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Abstract: The particle swarm optimization (PSO) algorithm has been widely used in various opti-
mization problems. Although PSO has been successful in many fields, solving optimization problems
in big data applications often requires processing of massive amounts of data, which cannot be
handled by traditional PSO on a single machine. There have been several parallel PSO based on
Spark, however they are almost proposed for solving numerical optimization problems, and few for
big data optimization problems. In this paper, we propose a new Spark-based parallel PSO algorithm
to predict the co-authorship of academic papers, which we formulate as an optimization problem
from massive academic data. Experimental results show that the proposed parallel PSO can achieve
good prediction accuracy.

Keywords: particle swarm optimization (PSO); spark; parallel; link prediction; big data

1. Introduction

Solving optimization problems involves trying to find the best solutions to optimize
performance indices. Exiting optimization methods mainly include mathematical program-
ming methods and stochastic search optimization methods. Compared with mathematical
programming methods, stochastic search algorithms are simple, adaptive, and can be
applied to various complex problems like black box problems or multimodal problems.
Among many stochastic search algorithms, Particle Swarm Optimization (PSO) [1] is one
of the most popular, which has been widely used in various optimization problems and
successful in many fields [2].

However, with the advent of the big data era, many emergent optimization problems
have involved the procession of massive data. These kinds of problems are beyond the
ability of traditional PSO, but should be solved parallel to distributed clusters. Traditional
parallel approaches, such as using the Message Passing Interface (MPI) [3], require signifi-
cant manual effort to ensure load balancing and manage communication flows. Hadoop
MapReduce [4] is simple, transparent, scalable, and provides automatic load-balancing
and fault tolerance. The first MapReduce version of the PSO algorithm was proposed in
2007 [5], and since then, a few MapReduce-based PSO variants have been brought out and
achieved relatively promising results [6,7].

Although MapReduce-based PSO is able to process big data, MapReduce needs fre-
quent time-consuming hard disk I/O, which makes it unsuitable for iterative procedures.
Apache Spark [8], an in-memory-based computing framework, makes up for this defi-
ciency of Hadoop MapReduce, and has become the most popular distributed computing
framework. Spark has also gradually replaced MapReduce in recent years as the preferred
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approach for parallel stochastic search optimization algorithms. Among the Spark-based
PSO, the majority are for numerical optimization problems [9–11], a few are for clustering
and classification on small datasets [12,13], and none for real big-data applications.

To further explore the usability of Spark-based intelligent optimization algorithms in
a big data environment, we aim at the problem of academic paper co-author prediction
based on big data from the real world.

In this paper, we formulate the co-author prediction problem as an optimization
problem, inspired by [14], where the author applied a covariance matrix adaptive evolution
strategy (CMA-ES) to predict the twitter link, and CMA-ES is not parallel. We parallel
PSO based on Spark to optimize the linear combination weights of 12 topological similary
indices for co-authorship prediction, and pay more attention to the design and parallel
computing of fitness evaluation in order to better adapt to big data processing, which is
different from works simply using common benchmark functions. Experimental results
illustrate the usability of the designed algorithm for prediction in a big data environment.

The rest of the paper is organized as follows: Section 2 briefly describes the back-
ground knowledge and related work; Section 3 provides a detailed description of the
implementation method for link prediction; Section 4 is an analysis of the experimental
evaluation methods and results; and Section 5 concludes the whole paper and provides an
outlook on future work.

2. Background and Related Work
2.1. Particle Swarm Optimization Algorithm

In 1995, Kennedy and Eberhart proposed a particle swarm algorithm [1] inspired
by the results of artificial life research, which is a global random search algorithm based
on swarm intelligence generated by simulating the migration and swarming behavior of
birds in the foraging process. The basic core of the algorithm is to use information sharing
of the individuals in the group so that the movement of the whole group produces an
evolutionary process from disorder to order in the problem-solving space, so as to obtain
the optimal solution of the problem.

In particle swarm optimization, the particle swarm is initialized as a random solution
set, and each particle in the search space is a potential solution of the optimization problem,
and the optimal solution is found through iteration. In the d-dimensional search space,
each particle has a d-dimensional position vector and velocity vector, and the fitness value
of the current position is calculated according to the objective function. In each iteration,
the particle continuously updates itself through the optimal solution found by itself and
the optimal solution currently found by the entire population.If the set maximum number
of iterations is reached, or other specified termination conditions are met, the iteration
stops. The speed and position update formulas are as follows:

vd
i = w · vd

i + c1 · r1 · (pbestd
i − xd

i ) + c2 · r2 · (gbestd
i − xd

i ) (1)

xd
i = xd

i + vd
i (2)

d = 1, 2, 3. . . , D, D is the space dimension, i = 1, 2, 3. . . , N, N is the number of particles in
the population, vi is the velocity of the particle i, r1 and r2 are random numbers between 0
and 1, xi is the current position of the particle, c1 and c2 are learning factors, usually set
c1 = c2 = 2, pbesti is the best position in the particle’s personal history, and gbesti is the
best location in the history of the entire population.

2.2. Co-Authorship Prediction

Given the network snapshot G = (V, Et) at time t,V represents the nodes at all time
steps, and Et represents the link at time t, predicting the most likely new link at the next
time step t + 1. This is called link prediction. For co-authorship prediction, the node
represents the author and the link represents co-authorship of the two authors. Link
prediction strategies are generally divided into three categories: similarity index-based
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strategies, maximum likelihood algorithms, and the probabilistic model. For large-scale
sparse networks, similarity-based strategies are generally used, and each similarity index
is generally divided into a topological similarity index and an individual characteristics
similarity index.

Similarity indices can capture the commonalities between two nodes. Based on these
similarity indices, the close relationship between nodes in the network can be calculated.
However, there is no single similarity index that can completely extract the newly formed
links, and there is no guarantee that the effect will be significant for the general situation.
If the predictor combines the information of multiple similarity indexes together for com-
prehensive consideration, it can improve the link prediction. This is confirmed in the link
prediction work of Bliss et al. [14]. This paper uses the 12 common topological similarity
indices selected in the paper (see Table 1). By optimizing the coefficient weight of the
linear combination of each of the similarity indices, link prediction has actually become an
optimization problem.

Table 1. Topological similarity indexes selected in this paper. G = (V, E) is a network consisting of
vertices V and edges E. The neighbors of node u is Γ(u) = {v ∈ V | eu,v ∈ E}, and the degree of
node u is represented by ku, A is the adjacency matrix, and a path of length n between u, v ∈ V is
ϕn(u, v).

Topological Similarity Indices (Abbreviation)

Jaccard Index (J) J(u, v) = |Γ(u)⋂ Γ(v)|
|Γ(u)⋃ Γ(v)|

Adamic-Adar Coefficient (A) A(u, v) = ∑
z∈Γ(u)

⋂
Γ(v)

1
log(|Γ(z)|

Common neighbors (C) C(u, v) =| Γ(u)
⋂

Γ(v) |
Average Path Weight (P) P(u, v) =

∑
p∈ϕ2(u,v)

⋃
ϕ3(u,v)

wp

|ϕ2(u,v)+ϕ3(u,v)|
Katz (K) K =

∞
∑

n=1
βn An

Preferential Attachment (Pr) Pr(u, v) = ku + kv
Resource Allocation (R) R(u, v) = ∑

z∈Γ(u)
⋂

Γ(v)

1
|Γ(z)|

Hub promoted Index (Hp) Hp(u, v) = |Γ(u)⋂ Γ(v)|
min{ku ,kv}

Hub depressed Index (Hd) Hd(u, v) = |Γ(u)⋂ Γ(v)|
max{ku ,kv}

Leicht-Holme-Newman Index (L) L(u, v) = |Γ(u)⋂ Γ(v)|
kukv

Salton Index (Sa) Sa(u, v) = |Γ(u)⋂ Γ(v)|√
kukv

Sorenson Index (So) So(u, v) = |Γ(u)⋂ Γ(v)|
ku+kv

2.3. Apache Spark

Spark [8] was born in the AMPLab of the University of California, Berkeley in 2009.
It was implemented in the scala language. It is a novel and unified big data processing
framework that has the characteristics of fast running speed, good ease of use, strong gen-
erality, and that it can run anywhere. Spark based on memory computing is more suitable
for iterative and interactive applications, effectively making up for the computationally
intensive and time-consuming defects of MapReduce in processing iterative operations.

Resilient Distributed Datasets (RDD) is the cornerstone of Spark. It is the core dis-
tributed memory abstraction that implements Spark data-processing. It has the character-
istics of immutability, partitionability, and flexibility, which facilitate the performance of
memory calculations on large clusters in a fault-tolerant manner. RDD mainly uses two
operations to process data: one is the transformation operator, which is used to convert the
RDD to build the blood relationship of the RDD; the other is the action operator, which
is used to trigger the calculation of the RDD to obtain the lineage of the RDD [15] or save
the RDD in a file system such as HDFS. Due to the “lazy” nature of RDD, all previous
tansformation operations will only be executed when the action operation is performed.
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2.4. Related Work

In recent years, in order to better adapt to large-scale data processing, random search al-
gorithms have been continuously implemented under the big data computing frameworks
MapReduce and Spark. Taking the particle swarm optimization algorithm as a typical
example, since its first successful attempt of parallel implementation under MapReduce
in 2007 [5], related work has emerged one after another, and significant results have been
achieved. Among these works, there are MapReduce implementations of PSO variants. For
example, Sadasivam et al. proposed a hybrid PSO-GA (genetic algorithm) implementation
under MapReduce to solve the task allocation problem [6], which helps the algorithm solve
the problem of time-consuming for data and calculation-intensive application analysis to
obtain the best performance. Wang et al. proposed a parallel K-PSO based on MapReduce
combining the PSO and the K-means algorithm [7], which uses PSO to improve the global
search capability of K-means and uses MapReduce parallelization to enhance its ability to
process large amounts of data. Li(B) et al. implemented a quantum-behaved PSO that can
effectively prevent PSO from falling into local optimal problems under MapReduce [16].
Experiments show that parallel QPSO is superior to the serial version in terms of search
capability and solution quality. There are also some related to specific application issues
in the works, such as large-scale network intrusion detection systems [17,18], real-time
clustering of Tweets [19], and minimizing thermal residual forces in ceramic matrix com-
posites [20]. Parallel PSOs based on MapReduce perform well in reducing time and coping
with large amounts of data.

From about 2016 to today, Spark has replaced MapReduce with its significant advan-
tages in rolling, taking over the role of the big data computing framework in the parallel
implementation of PSO. According to our investigations, most of the known literature on
the parallel implementation of Spark involve solving numerical optimization problems.
For example, Guo et al. used the PSO implemented by Spark in parallel to deal with
the optimization problem of Web service composition with different quality but similar
functions in the cloud computing environment [9]. Duan et al. parallelized the three
most frequently cited particle swarm optimizer versions on Spark to solve the problem of
high computational cost [10]. Zhang et al. used Spark and a parallelized PSO algorithm
to construct reservoir dispatching rule optimization [11]. A few include clustering or
classification on small data sets. For example, Sherar et al. proposed a hybrid K-means
PSO implemented on Apache Spark for large-scale clustering [12], and Al-Sawwa et al.
proposed a scalable design and implementation of PSO based on Spark to extract useful
information for decision support [13]. However, there is none for research on real big
data applications.

There are precedents for applying intelligent optimization algorithms to link predic-
tion, such as the paper by Sherkat et al. which studied structural link prediction in social
networks based on ant colony approach [21], Barham et al. performed link prediction based
on the whale optimization algorithm [22], Shi et al. studied user relationship prediction
based on matrix decomposition and hybrid PSO [23], and so forth. However, all of these
algorithms are non-parallel algorithms, which make it difficult to cope with massive data.
It is an inevitable trend to parallelize intelligent optimization algorithms in order to better
fit the big data environment.

3. Experimental Design
3.1. Data

The academic social network co-author data set used in this experiment is a real data
set taken from AMiner, which aims to provide a comprehensive search for researchers
on social networks and mining services, having integrated academic data from multiple
sources. These data specifically come from a paper that studied the maximization of influ-
ence in dynamic social networks [24], which builds a dynamic collaborator network from
ArnetMiner, with a time span of 27 years from 1986 to 2012. The year is the timestamp. In
each timestamp, an undirected edge is created between two authors who have collaborated
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on at least one paper in the last 3 years, treating each undirected edge as two symmetrical
directed edges to transform the undirected co-author network into a directed network.

We select the first five years of data in the co-author data set, that is, the co-author
directed network from 1986 to 1987 to carry out the experiment. Each year’s sparse matrix
data is a set of two sets of synthetic node–node pairs and corresponding similarity index
values between all author nodes that appear in the year. Using the year as the time step to
predict the links, we predict the links in the next year according to the links in the previous
year, and so on, so we obtain four verification sets (1986–>1987, 1987–>1988, 1988–>1989,
1989–>1990). The basic information on the five years of data is shown in Table 2.

Table 2. Basic information of data from 1986 to 1990.

Year File Name File Size Nodes Num Edges Num Sparse Matrix File Size

1986 1986.txt 1018.9 K 21,776 68,179 24.1 G
1987 1987.txt 1.2M 25,224 80,253 32.4 G
1988 1988.txt 1.4M 29,746 95,299 45.0 G
1989 1989.txt 1.5M 32,368 102,639 53.3 G
1990 1990.txt 1.8M 39,004 124,185 77.4 G

3.2. Experimental Environment

The platform and experiments are carried out under the Spark framework. The
network topology is shown in the Figure 1. The platform includes a master node and
multiple slave nodes. As a scalable platform, the number of workers can be changed as
needed. We have four servers in total, so here we have three slave nodes, and all nodes
have the same hardware and software configuration, as shown in Table 3. For hardware,
the servers are configured with Intel(R) Xeon(R) Gold 5215 CPU. Each node has 40 CPU
cores at 2.50 GHz and 240 GB of physical memory. In aggregate, our four-node cluster
has 160 CPU cores, 960 GB RAM. As for software, each server was installed with a 18.04.1-
Ubuntu operating system. We built a four-node hadoop cluster with Hadoop 2.10.0 at first,
and built a spark cluster with Spark 3.0.0 on this basis, whose built-in scala version is Scala
2.12.10. Both MapReduce and Spark were deployed on JDK 1.8.0_131.

Figure 1. Network topology of the platform.
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Table 3. Server software and hardware configuration.

Hardware CPU 40 Intel(R) Xeon(R) Gold 5215 CPU @ 2.50 GHz
Memory 240 G

Software

Operating System 18.04.1-Ubuntu
Spark 3.0.0
Scala 2.12.10
Hadoop 2.10.0
Java Development Kit 1.8.0_131

3.3. Fitness Evaluation

Figure 2 roughly describes the process of link prediction using particle swarm opti-
mization. Before using the algorithm, we calculated all the topological similarity index
values and stored them in the N × N sparse matrix Si, i = 1, 2, . . . , 12, and N is the number
of author nodes in the academic social network here. This process is actually to get all the
similarity index value data corresponding to every node pair. The similarity indices are
linearly combined according to the method shown in Formula (3), and the coefficient wi is
updated by the evolution of the particle swarm algorithm which means ~w is actually equal
to the position vector of a particle. The initial value of wi is randomly selected from 0 to 1.

S =
12

∑
i=1

wiSi (3)

In each iteration, the node–node pair corresponding to the topN values of the score
ranking in S is considered as our predicted link. The aim of our algorithm is to find
the best ~w so far within a limited number of iterations that maximizes the proportion of
correctly predicted links in the predicted links. By comparing the predicted link with the
link appearing in the next year, incorrect links can be obtained. As shown in Formula (4),
we take the fitness value as the ratio of the number of incorrect links to the number of
predicted links. Since the number of predicted links is constant topN, the fitness value is
proportional to the number of incorrectly predicted links, that is, inversely proportional to
the number of correctly predicted links. When the fitness value is equal to 0, the number
of incorrect links is also equal to 0, that is, all predicted links are correctly predicted links,
which is the ideal result we most want to see. Therefore, each iteration can find the optimal
particle in the population that can make the fitness reach the smallest in history, and it
will enter the next iteration. In our algorithm, when the maximum number of iterations is
reached, or the historically optimal particle can satisfy the condition that the fitness value
is 0 in advance, the iteration stops.

3.4. Spark Implementation of Particle Swarm Algorithm

The complete pseudocode of Spark is shown in Algorithms 1–3. Algorithm 1 is the
main program running on the Driver side. Before starting, the data file that needs to be used
is loaded into RDD through the textFile method of Spark, and the RDD is then converted
appropriately. The sparseMatrixRDD and testRDD are in the form of key–value pairs, and
considering that the program needs to use them every time the fitness value is calculated,
we used Spark’s persist method (line 2) to persist these two RDDs in memory for later
use, and SparseMatrixRDD will use the partitionBy method to perform the Hash partition
operation before this operation. Next, we randomly initialized a particle group RDD
particlesPreRDD without a fitness value attribute by calling Spark’s parallelize method and
map method, and then called Algorithm 2 to calculate the fitness value of the initialized
particles and the best fitness value of the individual (line 5). We obtained the particle group
RDD particlesRDD used in the iterative loop (line 6), and then used the best individual
gbTemp in the current initial particle group as the global historical best individual gb
temporarily (line 8). When the upper limit of the iteration is not met, in each iteration
loop, all particles and the best particles will be broadcast down (line 10, 11), and then
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Algorithm 3 will be called to update the speed and position in the particle column. The
best position and the best fitness value of the individual were also adjusted accordingly
according to the situation, and the best individual gbTemp (line 13) in the current particle
swarm after the update was found again. If it is better than the recorded global history best
individual gb, gbTemp was used to update gb (line 14, 15).

Fitness =
#incorrect links
#predicted links

(4)

Figure 2. Spark-PSO link prediction process.

In our link prediction for academic paper collaborators, since the dimension of ~w
needs to be equal to the number of similarity indices, that is, the particle dimension is 12,
we set the population size to this value for convenience in the experiment. The population
is small and the amount of data is huge. The most time-consuming part of the particle
swarm algorithm is the calculation of the fitness value. Therefore, how parallel calculations
should be performed when evaluating the fitness value of the particle swarm algorithm
implemented by Spark becomes a key consideration. In Algorithm 3, before calculating
the fitness value, you must first obtain the predicted link. This requires certain operations
on the key–value pair RDD sparseMatrixRDD (line 2) that has been divided into areas.
First, the mapValue method is used in Spark to perform a separate operation on the value.
For operation, the product sum of each similarity index corresponding to the link and
each dimension value of ~w (that is, each dimension value of the particle position vector)
was obtained, and this product sum was used as a score for judging whether a link is a
predicted link. Due to the huge amount of data, in order to avoid the use of sortByKey
and other shuffle-related operators as much as possible, and successfully extract TopN
in hundreds of millions of data, we used mapPartition to find the smallest heap in each
partition, and then used flatMap to summarize each partition first. The minimum heap set
data is then the smallest heap. After flattening, the RDD key was taken to get the predicted
link RDD predictRDD. After that, the predicted link was compared with the test link, and
the fitness value could be easily calculated.
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Algorithm 1 Spark-PSO Algorithm

Input: populationSize, maxIteration, dimension, dataset
Output: the best solution

1: topNBC <- sc.broadcast(topN)
2: Load data and transform the loaded data RDD as Key-value pair RDD: sparseMa-

trixRDD((fromNodeID, toNodeID), (J, A, C, P, K, Pr, R, Hp, Hd, L, Sa, So)) and
testRDD(fromAuthorID, toAuthorID), then Hash partition sparseMatrixRDD and per-
sist the two RDD into memory.

3: Generate a randomly initialized population as particlesPreRDD in the format (parti-
cleID, position, velocity, pbest)

4: particlesPreArray <- particlesPreRDD.collect
5: Add fitness and pbFitness for every element in particlesPreArray using Algorithm 2

and get particlesArray with particles in the format (ID, position, velocity, fitness, pbest,
pbFitness)

6: particlesRDD <- sc.parallelize(particlesArray)
7: gbTemp <- particlesRDD.sortBy((._4, true)).take(1)(0)
8: gb <- gbTemp
9: while t < maxIteration do

10: gbBC <-sc.broadcast(gb)
11: particlesBC <- sc.broadcast(particlesArray)
12: Update every particle in particlesArray using Algorithm 3
13: gbTemp <- particlesRDD.sortBy((._4, true)).take(1)(0)
14: if gbTemp._2 < gb._2 then
15: gb = gbTemp
16: end if
17: particlesRDD <- sc.parallelize(particlesArray)
18: gbBC.destroy
19: particlesBC.destroy
20: t = t + 1
21: end while
22: topNBC.destroy
23: Output gb._2(gbest) as the best solution

Algorithm 2 calculateFitness Algorithm

Input: position, sparseMatrixRDD, testRDD, topNBC
Output: fitness

1: finalHeap < PriorityQueue.empty(MinOrder)
2: predictRDD <- sparseMatrixRDD.mapValues(tuple1=>∑11

i=0(tuple1._(i + 1)*position(i)))
.mapPartitions(iterator=>{

minHeap <-PriorityQueue.empty(MinOrder)
iterator.foreach(tuple2=>{

minHeap.enqueue(tuple2)
if minHeap.length > topNBC.value

minHeap.dequeue()
end if
minHeap}

minHeap.toIterator
}).flatMap(tuple3=>{

finalHeap.enqueue(tuple3)
if finalHeap.length >topNBC.value

finalHeap.dequeue()
end if
finalHeap}).map(_._1)

3: incorrectNum <- topN-predictRDD.intersection(testRDD).count
4: fitness <- 1.0 * incorrectNum/topN
5: return fitness
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Algorithm 3 updateParticle Algorithm

Input: partcle,gbest,sparseMatrixRDD, testRDD, topNBC
Output: particle

1: Update velocity and position according to Formulas (1) and (2)
2: Evaluate fitness using Algorithm

refa2
3: if fitness < pbFitness then
4: set current particle to pbest
5: end if
6: return particle

4. Experiment and Result Analysis
Experimental Evaluation Methods and Results

Figure 3 shows the fitness20 (topN = 20) results of new links formed during the
training period from 1986 to 1987. The black solid line depicting the “Topo12” predictor
shows that the average optimal fitness value of 100 candidate solutions dropped sharply
from 0.7505 to 0.0475 within 10 generations, and then eased slightly, and dropped to 0.006
by the 27th generation. In the 50th generation, it was reduced to 0.0025. After that, the line
was getting closer and closer to the X-axis. By the 87th generation, it completely coincided
with the X-axis, and the average optimal fitness value reached a satisfactory result of 0.
The curves are consistent with the characteristics that the particle swarm optimization
algorithm converges quickly at the beginning of the iteration and slowly at the end, and the
overall convergence is relatively fast. In fact, the optimal fitness value converges to 0 much
earlier in most runs, but the image depicts the average result over 100 runs, and because
the particle swarm algorithm has the disadvantage of easily falling into local optima late in
the process, several of these runs take far more generations than normal to reach a fitness
value of 0, thus lengthening the number of generations required for the overall average.

Figure 3. Average best fitness (average gbFitness) calculated from 100 simulations of PSO for training
new links appearing in 1987.

To better understand the performance of each topological similarity index in the em-
ployed link predictor, we plotted Figure 4 to visualize this aspect of information. Figure 4
shows all 100 solutions obtained by evolving the particle swarm optimization algorithm in
parallel with Spark for 250 generations, where ~w is used as the horizontal row. The i-th
column represents the coefficients of wi used for the linear combination, and the color of the
axes indicates the position where the coefficient values are located. It can be observed from
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the images that the 100 candidate solutions differ significantly from each other. Neverthe-
less, we can still find more positive than negative values for the Average Path Weight and
Katz, with the former accounting for more than 90% of the positive values and the latter
not even having any negative values, while Preferential Attachment is basically all negative
with only two sporadic positive values. This means that for a high-scoring author pair, if
it contains a large number of positive weights for Average Path Weight and Katz and a
large number of negative weights for Preferential Attachment, then a link between the two
authors will be more likely to be generated in the future, that is, more likely to collaborate.

Figure 4. The 100 best individuals evolved from pso (from top to bottom, there are 1~100 rows, and
each row represents a best individual).

The ranking frequencies of each similarity index were visualized according to their
coefficients, as shown in Figure 5. The coefficients are ordered from the most positive (in
first place) to the most negative (in 12th place). As can be seen from the images, Average
Path Weight and Katz frequently occupy the first to fourth positions in the ranking, while
the Hub-promoted Index, Hub-depressed Index, Leicht-Holme-Newman Index, Salton
Index, and Sorenson Index ranked 8th to 12th most frequently. The other indices were
relatively dispersed.

Figure 5. The frequency graph drawn by the ranking coefficient, where wi corresponds to the
similarity index.

Since the positive class is much smaller than the negative class in large sparse networks,
given this imbalance, even for random link predictors, metrics such as accuracy and
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negative predictive value are very close to 1. Therefore, this paper puts more attention on
recall and accuracy, which are shown in Equations (5) and (6), respectively, and Equation (7)
is a combined metric Fβ that combines the two.

recall =
TP

TP + FN
(5)

precision =
TP

TP + FP
(6)

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(7)

β is used to adjust the weight of recall and accuracy—when β = 1 both weights are the
same, if the accuracy is considered more important then β is reduced, and if recall is
considered more important then β is increased accordingly.

Adjusting β to one of 0.5, 1, and 2, respectively and plotting Figure 6, it is easy to
find that F1 reaches its extreme value roughly at N ≈ 103. Since the number of selected
academic network collaborator nodes increases with the year, the corresponding number
of node–node pairs of links consisting of any two authors also increases with the year with
a difference of hundreds of millions or more. It is observed that for years with a higher
number of links, the Fβ value is also clearly higher.

Figure 6. Fβ of link prediction in each validation set.

Figure 7 depicts the precision of the link prediction under the top N-scoring au-
thor–author pairs. It is not difficult to find that the fitness function of the algorithm
runs achieves essentially zero-error precision across the validation sets when scoring au-
thor–author pairs below about 102 are selected, and extremely high precision between 102

and 103. After that, the curve plummets from smallest to largest by validation set year,
mainly because all correctly predicted links have been basically identified until N is about
103, and increasing N further just increases the false-positive rate in vain. Overall, it can be
seen that our prediction of co-authorship works well.
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Figure 7. Precision of link prediction in each validation set.

5. Summary and Outlook

In big data research, the problem of link prediction in social networks has always
been an important area. In this article, we use the Apache Spark framework to design
and implement a parallel particle swarm optimization link prediction algorithm for the
first successful prediction of academic paper cooperation relationships. By paying more
attention to the design and parallel computing of fitness evaluation, our algorithm adapted
to the task of big data processing well. We conducted convincing experiments for the
proposed algorithm on the real academic paper collaborator data set. We drew a graph
of the average convergence of fitness values, and indirectly observed the performance
of each similarity index through the range and ranking of the best ~w dimension values,
and used the evaluation indicators precision and Fβ on four validation sets to further
observe the prediction effect. The design experiment observation also shows that the
link prediction effect of our method is obviously better than papers simply choosing
serial intelligent optimization algorithms or simply using a big data framework without
adjusting the fitness calculation to suit the real big data applications, which illustrates the
effectiveness of the particle swarm optimization algorithm and the high adaptability of
Spark to iteratively process large-scale data even when the population is small. In future
work, we suggest using improved variants of particle swarm algorithm or other swarm
intelligence optimization algorithms for link prediction or application in other real big data
instances, which may have more different gains.
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