
tion. arXiv 2015, arXiv:1510.03820.

http://doi.org/10.1007/978-1-4842-4267-4_3
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
http://www.ncbi.nlm.nih.gov/pubmed/27087766

	Introduction
	Background and Related Works
	Previous Attempts for Tigrinya Natural Language Processing
	Text Classification
	Word Embeddings

	Research Methods and Dataset Construction
	Dataset Construction and CNN Architecture
	Single-Label Tigrinya News Articles Dataset
	Tigrinya Corpus Collection and Preparation
	Data Preprocessing
	Basic CNN Architecture

	Experiment and Discussion
	CNN Parameter Values
	Comparison with Traditional Models
	Comparison of Pretrained Word2vec with CNN-Based Models
	Comparison of FastText Pretrained on CNN-Based Models
	Comparison of CBOW Results Word2vec and FastText

	Conclusions
	
	References

