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Abstract: In response to the difficulty of plant leaf disease detection and classification, this study 

proposes a novel plant leaf disease detection method called deep block attention SSD (DBA_SSD) 

for disease identification and disease degree classification of plant leaves. We propose three plant 

leaf detection methods, namely, squeeze-and-excitation SSD (Se_SSD), deep block SSD (DB_SSD), 

and DBA_SSD. Se_SSD fuses SSD feature extraction network and attention mechanism channel, 

DB_SSD improves VGG feature extraction network, and DBA_SSD fuses the improved VGG net-

work and channel attention mechanism. To reduce the training time and accelerate the training pro-

cess, the convolutional layers trained in the Image Net image dataset by the VGG model are mi-

grated to this model, whereas the collected plant leaves disease image dataset is randomly divided 

into training set, validation set, and test set in the ratio of 8:1:1. We chose the PlantVillage dataset 

after careful consideration because it contains images related to the domain of interest. This dataset 

consists of images of 14 plants, including images of apples, tomatoes, strawberries, peppers, and 

potatoes, as well as the leaves of other plants. In addition, data enhancement methods, such as his-

togram equalization and horizontal flip were used to expand the image data. The performance of 

the three improved algorithms is compared and analyzed in the same environment and with the 

classical target detection algorithms YOLOv4, YOLOv3, Faster RCNN, and YOLOv4 tiny. Experi-

ments show that DBA_SSD outperforms the two other improved algorithms, and its performance 

in comparative analysis is superior to other target detection algorithms. 

Keywords: disease detection; degree classification of disease; data enhancement; target recognition; 

SSD 

 

1. Introduction 

Plants are susceptible to various diseases, thereby affecting their quality and yield 

seriously. The formulation of prevention and control plans as soon as possible before the 

outbreak of the diseases can maximize the effect of prevention and control and reduce 

economic losses. Therefore, the identification of plant diseases is an effective way to in-

hibit the rapid development of diseases and avoid their occurrence. Previously, People 

are used to making subjective judgments by crop disease category, and often disease de-

tection is expert-based, making it a costly and error-prone process. 

Agricultural detection based on artificial intelligence, such as crop yield prediction 

[1], weed identification processing [2], and plant disease detection [3,4], is widely used 

with the development of artificial intelligence technology. Machine learning-based dis-

ease detection requires preprocessing the dataset, extracting the features of disease re-

gions in the image using feature extraction algorithms, sending the obtained feature in-

formation to the classifier to obtain the model parameters, and obtaining the disease cat-

egories and the degree of disease to be detected. However, the model generalization abil-

ity is weak because of the machine learning-based image recognition. When the number 
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of categories is excessive, the features of each class cannot be distinguished effectively. 

Moreover, the categories can only be recognized in a specific image context. Thus, the 

needs of large-scale planting, based on which it is important to research a fast end-to-end 

plants disease detection method, cannot be met. 

In recent years, CNNs have been increasingly incorporated in plant phenotyping 

concepts. They have been very successful in modeling complicated systems, owing to 

their ability of distinguishing patterns and extracting regularities from data. Examples 

further extent to variety identification in seeds [5] and in intact plants by using leaves [6]. 

And some of the latest network models have been applied to the classification of plant 

diseases. Longsheng Fu [7] proposed an orchard kiwi fruit target detection algorithm. Ac-

cording to the characteristics of kiwi fruit images, the 3 × 3 and 1 × 1 convolutions were 

introduced into the YOLOv3-tiny [8] model, DY3TNet model was proposed and com-

bined with R- CNN, YOLOv2 and YOLOv3-tiny are compared. The experimental results 

show that the improved DY3TNet model is small in size and high in efficiency. Guoxu Liu 

et al. [9] detected tomatoes based on the YOLOv3 model [10], combined dense structure 

for feature extraction, replaced traditional R-Bbox with C-Bbox, matched the shape of the 

tomato, reduced the number of parameters, and compared YOLOv2, and Faster RCNN 

[11]. Literature [12] proposed a tomato gray spot recognition method based on Mo-

bilenev2 and YOLOv3 lightweight network model. This method improves the accuracy of 

tomato gray spot recognition by introducing GIOU regression loss function, and uses a 

pre-training method that combines hybrid training and migration learning to improve the 

generalization ability of the model. Literature [13] compared the performance of five net-

works, namely, AlexNet [14], VGG-16 [15], ResNet-101, DenseNet-161[16], and 

SqueezeNet [17] for nutrient deficiency symptom identification based on the Deep Nutri-

ent Deficiency for Sugar Beet dataset and discussed their limitations. 

Building a fast and high classification accuracy model is necessary to determine the 

detection quality of plant disease. The current mainstream target recognition networks 

include YOLO series, Faster RCNN, SSD [18], and FPN. The SSD target detection network 

uses an end-to-end method to regress features and extracts different levels of image fea-

tures, which cover low-level and high-level semantic information. Previous studies have 

shown that the SSD network is fast. However, the direct application of SSD methods to 

detect plant disease cannot meet the high precision requirements in agricultural produc-

tion. This paper proposes a fusion residual network and 1 × 1 convolution feature extrac-

tion module. It strengthens the feature extraction capability of SSD and improves the po-

sitioning and recognition accuracy of SSD for detecting plant disease. We also use data-

enhancement to perform spatial transformation and pixel transformation on images, 

thereby not only improving the abundance of algorithm features, detection accuracy, and 

detection efficiency but also reduces the labor costs for agricultural plant disease detec-

tion. In addition, Images under analysis were obtained by employing cameras operating 

in the visible portion of the electromagnetic spectrum (400–700 nm). In this way, costly 

equipment or trained personnel are not required for obtaining the input data [19]. There-

fore, future users of the developed protocol can acquire data through affordable/cost-ef-

fective, portable (thus in situ) and rapid means. 

This study focuses on proposing a novel end-to-end plant disease detection algo-

rithm called Deep Block Attention SSD (DBA_SSD) for plant leaves. Our main work and 

contributions are presented as follows: 

(1) We proposed a novel end-to-end detection algorithm for plant disease, DBA_SSD, by 

combining the attention mechanism and convolution kernel, which combines the at-

tributes of the plant leaf disease pictures and pay more attention to disease details 

when testing plant disease. 

(2) We graded the health of the fruit and vegetable leaves. According to the research 

results of the paper, different measures can be taken according to the severity of the 

diseases of the fruit and vegetable leaves. Increasing the yield of plants is of great 

significance. 
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(3) We implemented the classic SSD, YOLOv4, YOLOv3, Faster RCNN, and YOLOv4 

tiny models and compared them with our proposed DBA_SSD. Our method is better 

than the classic baseline method on the vegetable and fruit leaf data set. 

The main structure of this article is presented as follows. The first chapter mainly 

introduces the related work on the detection of leaf disease and combs the detection tech-

nology of leaf disease. The second chapter introduces the SSD model and related improve-

ment modules and proposes two improved methods for the SSD target detection algo-

rithm. The third chapter introduces the environment of algorithm experiment, data set 

structure, experiment procedure, and experiment evaluation standard. The fourth chapter 

conducts a comparative analysis of the results of the two sets of experiments and related 

ablation experiments on the proposed DBA_SSD. The other is a comparative analysis of 

the results of SSD improved algorithms and other target detection algorithms. Finally, we 

summarize and prospect the research in this article. 

2. Materials and Methods 

2.1. Related Work 

At present, the research methods on plant disease recognition mainly focuses on two 

aspects: one is disease recognition based on machine learning, and the general steps in-

clude diseased leaf image segmentation, feature extraction, and disease recognition; and 

the other is target recognition technology based on deep learning, wherein terminal end-

to-end target detection is favored by many researchers because of its fast recognition 

speed and efficient feature extraction methods. End-to-end target detection algorithm is 

also called one-stage target detection algorithm. One-stage means that no candidate 

frames are generated and the target frame localization problem is directly transformed 

into a regression problem processing.  

In the research on the identification of plant diseases based on machine learning, Lit-

erature [20] proposed a DCNN-based apple tree leaf disease (ATLD) diagnosis method, 

and established 5 common ATLDs and healthy leaf data sets. The DCNN model combines 

DenseNet and Xception [21] models by using support vector machine to classify apple leaf 

diseases, the experimental results show that the accuracy of the DCNN model better than 

and comparing Inception-v3, MobileNet [22], VGG-16, DenseNet-201, Xception, VGG-IN-

CEP. Shrivastava et al. [23] proposed a rice disease image classification by only method 

using color features, and explored the feature extraction methods of 14 different color 

channels. They obtained 172 different color channel feature information and used 7 dif-

ferent classifiers. The performance is compared, and the result shows that the classifica-

tion accuracy of the support vector machine classifier is up to 94.65%. Literature [24] in-

troduced a hybrid method for detecting plant leaf disease. The first stage corresponds to 

the image enhancement and image conversion scheme to overcome the problems related 

to low illumination and noise. The second stage combines the feature extraction technol-

ogy of GLCM, complex Gabor filter, Curvelet, and image moments. The third stage uses 

the extracted features to train the nerve fuzzy logic classifier, and the proposed combina-

tion of feature extraction and image preprocessing can improve classification accuracy. 

Abdulridha [25] used hyperspectral imaging and machine learning to develop a technique 

for detecting pumpkin powdery mildew in the asymptomatic, early, middle, and late 

stages. This method uses a radial basis function to treat the disease. Strains and healthy 

strains were distinguished, and the severity of diseased strains was classified. Abdu [26] 

proposed a method for identifying the surface of plant diseased leaves, extracting opti-

mized features from the diseased area, and identifying plant diseased leaves based on a 

feature-based machine learning classifier. The diseased features are connected in series to 

form a pathological feature vector for disease recognition to improve detection accuracy. 

In deep learning-based research on fruit and vegetable diseases, Salma Samiei [27] 

used red clover and alfalfa as research objects and proposed CNN-LSTM models com-

bined with denoising algorithms to classify the different growth stages of two different 
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plant species. Based on high-resolution remote sensing data, Alin-Ionut, Ples, oianu et al. 

[28] and others proposed an integrated deep learning model for individual tree crown 

detection and species classification. Mohamed Kerkech et al. [29] proposed a new method 

of grape disease detection based on the SegNet [30] architecture for visible light and in-

frared image segmentation to identify shadows, ground, healthy and symptomatic vines, 

and finally merge the segmentation obtained from visible light and infrared images to 

generate the whole disease map of grapes. Literature [31], a U-Net method for pixel-level 

purple rapeseed segmentation was proposed to calculate the model parameters by adjust-

ing the sample size. In the literature [32], a new thermal imaging method was proposed 

to calculate the color similarity problem between unripe citrus fruits and leaves, which 

were prone to temperature differences between fruit and leaf surfaces because of the var-

ying rates of temperature change between the fruit and leaf surfaces caused by water mist 

and to build a deep learning model based on the thermal imaging system. Meanwhile, the 

disease detection algorithm is moving towards lightweight, thereby making deploy into 

embedded devices easy. Chongke Bi [33] proposed a lightweight method for apple leaf 

disease identification based on MobileNet model. This method was also compared with 

ResNet152 and InceptionV3. The method can provide stable recognition results and is eas-

ily deployed in mobile devices. Utpal Barman [34] compared MobileNet CNN and Self-

Structured CNN (SSCNN) based on citrus disease dataset from smartphone images. The 

experiments show that SSCNN is more accurate in classifying citrus leaf diseases based 

on smartphone images and takes less computation time. After research, increasing num-

ber of scholars tend to detect plant diseases using deep learning-based target detection 

methods, especially YOLO, SSD, and other target detection algorithms represented by 

one-stage methods, which omit tedious machine learning steps, such as image prepro-

cessing, segmentation, and feature extraction, in a one-step end-to-end method with high 

recognition accuracy. Therefore, this paper explores the effectiveness of target detection 

algorithms for vegetable and fruit leaf disease detection and grading by using SSD as 

baseline method. 

2.2. Novel End-to-End Method for Leaf Disease Detection 

2.2.1. SSD Network 

The SSD algorithm model is a one-stage real-time target detection model proposed 

simultaneously with YOLO series. SSD combines the one-stage regression prediction idea 

of the YOLO series and the Anchor Box mechanism of the Faster RCNN by using VGG as 

the base feature extraction network and extracting six different size feature layers from 

the bottom to the top layer as the regression prediction features. The advantage of SSD is 

that it improves the operation speed of the algorithm greatly while maintaining the detec-

tion accuracy. Moreover, the detection of small targets and large objects are considered. 

Figure 1 shows the SSD backbone network structure. 
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Figure 1. SSD backbone network structure. 
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The loss function of SSD contains log loss for classification and smooth L1 for 

regression, and controls the proportion of positive and negative samples, which can 

improve the speed of optimization and the stability of training results. The total loss 

function is the sum of the errors of classification and regression.   is used to adjust the 

weight between the confidence loss and location loss, default = 1, and N denotes the total 

number of default boxes that eventually match with Ground Truth boxes. Confidence loss 

is a typical softmax loss, and location loss is a typical smooth L1 loss. 

Total loss:                
1

L(x,c,l,g)= ( ( , ) ( , , ))conf locL x c L x l g
N

  (1)

Classified losses:          
0
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ij
  (3)

represents whether the i-th regression box matches the j-th GroundTruth box of type P. 

Regression of losses:      1
{ , , , }

( , , )= ( )ˆ
N mk m
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i Pos m cx cy w h
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   (4)

SSD adopts full convolution for direct regression prediction and no longer generates 

candidate frames, which greatly improves the detection speed of SSD network. But there 

are some cases where the detection accuracy is not as good as we expect. When the surface 

features of leaves are similar or leaves are occluded from each other, SSD will miss and 

mis-detect, which often occurs in the actual leaf disease detection. For this reason, SSD 

needs to be improved to enhance feature recognition. 

2.2.1 Squeeze-and-Excitation SSD (Se_SSD) Network 

Se_Block [35] mainly focuses on the relationship between channels and can explicitly 

model the interdependencies between feature channels with the structural unit “Squeeze-

and Excitation (SE)” module, which adaptively adjusts the feature response values of each 

channel and internal dependencies between channels. The Se_Block module works as 

shown in Figure 2, First, feature compression is performed along the spatial dimension of 

the feature map, and each two-dimensional feature channel is turned into a real number, 

that has a global perceptual field to a certain extent. The output has the same number of 

dimensions as the input feature channels. Then, based on the correlation between the 

feature channels, a weight is generated for each feature channel to represent the 

importance of the feature channels. Finally, the original features are re-calibrated in the 

channel dimension by multiplying the channel-by-channel weights onto the previous 

features. 

AdaptiveAvgPool2d
Conv2D
ReLU

Conv2D
Sigmoid

X 

K*X
KX 

 

Figure 2. Se_Block Attention Module. 

To increase the feature extraction capability of SSD feature extraction model and 

focus more on the feature layers with higher importance, this paper adds Se_Block 
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attention mechanism module in front of the last six effective feature layers used for 

regression prediction on the basis of SSD model. The feature layers are rescaled by channel 

dimension. The structure of Se_SSD network is shown in Figure 3. 
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Figure 3. Se_SSD network structure. 

2.2.2. DB_SSD and DBA_SSD Network 

The residual network module, which is a module with good application in the last 

two years, is shown in Figure 4a. X is the input feature map, Wi is the weight of the ith 

layer network, F (X, Wi) + X is the feature output, and F (X, Wi) + X is how the data are 

computed in the module. The residual network is superior to the traditional convolutional 

network. The residual network module implements an ultra-deep network and avoids the 

bottleneck problem of saturating the neural network with correctness due to continuous 

deepening. In addition, by directly connecting the input and output to achieve the goal of 

simplifying the learning objective and difficulty. 1 × 1 convolution is shown in Figure 4b, 

and 1 × 1 convolution is usually followed by a nonlinear layer of Relu for nonlinearization 

to learn more features. In addition to this 1 × 1 convolution’s can change the dimensional-

ity of the image and transform the original image by 1 × 1 convolution to improve the 

generalization ability to reduce overfitting, and at the same time reduce the computational 

effort by boosting and reducing the number of channels to achieve cross-channel infor-

mation interaction and feature integration in the process. 
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Figure 4. (a) Residual network module and (b) 1 × 1 convolution. 

As shown in Figure 5, two kinds of rich feature extraction modules are designed in 

this paper, as shown in Figure 5a, Deep_Block is used to enhance the network feature 

extraction capability by using 1 × 1 convolution to reduce the number of channels after 

convolution, fusing multi-channel information, while introducing a residual structure to 

prevent the loss of feature layer information. Deep_Block_Attention adds a channel 

attention mechanism at the end of the Deep_Block structure for fine-tuning at the channel 

level. As shown in Figure 5b, the feature extraction network of SSD is reconstructed with 

the rich feature extraction module as the basic feature extraction unit, as shown in Figure 

6, to deepen the feature extraction of each layer and increase the richness of feature 

learning by the rich feature extraction module. 
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Figure 5. Enriched feature extraction module ((a) Deep_Block, a feature extraction module combining residual network 

and 1 × 1 convolution; (b) Deep_Block_Attention, a feature extraction module adding an attention mechanism to (a)). 
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Figure 6. DBA_SSD network structure. 

3. Experimental Environment and Experimental Design 

3.1. Experimental Environment 

This experiment is a deep learning model built under the Pytorch deep learning 

framework, using a dataset of 3000 plant leaves, and the final output prediction frame 

identifies the leaf species and determines the severity of leaf disease. The experiments 

were conducted on an Asus laptop from Shanghai, China, with an AMD Ryzen 7 4800H 

processor, NVIDIA Ge-Force RTX 2060 graphics card, and 32G RAM. The deep learning 

framework we use is Pytorch. 

3.2. Dataset 

We chose the PlantVillage dataset [36] after careful consideration because of the large 

number of leaf species and the abundance of disease species in this dataset. And benefiting 

from the convenience and simplicity of Labelimg, this experiment uses Labelimg software 

to label the dataset and obtain data in VOC format for training, with label files as .xml files 

and pictures as .jpg files. The dataset of the experiment has 3000 images, which are di-

vided into 5 major categories: Apple, Tomato, Potatoes, Strawberry and Chili; each major 

category is divided into 3 subcategories according to the severity of leaf disease: healthy, 

general, and severe. In total, 15 subcategories are noted, and the image resolution is 

around 255 × 470 × 3 pixels. The ratio of test, train, and val in the total data set is 1:8:1. 

Figure 7 shows the composition of the data set. 
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Figure 7. Data set composition structure. 

3.3. Experimental Design 

To ensure the equalization of the dataset and to increase the richness and quality of 

the dataset, data enhancement and image preprocessing were performed on the images 

before the experimental tests [37]. The means of enhancement are Histogram Equalization, 

Horizontal Flip + Hue Saturation Value, Vertical Flip + Channel Shuffle, Horizontal Flip + 

Vertical Flip+ Channel Shuffle. The enhanced images are shown in Figure 8, with each of 

the 15 classes expanded to 1,000 images, and the number of data sets expanded from 3000 

to 15,000, with the training, validation, and testing ratios randomly assigned according to 

1:8:1. 

     

     

     
(a) 
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Figure 8. Data Enhancement. (a) Positive sample (healthy); (b) Negative sample (Diseases). 

To better test the performance of the improved algorithm, four experiments were 

designed. Se_SSD with channel attention mechanism added at the end of the feature 

extraction network, DB_SSD (Deep Block SSD) with improved VGG feature extraction 

network, DBA_SSD with fusion of the improved VGG network and channel attention 

mechanism, and SSD of the original network are compared, and the VGG model trained 

on Image Net image dataset is trained by migrated convolutional layers to this model. 

Experiment 1: The Se_SSD network with the Se_Block channel attention mechanism 

added is trained and the average accuracy of this network for the detection of plant leaves 

is tested. 

Experiment 2: The DB_SSD network with the Deep_Block module added, where the 

Deep_Block module does not contain the attention mechanism, is trained in the environ-

ment and hardware conditions of Experiment 1. 

Experiment 3. The DBA_SSD network with the Deep_Block_Attention module 

added, where the Deep_Block_Attention module containing the attention mechanism, is 

trained and tested under the environment and hardware conditions of Experiment 1. 

Experiment 4. The original SSD network is trained and tested under the environment 

and hardware conditions of Experiment 1. 

All the four experiments were trained on the basis of 15,000 plant leaf datasets and 

tested 1500 randomly selected images. The experiments followed the experimental flow 

in Figure 9, the experiment-comparison-optimization-experiment pattern, to obtain the 

average accuracy mAP under this model and to compare the mAP values of different 

models. 
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Figure 9. Experimental flow. 

3.4. Performance Evaluation Metrics 

Precision is a measure of the accuracy of a model’s prediction, and its value is equal 

to the number of correctly predicted positive samples over the total number of positively 

predicted samples. Recall (Recall) is a measure of the model’s ability to identify positive 

samples, and its value is the number of correctly predicted positive samples over the total 

number of positively predicted samples. The prediction results of the model are shown in 

Table 1 for TP, FP, FN, and TN. 

Table 1. Confusion matrix. 

 True Class 

Predict class 

TP 

True Positive 

FP 

False Positive 

FN 

False Negative 

TN 

True Negative 

True Positives (TP): indicates the number of correctly identified positive samples; 

True Negatives (TN): indicates the number of correctly identified negative samples; False 

Positives (FP): indicates the number of incorrectly identified negative samples; False 

Negatives (FN): indicates the number of incorrectly identified positive samples. 

��������� =
��

�� + ��
 (5)

������ =
��

�� + ��
 (6)

The PR curve is a graph drawn with Recall as the horizontal axis and Precision as the 

vertical axis; Precision is negatively correlated with Recall, and the recall rate decreases as 

precision increases. AP (Average Precision) as a single category indicator is the integration 

of PR curve. 

�� = ∫ �(�)
�

�
�(�)  (7)

The value of mAP (mean average precision), as one of the important metrics for the 

evaluation of the whole model, is the average of the summation of all the category APs. 

��� =
∑ ��(�)�
���

�
 (8)

where n is the category and N is the total number of categories. 
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4. Analysis of Experimental Results 

4.1. DBA_SSD Model Experimental Comparison Analysis 

The first 50 Epochs were trained by freezing some of the network layer weights, and 

each batch was trained with 8 images. For the last 50 Epochs, the frozen layers were 

unfrozen and the full network was trained. The learning rate started at 5 × 10−4, and after 

unfrozen the learning rate was 10−4. Fine tuning of the model parameters was performed. 

As shown in Figure 10, the horizontal coordinate is the number of Epochs trained, and the 

vertical coordinate is the loss value at the end of training for each Epoch. Different line 

shapes indicate different improvement algorithms. The loss value of the model decreases 

as the number of iterations increases. The loss values in the training log gradually stop 

changing around 90–100 Epoch. The red thin solid line in the figure indicates the loss 

value of DBA_SSD, whose value is lower compared with the loss of SSD, Se_SSD, and 

DB_SSD algorithms. 

 

Figure 10. SSD and its improved algorithm loss variation graph. 

The test results between SSD and its improved algorithm are shown in Table 2. 

DBA_SSD has the highest accuracy because Deep Block strengthens the network’s feature 

extraction ability on the one hand, and it incorporates the channel attention mechanism to 

accelerate the network learning on the other hand, so that the network focuses on the 

channels with high information content for feature learning. The prediction accuracy 

between its SSD and its improved algorithm for predicting different species of fruit and 

vegetable diseases is shown in Figure 11. The prediction accuracy of DBA_SSD is relatively 

high among most of the categories, and the mAP value of DBA_SSD is 92.20%, while the 

mAP values of SSD, Se_SSD, and DB_SSD are 9.96%, 90.77%, and 89.93%, respectively. 

Table 2. Comparison of accuracy of improved SSD algorithm. 

Target Identification Methods Inserted Modules mAP 

SSD \ 89.96% 

Se_SSD  Se_Block 90.77% 

DB_SSD  Deep_Block 89.93% 

DBA_SSD Deep_Block_Attention 92.20% 
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Figure 11. AP diagram of SSD and its improved algorithm for the detection of different kinds of 

diseases. 

Further observe the data distribution of the experimental results in Figure 12. The 

horizontal coordinates indicate the improved algorithm types, the vertical coordinates are 

the distribution of predicted AP values for the 15 types, the points of the triangle indicate 

the mean, and the thin solid line in the middle of the rectangle indicates the median. From 

Figure 12, we can see that among the four algorithms SSD, Se_SSD, DB_SSD, and 

DBA_SSD, DBA_SSD prediction accuracy is more concentrated. Moreover, the median 

and mean are the highest. DBA_SSD algorithm has better performance compared with 

other improved algorithms. 

 

Figure 12. Box diagram of SSD and its improvement algorithm. 
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4.2. Comparative Analysis with Classical Target Detection Algorithms 

This experiment compares and analyzes the test results of the classical target detec-

tion algorithms YOLOv4 [38], YOLOv4 tiny [39], Faster RCNN, and YOLOv3. This exper-

iment is conducted with the same dataset in the same experimental environment, and its 

Loss variation of each algorithm is shown in Figure 13. 

 

Figure 13. Target detection algorithm loss diagram. 

The disease degree of each plant leaf in this article can be divided into three 

categories: healthy, normal and severe (Table 3). Figure 14 then averages the detection 

accuracy of the same leaves on the basis of Table 3. The prediction accuracy of this 

category is the average of the sum of the prediction accuracy of the three degrees of leaves. 

Therefore, its horizontal coordinates indicate different target detection algorithms, and its 

vertical coordinates indicate the average prediction accuracy and the total average 

prediction accuracy (mAP) of different kinds of plant leaves. 

Compared with DBA_SSD, YOLOv4 has lower prediction accuracy for Strawberry 

and Chili, YOLOv4 tiny has weaker prediction ability for Tomato, and YOLOv3 has lower 

prediction accuracy for Strawberry. This is the learning difference caused by different 

algorithms of feature extraction networks focusing on different information of the learned 

images, and DBA_SSD solves this deficiency by covering all levels of semantic 

information. The rightmost column indicates the average detection accuracy of the 

DBA_SSD algorithm in different categories, with the highest classification accuracy of 

100% and the lowest of 82.24%. 

Table 3. Comparison of the accuracy of the improved SSD model and other target detection algorithms for the detection 

of different kinds of diseases. 

Algorithm 

Category 
YOLOv4 YOLOv4 Tiny YOLOv3 SSD Faster RCNN DBA_SSD 

Apple(general) 94.79% 78.32% 88.87% 83.45% 74.85% 91.83% 

Apple(health) 100.00% 99.78% 94.83% 100.00% 100.00% 99.73% 

Apple(severe) 82.27% 88.01% 90.71% 88.93% 88.20% 91.56% 

Chili(general) 73.99% 92.32% 81.60% 83.89% 90.54% 90.65% 

Chili(health) 98.75% 100.00% 100.00% 100.00% 100.00% 99.12% 

Chili(severe) 73.74% 72.70% 91.55% 83.94% 100.00% 88.86% 

Potatoes(general) 92.71% 89.41% 88.37% 80.35% 88.65% 92.72% 

Potatoes(health) 94.74% 100.00% 100.00% 100.00% 99.80% 100.00% 
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Potatoes(severe) 98.08% 91.18% 89.32% 87.46% 82.88% 82.24% 

Strawberry(general) 63.52% 80.89% 59.83% 80.69% 73.48% 85.37% 

Strawberry(health) 99.52% 100.00% 100.00% 100.00% 100.00% 100.00% 

Strawberry(severe) 67.46% 76.44% 78.95% 84.11% 92.64% 95.07% 

Tomato(general) 85.70% 85.64% 95.81% 82.85% 85.02% 85.54% 

Tomato(health) 100.00% 94.58% 100.00% 100.00% 89.14% 91.67% 

Tomato(severe) 80.35% 64.31% 78.24% 93.69% 86.33% 88.65% 

mAP 87.04% 87.57% 89.21% 89.96% 90.10% 92.20% 

 

Figure 14. Heat map of correlation between different target detection algorithms and vegetable and 

fruit leaf types. 

Figure 15 shows that YOLOv4 corresponds to the largest rectangular box area, and 

its upper quartile edge is close to 100%, indicating the existence of a certain number of 

prediction accuracies higher than 95%. However, its predicted category accuracy is more 

discrete. YOLOv3 has a smaller rectangular area, but its distance at the top of the rectangle 

is not as far as DBA_SSD, indicating that the number of its higher accuracy is not as high 

as DBA_SSD. Although the upper quartile line of SSD is in contact with the 100% line, its 

rectangle area is larger, indicating that the prediction accuracy varies widely and is 

unstable. The rectangle box area of DBA_SSD is the smallest among other algorithms, 

indicating that the prediction accuracy is more concentrated and is closer to the 100% line, 

suggesting that a large part of the prediction accuracy is high and the prediction of each 

kind is more stable. The experiment shows that the DBA_SSD model has a high accuracy 

rate for the recognition of fruit and vegetable leaves, and the SSD is a one-stage target 

recognition algorithm with the advantage of fast recognition speed. The comprehensive 

performance of DBA_SSD has been improved compared with the previous SSD, and the 

performance is also higher compared with other target detection algorithms. The 

detection effect is shown in Figure 16. 



Information 2021, 12, 474 16 of 19 
 

 

 

Figure 15. Box plot of AP statistics under target detection algorithm. 
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Figure 16. DBA_SSD recognition effect. 

5. Discussion 

In the above experiments, we not only compare the performance of different im-

proved algorithms, but also compare the performance of DBA_SSD with other classical 

target detection algorithms. The following is the performance comparison of each algo-

rithm: 

Table 4 shows the FPS, the number of parameters, and computational complexity for 

different algorithms based on the same image input. We can see that DBA_SSD has lower 

number of parameters than other classical target detection algorithms except YOLOv4-

tiny method, but a little bit more parameters than SSD, SE_SSD and DB_SSD. It is worth 

mentioning that the fps of DBA_SSD is not reduced too much. The algorithm can be ap-

plied to students’ academic research, scientific algorithm research, but it is still far from 

agricultural applications. The real-time performance of the algorithm still needs to be im-

proved. Another shortcoming is that the algorithm has a high accuracy only for the cur-

rently trained species. If the plants that need to be predicted are not mentioned in this 

paper, they need to be retrained. But on the other hand, the algorithm is more effective if 

it is applied to the disease identification of the same plant only. At the same time, consid-

ering that individual differences occur in the same plant growing in different environ-

ments, we add pictures of individual differences of the same plant in the data enhance-

ment process, so that the individual differences will not affect the final detection results 

and make the algorithm proposed in this paper generalize better. The algorithm proposed 

in this paper is able to detect plant diseases early in their development and take timely 

control measures, which helps to reduce production costs. At the commercial scale, it is 

clear that capital investment in the adopted method is initially required [40]. However, 

broad-scale commercial applications can provide high returns through significant im-

provements in process improvements and cost reductions. This is the significance of the 

algorithm presented in this paper. 

Table 4. Performance comparison of target detection algorithms. 

Algorithm Backbone Model Image Size Parameters FPS GFLOPs 

YOLOv4 CSPDarkNet53 512 × 512 64.62 M 62 45.96GMac 

YOLOv4-tiny CSPDarknet53-tiny 512 × 512 5.91 M 75 5.19 GMac 

Faster RCNN VGG16 512 × 512 136.98 M 9 86.0 GMac 

YOLOv3 darknet53 512 × 512 61.6 M 34 49.7 GMac 

SSD VGG16 512 × 512 25.48 M 45 85.6 GMac 

SE_SSD VGG16_SE 512 × 512 25.60M 43 85.62 GMac 

DB_SSD VGG_DB 512 × 512 30.55 M 40 86.6 GMac 

DBA_SSD VGG_DBA 512 × 512 30.57M 40 86.6GMac 
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6. Conclusions 

In this paper, we discuss work related to plant disease detection and enhance the 

number and variety of datasets by performing spatial transformations as well as pixel 

processing based on the original dataset. To address the problem of low recognition rate 

and low accuracy of SSD model, we propose a DBA_SSD network model for plant leaf 

detection by incorporating 1 × 1 convolution, residual network and attention mechanism 

in the SSD algorithm. In our experiments we compare several classical target detection 

algorithms and verify the efficacy of DBA_SSD algorithm in plant disease detection. The 

experiments show that the DBA_SSD algorithm improves the accuracy to 92.20% and has 

high robustness and speed. The significance of this algorithm is to be able to detect the 

disease at the early stage of plant disease in time, so as to prevent the disease and reduce 

the economic loss in time. This is of great significance for disease control. The shortcoming 

of the algorithm in this paper is that the algorithm is still too far from being applied in real 

production, so future work will focus on optimizing the algorithm and implanting it easily 

into embedded devices so that it can be applied to the real-time monitoring of agricultural 

plant diseases. 
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