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Abstract: The impossibility of replacing hydraulic drives with other type drives in heavy duty
machinery is the main reason for the development of a system for controlling hydraulic power
steering. Moreover, the need for remote automatic control of the steering in specific types of mobile
machinery leads to significant scientific interest in the design of embedded systems for controlling
electro-hydraulic steering units. This article introduces an approach, which has been developed
by authors, for robust stability and robust performance analysis of two embedded systems for
controlling electro-hydraulic power steering in mobile machinery. It is based on the suggested new
more realistic “black box” SIMO model with output multiplicative uncertainty. The uncertainty
is obtained by parameters confidence interval and Gauss approximation formula. The embedded
control systems used a linear-quadratic Gaussian (LQG) controller and H∞ controller. The synthesis
of the controllers was performed on the basis of a nominal part of an uncertainty model. Robust
stability and robust performance analyses were performed in the framework of a so-called structured
singular value, µ. The obtained theoretical results were experimentally approved by real experiments
with both of the developed control systems, which were physically realized as a laboratory test rig.

Keywords: uncertainty “black-box” model; electro-hydraulic steering system; robustness analysis;
LQG and H∞ design; embedded control

1. Introduction

One of the most important applications of electro-hydraulic servo positioning systems
is the power steering systems of various types of mobile machinery. This type of steering
control is used by all agricultural, road-building, materials handling, and other internal
production vehicles, in which the main drive system is hydraulic. The high density of
transmitted power in the hydraulic drives is the main reason why they are used not only for
running and working movements but also for controlling the direction of movement. The
transmission of energy is carried out through hydraulic oil at the expense of only hydraulic
losses, unlike conventional steering systems for cars where there are also mechanical
losses due to the mechanical feedback from the steering wheel to the steering axle. The
advantage of this type of control is that it is applicable to both wheeled and tracked
machines regardless of their weight. Moreover, this type of steering system facilitates the
operation of the machine during its specific function, which is mainly outside of public
roads and is related to overcoming obstacles in different terrains. It should be noted that
this type of steering system is permissible for use in mobile machinery whose speed does
not exceed 60 km/h. The wide range of the mentioned applications along with the growing
need for remote control motivates the development of digital control algorithms for electro-
hydraulic devices [1]. The growing demand for remote control of the steering led to the
progress of the embedded control systems that mainly determine the behavior of the entire
electro-hydraulic drive system. From a control point of view, the electro-hydraulic power
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steering (EHPS) unit is a non-linear plant that can be regarded as both a single-input,
single-output (SISO) system or a single-input, multiple-output (SIMO) system, depending
on sensors that are used to form feedback signals. The main source of non-linearities
is the construction of some elements, such as different types of valves, orifices, closed
volumes, springs, and others [2]. In general, the existing embedded systems for the control
of an EHPS unit are based on a simple PID controller and its modifications [3,4]. The
main advantages of such types of controllers are that they can be tuned with well-known
approved in practice control methods. However, in the case of multivariable plant control,
the PID controller cannot provide control system performance [5,6]. Another reason for
using mainly SISO plant models is that the deriving or estimating of the many-inputs,
many-outputs (MIMO) model are more sophisticated. There are some papers that consider
the advanced control of electro-hydraulic steering based on H2, H∞ µ controllers [7–10],
in which only simulation results are given and the real experiments with derived control
algorithms are not presented. Most of them use analytical models that are not derived
from real experimental data. Moreover, in the literature, there is a lack of papers that
consider embedded control of power steering systems of heavy-duty mobile machinery.
These give the motivation to perform a series of investigations and develop an embedded
system for the control of an EHPS unit based on the SIMO model. In such investigations,
the whole process of development is regarded. It includes hardware setup design and
assembly, estimating and validating the SIMO plant model, design of controllers, execution
of simulation analysis with a designed controller, implementation of a control algorithm
in an appropriate control device, and, finally, performing real experiments. Based on our
previous investigation it is proper for embedded control of the regarded type of EHPS to use
the single-input, three-output model, which involves multivariable controller design. Due
to the plant non-linearities, unmodeled dynamics, noises, and disturbances, which exist in
real EHPS units, the controller should provide robustness of the closed-loop system [11].
Control theory suggests various types of multivariable algorithms such as linear-quadratic
Gaussian (LQG) control, H∞ control, and µ control [12]. The main advantage of a µ
controller is that it guarantees the robust performance of the closed-loop system, but it
is well known that such a type of controller is more sophisticated and is of a high order,
even for the low-order plant model. The LQG and H∞ controllers are simpler than the µ
controller, which makes them appropriate for multivariable, real-time control of an EHPS
unit, but they cannot guarantee a priori robustness of the closed-loop system. However,
after their design, we can investigate the robustness of the closed-loop system. For this aim,
the model of an EHPS unit with realistic uncertainty should be developed. These give a
motivation to develop a procedure for robust performance and robust stability analyses of
the multivariable system for control of the EHPS unit.

The main goal of this article is to develop an approach for robust stability and robust
performance analyses of embedded systems for the control of an EHPS in heavy-duty
mobile machinery. This analysis are based on the new uncertainty model of EHPS units,
suggested by the authors. The methodology should be used after controller design and
before implementation of the control algorithm into an actual control device. It was per-
formed on two embedded control systems that were designed in our previous works [13,14].
They were based on a linear-quadratic Gaussian (LQG) controller and an H∞ controller.
The synthesis of the two controllers was performed via an experimentally estimated SIMO
state space model. In robustness analysis, this model was regarded as nominal. In contrast
with our previous work for robustness analysis [15], where the 30% input multiplicative
uncertainty was introduced in the estimated model, which was generally based on our
experience with such types of EHPS units, here we derive a new model with output mul-
tiplicative uncertainty based on experimental data. The uncertainty in the new model is
evaluated via parameters confidence interval and Gauss approximation formula. This
model is more conservative than one from our previous work [15] but it is more realistic
and close to the real servo system dynamics. The robust stability and robust performance
analysis of both embedded control systems are performed on the basis of a structured
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singular value µ framework. In order to approve experimentally obtained results, the
workability of both systems is verified through real experiments on a laboratory test rig.

The paper is structured as follows: Section 2 shows the first general contribution of
the paper—deriving of the uncertain steering system model, Section 3 briefly present the
design of LQG and H∞ controllers, Section 4 shows the second general proposition of
the paper-robust stability and robust performance analysis of both closed-loop control
systems based on the new model, Section 5 presents experimental results for performance
verification and in Section 6 some conclusions are given.

2. Nominal Servo System Model

For the investigation of EHPS, a laboratory test rig for the examination of different
types of embedded controllers is designed. The electrohydraulic steering unit (EHSU)
introduced into the test rig is OSPEC200 LSRM [16]. The designed hydraulic circuit diagram
and detailed description of the test rig system are shown in [17] and real implementation is
presented in Figure 1.
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Figure 1. The real implementation of laboratory electrohydraulic power steering test rig.

In order to design linear multivariable controllers, it is necessary to derive a linear
state space model of the plant. In this case, a “black box” type model of an electrohydraulic
power steering system is obtained through an identification approach using an experimen-
tal dataset. The details on identification were presented in [18]. In this section, only a short
representation of the identified model is shown. The system can be modeled sufficiently
well by third order state space model with single-input and three outputs. The input is a
control action and outputs are the proportional spool position yspool , the measured flow
rate y f low consumed by the servo cylinder, and the cylinder piston position ypos. The first
output is measured by the linear variable differential transducer (LVDT), the second is
measured by gear flowmeter with coupled encoder and the third output is measured with
the linear resistive transducer. The state space form of the estimated plant model is:

x(k + 1) = A(θ)x(k) + B(θ)u(k) + K(θ)e(k)
y(k) = C(θ)x(k) + D(θ)u(k) + e(k)

, (1)

where x =
[

x1 x2 x3
]T , y =

[
yspool y f low ypos

]T are the state vector and the
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output signal, θ-is the parameters vector and e =
[

espool e f low epos
]T are the residuals,

that are white Gaussian noises. The matrices of the model are:

A =

 −1.05 0.19 6.27
−0.04 1 0.198
−0.371 0.033 2.044

, B = 10−3

 −0.37
−0.034
−0.23

,

C =

 −31 0.67 −6.58
−0.584 0.007 −0.25
0.059 −2.019 0.125

, D = 10−3

 0.117
0.014

0.0021

.

K =

 −0.025 −0.023 −0.022
−0.002 0.0066 −0.429
−0.007 −0.01 0.0033


(2)

Further, the deterministic part of (2) will be regarded as a nominal model and will be
used for designing of H∞ controller and LQG, whereas the stochastic part will be utilized
for designing a Kalman filter. It is well known that the designed controllers will ensure
nominal stability and performance of the control system, but a priori robust stability and
robust performance are not guaranteed. In order to ensure control system performance in
presence of disturbances, unmodeled dynamics, non-linearities, and noises the robustness
analysis of a closed-loop system should be performed. To achieve this the conservative
uncertainty model should be derived.

3. Uncertainty Servo System Model

The system identification procedure assumes that the input signal u(k), output vector
y(k), as well as the residuals e(k), are zero mean random vectors with Gaussian distribution.
Hence, the estimated parameters of the state space model (1) also become random variables
with Gaussian distribution. Moreover, the results of residuals correlation tests (Figure 2)
show that estimates of parameters are unbiased. This means that the true values of the
plant parameters fall in the confidence interval of 3 standard deviations with respect to
the nominal values with probability close to 1. Thus, the confidence intervals may be
interpreted as parameters uncertainties, which can be used to derive a model with so-called
structured uncertainty. However, if the model has many uncertainty parameters there
are some difficulties to use it for robust controller design or robustness analysis. In this
case, it is more convenient to derive a model with so-called unstructured uncertainties. It
is obtained by a representation of parameters uncertainty as uncertainty in closed-loop
system frequency responses.
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However, the frequency responses are non-linear functions of parameter estimates,
but for computing, the uncertainty bounds their first Taylor order approximation is usually
taken. For example, the magnitude responses |Gi(jω, θ)| of the identified model, for each
of the output channels i can be represented as a random variable with normal distribution.
It depends on the standard deviations of the model parameters σθ , which give a confidence
region around each frequency calculated as

|Gi(iω + 3σθ)| = |Gi,nom(iω)(1 + Gmax,i(jω)∆i)|, i = 1, 2, 3. (3)

The Gmax,i(jω) and |∆i(jω)| < 1, i = 1, 2, 3 are the magnitude response bounds and
the scalar uncertainty blocks, respectively. The Gi,nom(iω) are transfer functions correspond
to the nominal state space model (1). The magnitude responses along with their bounds
are presented in Figure 3.
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Since the magnitude response bounds Gmax,i(jω) are non-parametric functions of
frequency, which are inconvenient to use directly in robust stability and robust performance
analysis. Hence, a parametric approximation for each of them is constructed with help of
the stable minimal phase discrete time transfer functions. For the approximation of the
relative uncertainty between the control signal and spool valve, a 5th order transfer function
is selected. The approximation is obtained using non-linear least squares optimization
which fits the transfer function parameters to match the non-parametric response. The
resultant parametric approximation is:

Ĝmax,1(z) =
0.15(z + 0.33)(z− 0.82)(z− 0.997)(z2 − 0.47z + 0.51)
(z + 0.78)(z− 0.89)(z− 0.9995)(z2 − 0.25z + 0.44)

(4)

The quality of the approximation can be judged from Figure 4, where non-parametric
and parametric models are compared for a specific frequency range relevant for the con-
troller’s stability and performance. From a parametric approximation, it is seen that most
of the uncertainty in this output channel is in the high frequency domain, however, there
is also elevated uncertainty in the low frequency domain, which can be attributed to the
dead-band non-linearity of the proportional spool valve.
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Figure 4. Approximation of the relative uncertainty in the spool position.

For the parametric approximation of the relative uncertainty between the control
signal and flow rate a 3rd order model with the following discrete time transfer function
is used:

Ĝmax,2(z) =
0.36(z− 0.96)(z− 0.45)(z + 0.19)
(z + 0.84)(z− 0.98)(z− 0.33)

(5)

As can be seen, the uncertainty in this channel is predominantly in the high frequency
range, because the poles and zeros are relatively farther from the unit circle in the z-
domain. The fit between non-parametric data and parametric approximation is examined
in Figure 5.
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Finally, for the parametric approximation of the relative uncertainty bounds between
the control signal and the piston position the following transfer function from the 6th order
is obtained:

Ĝmax,3(z) =
1.2(z− 0.993)(z− 0.19)(z2 − 1.43z + 0.63)(z2 + 0.41z + 0.36)
(z + 0.53)(z− 0.994)(z2 − 1.12z + 0.45)(z2 + 0.2z + 0.52)

(6)

This transfer function also has pronounced high and low frequency components,
however, the low frequency part can be mostly neglected due to the proximity between the
respective zero and pole pair. The fit between the non-parametric model and its parametric
approximation is presented in Figure 6.
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Therefore, the final result of the system identification covariance analysis is an approx-
imation of the relative uncertainty bounds Gmax,i(jω) with stable discrete time minimal
phase transfer function Ĝmax,i(z), where z = ejωTS . That allows to map the probability
density function over the model set used for system identification to a confidence set of
linear systems, or equivalently to an uncertain LTI representation, which in our case utilize
a multichannel output multiplicative uncertainty structure presented in Figure 7.
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The resultant representation of the uncertain model is: yspool(z)
y f low(z)
ypos(z)

 =

 1 + Ĝmax,1(z)∆1 0 0
0 1 + Ĝmax,2(z)∆2 0
0 0 1 + Ĝmax,3(z)∆3

Gnon(z), (7)

where Gnom(z) =
(

Gnom,1(z) Gnom,2(z) Gnom,3(z)
)T is the transfer matrix correspond-

ing to the SIMO state space model from the system identification represented with expres-
sions (1) and (2). In the above expression, ∆i are uncertain SISO transfer functions bounded
by norm such that ∆i∞ ≤ 1.

In Figures 8 and 9, the frequency responses and step responses for 30 random values
of plant uncertainty are shown.

Information 2021, 12, x FOR PEER REVIEW 9 of 21 
 

 

Figure 7. The obtained model with output multiplicative uncertainty. 

The resultant representation of the uncertain model is: 

max,1 1

max,2 2

max,1 3

ˆ1 ( ) 0 0( )

ˆ( ) 0 1 ( ) 0 ( )

ˆ( ) 0 0 1 ( )

spool

flow non

pos

G zy z

y z G z G z

y z G z

 +  
  
 = +  
    +     , 

(7) 

where ( ),1 ,2 ,3( ) ( ) ( ) ( )
T

nom nom nom nomG z G z G z G z=  is the transfer matrix corresponding to 

the SIMO state space model from the system identification represented with expressions 

(1) and (2). In the above expression, Δi  are uncertain SISO transfer functions bounded 

by norm such that Δ 1i  .  

In Figures 8 and 9, the frequency responses and step responses for 30 random values 

of plant uncertainty are shown. 

 

Figure 8. Frequency responses of uncertainty model. 

As can be seen from the Bode diagram the magnitude responses of the constructed 

uncertain system with output multiplicative uncertainty are closely matched to bounds of 

the magnitude response inferred from the system identification. 

It should be noted that in the time domain the uncertainty is occurred in time 

constants and in static gain. 

 

Figure 8. Frequency responses of uncertainty model.

Information 2021, 12, x FOR PEER REVIEW 9 of 21 
 

 

Figure 7. The obtained model with output multiplicative uncertainty. 

The resultant representation of the uncertain model is: 

max,1 1

max,2 2

max,1 3

ˆ1 ( ) 0 0( )

ˆ( ) 0 1 ( ) 0 ( )

ˆ( ) 0 0 1 ( )

spool

flow non

pos

G zy z

y z G z G z

y z G z

 +  
  
 = +  
    +     , 

(7) 

where ( ),1 ,2 ,3( ) ( ) ( ) ( )
T

nom nom nom nomG z G z G z G z=  is the transfer matrix corresponding to 

the SIMO state space model from the system identification represented with expressions 

(1) and (2). In the above expression, Δi  are uncertain SISO transfer functions bounded 

by norm such that Δ 1i  .  

In Figures 8 and 9, the frequency responses and step responses for 30 random values 

of plant uncertainty are shown. 

 

Figure 8. Frequency responses of uncertainty model. 

As can be seen from the Bode diagram the magnitude responses of the constructed 

uncertain system with output multiplicative uncertainty are closely matched to bounds of 

the magnitude response inferred from the system identification. 

It should be noted that in the time domain the uncertainty is occurred in time 

constants and in static gain. 

 

Figure 9. Step responses of the uncertain model.

As can be seen from the Bode diagram the magnitude responses of the constructed
uncertain system with output multiplicative uncertainty are closely matched to bounds of
the magnitude response inferred from the system identification.

It should be noted that in the time domain the uncertainty is occurred in time constants
and in static gain.
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4. Design of LQG and H∞ Controllers

In previous work, several LQG and H∞ controllers for electrohydraulic steering
systems based on various identification models are developed. These developments are
presented in articles [19,20].

Model (2) is used to design the LQG and H∞ controllers. A detailed description of
the procedure for LQG and H∞ controllers synthesis is presented in [13,14]. The main
proposition of this article is the investigation of robust stability and robust performance
of the developed embedded electrohydraulic power steering system based on the new
uncertainty model. Due to that here only a brief presentation of the controller design
procedure is given. The scheme of designed systems is depicted in Figure 10. The block
named “Controller” represents designed LQG or H∞ controllers.
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To ensure the performance of reference tracking the integral action LQG controller is
designed. For this aim, the nominal model (2) is modified as

eint,pos(k + 1) = eint,pos(k) + Tsepos(k), epos(k) = Ts(yre f (k)− ypos(k)), (8)

where yre f (k) is the reference of cylinder piston position, Ts = 0.01s—the sample time,
eint,pos(k)—the discrete time integral of cylinder piston position error, and epos(k)—the
cylinder piston position error. Combining model (1) and Equation (8) the description of the
augmented plant is obtained as

x(k + 1) = Ax(k) + Bu(k) + Gyre f (k),
y(k) = Cx(k),

(9)

where x(k) =
∣∣∣∣ x(k)

eint,pos(k)

∣∣∣∣, A =

∣∣∣∣ A 0
−TsC 1

∣∣∣∣, B =

∣∣∣∣ B
0

∣∣∣∣, C =
∣∣ C 0

∣∣, G =

∣∣∣∣ 0
Ts

∣∣∣∣. The

controller formed control signal as:

u(k) = −Kc x̂(k)− Kieint,pos(k) (10)

where Kc and Ki are the proportional and integral parts of the controller. The state estimates
x̂(k) are computed by the Kalman filter.

x̂(k + 1) = Ax̂(k) + Bu(k) + K f (y(k + 1)− CBu(k)− CAx̂(k)) (11)

where K f is matrix Kalman filter gain. It is obtained by MATLAB® function Kalman [21].
The covariance of residual in the model (1) is used in the Kalman filter design procedure.
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The obtained LQG controller minimizes performance criteria [22]

J(u) =
∞

∑
k=0

xT(k)Qx(k) + uT(k)Ru(k) (12)

where Q =

[
1000 0

0 500CT
3 C3

]
, R = 100 and C3 is the third row of a matrix C.

In order to design H∞ controller, two weighting transfer functions Wp, Wu and are
introduced. They are used to specify the performance requirements for the closed loop
control system. Thus the plant description used in the design of H∞ controller is

xext(k + 1) = Aextxext(k) + Bext

 e
yre f

u

,

 zu
zy

ycont

 = Cextxext + Dext

 e
yre f

u

 (13)

where xext =
[
x1, x2, x3, xu, xp

]
, xu and xp are the states corresponding to Wp, Wu and

ycont = [ yspool y f low epos ]
T is the input of H∞ controller. The controller parameters are

determined by solving the mixed sensitivity optimization problem [23]

min‖ WpS
WuKS

‖
∞
< γ (14)

where γ > 0, S is the output sensitivity function and K is the controller transfer matrix. It is
known that in practice a suboptimal H∞ controller is obtained. If after optimization γ in (14)
is smaller than 1, this means that the prescribed by weighting transfer functions nominal
system performance is achieved. The controller design is performed for weighting functions

Wp =
0.3(0.001s + 1)

300s + 1
, Wu =

0.001(0.3s + 1)
0.001s + 1

. (15)

The obtained value for γ is 0.5387, which guarantees nominal performance. The step
responses of nominal systems with both controllers are depicted in Figure 11.
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5. Robust Stability and Robust Performance Analysis

The block diagram of a closed-loop system with the uncertain model (7) that is used
for robust stability and robust performance analysis is presented in Figure 12. The block
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named K is the transfer matrix of designed LQG or H∞ controllers. In order to investigate
the robust stability, it is convenient to transform the structure scheme of the control system
from Figure 12 to the standard M− ∆ structure, depicted in Figure 13. In this loop y∆ is
the uncertainty output, z =

[
zu zp

]T is the external (performance) output, and u∆ is
the uncertainty input. In case of robust stability analysis zu = uzp = yre f − ypos and. The
block named M is a lower Linear Fractional Transformation of nominal plant Gnom and
controller K

M = Fl(P, K). (16)
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The system depicted in Figure 13 achieved robust stability for all ∆ if, and only
if, [12,24]:

µ∆[Fl(Gnom, K)] < 1, (17)

where µ∆[Fl(Gnom, K)] is the structure singular value of the closed-loop system. The robust
performance of the control system with both controllers is investigated for weighting
functions (15).

The robust performance test is performed concerning an extended uncertain structure.
For the designed control system the extended uncertain structure, take a form:
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∆Gnom =

{[
∆ 0
0 ∆F

]
: ∆F ∈ C1×2

}
(18)

where ∆F is a fictitious complex uncertainty with two inputs zu and zp, and one output
yre f . The system with controller K reach robust performance if, and only if,

µ∆Gnom [Fl(Gnom, K)(jω)] < 1 (19)

where µ∆Gnom [Fl(Gnom, K)(jω)] < 1 is the structured singular value evaluated with respect
in the extended uncertainty (18).

In Figure 14 the limits of structured singular value (17) for both control systems are
presented. It is seen that both closed-loop systems are robustly stable. Both systems can
tolerate approximately up to 215% of the modeled uncertainty. For both controllers the
sensitivity concerning uncertainty is mostly due to ∆3(jω), for example, 25% increasing in
this uncertain element leads to a 25% decreasing in the stability margin. The sensitivity of
stability margin with respect to ∆1(jω) or ∆2(jω) is negligible. That can be explained with
the presence of an additional integrator concerning piston position channel.
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In Figure 15, the bounds of structured singular value (19) for both control systems are
presented. It is seen that both systems achieved robust performance. The system with H∞
controller is more robust than the one with LQG controller. The system with H∞ controller
can tolerate up to 208% of the modeled uncertainty without losing robust performance,
whereas the system with LQG controller can tolerate up to 192% of modeled uncertainty.
Again, the sensitivity of the performance margin concerning the uncertainty ∆3(jω) (piton
position) is highest. This means that the third output is most important for control system
performance.

In Figure 16, the step responses of both closed-loop systems for 50 random values
of plant uncertainty are shown. As can be seen, the step responses are close to these of
nominal closed-loop systems (see Figure 11), which again confirm the robust performance
of designed systems. The transient response of the system with LQG has a negligible
overshoot of approximately 5%, whereas the ones of the system with H∞ controller do not
have an overshoot.

In Figures 17 and 18, the position sensitivity and position complementary sensitivity
for 50 random values of plant uncertainty are shown. The bandwidth of the system with
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LQG controller is a bit wider than one of the system with H∞ controller. Again, it is seen
robustness of both closed-loop systems.
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Figure 16. Transient characteristics with respect to the cylinder piston position.

The disturbance attenuation for both systems is close. For instance, the disturbance
with a frequency of 0.01 rad/s will be suppressed 10 times by the system with H∞ controller
and 12 times by the system with LQG controller. The bandwidth of the LQG system is
wider than one of system with H∞ controller.

In Figure 19, the control signal sensitivity to noise of the designed control systems for
50 random values of plant uncertainty are shown. The LQG controller is more sensitive to
noises than H∞ controllers. This means that the real control signal of the system with LQG
controller may have more oscillations than the one for a control system with H∞ controller,
which influences on system’s energy efficiency.



Information 2021, 12, 512 14 of 20

Information 2021, 12, x FOR PEER REVIEW 15 of 21 
 

 

 

Figure 16. Transient characteristics with respect to the cylinder piston position. 

 

Figure 17. The sensitivity of cylinder piston position to disturbances. Figure 17. The sensitivity of cylinder piston position to disturbances.

Information 2021, 12, x FOR PEER REVIEW 16 of 21 
 

 

 

Figure 18. The sensitivity of cylinder piston position to reference. 

 

Figure 19. The control signal to noise sensitivity. 

The quantitative analysis of the performance of both control systems in frequency 

and time domain is performed. It is based on the maximal and minimal values of the 

following indices which are evaluated for 50 random values of plant uncertainty: 

Maximal and minimal values of H∞ norm:  

( )sM S j


=  (20) 

where ( )S j  is output sensitivity of the closed-loop system.  
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The quantitative analysis of the performance of both control systems in frequency and
time domain is performed. It is based on the maximal and minimal values of the following
indices which are evaluated for 50 random values of plant uncertainty:

Maximal and minimal values of H∞ norm:

Ms = ‖|S(jω)|‖∞ (20)

where |S(jω)| is output sensitivity of the closed-loop system.



Information 2021, 12, 512 15 of 20

Maximal and minimal closed-loop bandwidth ωBT . The ωBT is defined as the fre-
quency at which complementary sensitivity |T(jω)| concerning cylinder piston position
crosses the line −3 db from above.
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Maximal and minimal overshoot:

σ =
ypos,max − ypos(∞)

ypos(∞)
100, % (21)

where ypos,max is the first peak of the transient response with respect to cylinder piston
position and ypos(∞) is its steady state value.

Maximal and minimal settling time ts. It is defined as the minimum period of time
after which the cylinder piston position remains within 5% of its steady state value.

The maximal and minimal square root of integral error with respect to cylinder
piston position:

Je =

√√√√ 1
N

N−1

∑
i=0

(r(i)− ypos(i))
2 (22)

The maximal and minimal values of above described indices for both control systems
are given in Table 1. They are evaluated according to 50 random values of plant uncertainty,
which are obtained by Monte Carlo simulation.

Table 1. Performance indices obtained by Monte Carlo simulation.

MS,max MS,min ωBT,max ωBT,min σmax σmin tst,max tst,min Je,max Je,min
dB dB rad/s rad/s % % s s mm mm

LQG 2.5 1.8 0.36 0.27 6.5 0.1 16.00 12.00 12.07 10.61
H∞ 0.5 0.3 0.2 0.1 0 0 30 16.4 14.79 11.12

It is seen that the difference between maximal and minimal values of corresponding
indices are small for both control systems, which show their robustness. Only one exclusion
can be seen for the settling time of H∞ system, where the difference between maximal and
minimal settling time is approximately equal to the minimal value. However, this system
has not overshoot in transient response.
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6. Experimental Results for Performance Verification

The developed real time Simulink® structure used for experiments with LQG and H∞
controllers is presented in Figure 20 [14]. The main block in the model is the MATLAB®

function block which realizes the communication on the CAN channel between the micro-
controller MC012-022 [25] and the workstation. A more detail description of the developed
laboratory test rig for examination of different types of embedded controllers can be found
in [16]. Here, in order to approve obtained results for the robustness of control systems, we
briefly give some experimental results for both control systems.
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Figure 20. Simulink® model for implementation of the LQG and H∞ controllers in real-time.

Figure 21 compares the transient response of the steering cylinder piston obtained
with both controllers (LQG and H∞). These experiments confirm the observation from the
simulation that both controllers share similar performance in terms of settling time and
steady state accuracy (settling time for the LQG system is approximately 12 s, as one for
H∞ system is 15 s). Both controllers do not overshoot, but the LQG has a faster response in
both directions, that is according to its wider bandwidth (see Figure 17).
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The comparison between control signals obtained with both closed-loop systems is
presented in Figure 22. As can be seen, the amplitude of the control signal of the LQG
system is higher than one of the H∞ system. In a steady state regime, the control signal
of the H∞ system is less oscillatory than LQG one, which can be explained by its lower
sensitivity to output disturbances (see Figure 19). The energy necessary to control an EHPS
unit with a H∞ controller is significantly less than one to control unit with LQG controller.
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Figure 22. Measured control signals.

Figures 23 and 24 compare the internal system variables—flow rate and spool position.
It can be observed that both controllers affect on flow rate and spool position. On the other
side, there is strong relation between both variables, which indicates the accuracy of the
proportional spool valve.
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In Table 2 some of the performance indices of both systems obtained via experimental
data are shown.

Table 2. Performance indices obtained by experimental results.

σ t J
% s mm

LQG 0 10.00 732.5
H∞ 0 14.4 885.7

It is seen that both system has similar performance, which in accordance with the
analysis made in the previous section.

7. Conclusions

The article presents the developed approach for robust stability and the robust perfor-
mance investigation of an embedded system for control of electrohydraulic power steering
based on two different advanced control strategies—linear-quadratic Gaussian (LQG) and
H∞. The approach uses the framework of structured singular value µ that is one of the
basic tool for analysis in robust control theory. In contrast with existing approaches for
robustness analysis of EHPS control systems, the analysis in this article is performed via
the new uncertainty SIMO model of the EHPS unit. The uncertainty in this model is
obtained via experimental data and it is more realistic than one in existing uncertainty
models of the EHPS unit. In such a manner, the new model takes into account the effects
of unmodeled dynamics, non-linearities, disturbances, and measurement noises to the
control system performance. The obtained results show that both control systems achieved
robust stability and performance with similar robust stability and performance margins. In
order to approve theoretical results, the designed controllers are implemented in the PLC
and real experiments of the EHPS unit control system are performed. They confirm the
robustness of the closed-loop system and are similar to the results obtained via simulation
analysis. The assessment of the control performance is derived on the basis of performance
indices (see Tables 1 and 2). A comparative analysis of these indices for LQG and H∞
controller obtained from the simulation and experimental results is made. The results of
this analysis once again confirm the robustness of the developed embedded system with
both advanced control techniques.
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