
 information

Article

An Intelligent Hierarchical Security Framework for VANETs

Fábio Gonçalves *,† , Joaquim Macedo † and Alexandre Santos †

����������
�������

Citation: Gonçalves, F.; Macedo, J.;

Santos, A. An Intelligent Hierarchical

Security Framework for VANETs.

Information 2021, 12, 455. https://

doi.org/10.3390/info12110455

Academic Editor: Sherali Zeadally

Received: 15 September 2021

Accepted: 27 October 2021

Published: 2 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Algoritmi Center, University of Minho, 4710-057 Braga, Portugal; macedo@di.uminho.pt (J.M.);
alex@di.uminho.pt (A.S.)
* Correspondence: b7207@algoritmi.uminho.pt
† These authors contributed equally to this work.

Abstract: Vehicular Ad hoc Networks (VANETs) are an emerging type of network that increasingly
encompass a larger number of vehicles. They are the basic support for Intelligent Transportation
Systems (ITS) and for establishing frameworks which enable communication among road entities
and foster the development of new applications and services aimed at enhancing driving experi-
ence and increasing road safety. However, VANETs’ demanding characteristics make it difficult to
implement security mechanisms, creating vulnerabilities easily explored by attackers. The main
goal of this work is to propose an Intelligent Hierarchical Security Framework for VANET making
use of Machine Learning (ML) algorithms to enhance attack detection, and to define methods for
secure communications among entities, assuring strong authentication, privacy, and anonymity. The
ML algorithms used in this framework have been trained and tested using vehicle communications
datasets, which have been made publicly available, thus providing easily reproducible and verifiable
results. The obtained results show that the proposed Intrusion Detection System (IDS) framework is
able to detect attacks accurately, with a low False Positive Rate (FPR). Furthermore, results show that
the framework can benefit from using different types of algorithms at different hierarchical levels,
selecting light and fast processing algorithms in the lower levels, at the cost of accuracy, and using
more precise, accurate, and complex algorithms in nodes higher in the hierarchy.

Keywords: VANETs; security; intrusion detection systems; machine learning

1. Introduction

The advancements in vehicular communication allow vehicle makers to implement
new functionalities and services, providing enhancements in the driving experience, road
traffic, and, more importantly, road safety. The networks that support this type of communi-
cation are called VANETs. These are, however, networks with characteristics different from
other networks, where the nodes move very quickly, creating constant topology changes.
VANET communications are wireless, using the air as the medium to communicate. Cur-
rently, the main industry standards are Dedicated Short Range Communications (DSRC) [1]
and Institute of Electrical and Electronics Engineers (IEEE) 802.11p [2]. Still, these are het-
erogeneous networks that may take advantage of other technologies [3]. There are two
types of nodes: On-Board Units (OBUs) and Road Side Units (RSUs) [4]. The first is
installed in mobile nodes, such as vehicles. The latter are located alongside the road
and constitute the network infrastructure. So, VANET demanding characteristics create
vulnerabilities, providing an attractive environment for attackers.

Additionally to the normal security measures that try to prevent attacks, usually
through cryptography, IDSs can provide an extra layer of security by detecting unpre-
ventable attacks. These can detect attacks and trigger responses to minimize their effects.
Depending on the detection technique used, IDSs can be classified into [5] signature-based,
anomaly detection, specification-based and reputation-based. Anomaly detection works
from collected data history (unlabeled) or a set of training data (labeled) to detect anomalies
or deviations from patterns [5]. This work focuses on anomaly detection from labeled data.

Information 2021, 12, 455. https://doi.org/10.3390/info12110455 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-5799-7425
https://orcid.org/0000-0002-5892-1289
https://orcid.org/0000-0003-1501-2752
https://doi.org/10.3390/info12110455
https://doi.org/10.3390/info12110455
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12110455
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12110455?type=check_update&version=2

Information 2021, 12, 455 2 of 26

IDSs can inclusively take advantage of ML algorithms to enhance their capabilities,
increasing their accuracy and ability to detect anomalies. ML uses data mining techniques
to infer knowledge from collected data. These are useful for finding data in already
gathered data. For example, data collection of user preferences can be mined to find
behavioral patterns and find the likelihood of a client buying a product or a service [6].
These techniques can be classified into [7] supervised, unsupervised, and semi-supervised.
As already mentioned, this work uses supervised learning, which assumes that each
instance has a correspondent label.

This work aims to design a complete Intelligent Security framework for VANETs able
to detect attacks accurately and efficiently. It also provides mechanisms so that all the
system entities may communicate securely. The framework divides the network into four
levels, each in multiple clusters, grouping nodes with similar characteristics and needs and
assigning different roles to each cluster. Thus, each level may carry out its role and use the
detection type that better suits its needs.

As found in [8], most of the published research does not make the datasets avail-
able, making it difficult for third parties to verify the results. Thus, another contribution
of this work is the suite of vehicular communications datasets, which has been made
publicly available.

In previous works [9] it was shown that the nodes in the lower layers do not have
enough data to create efficient ML models. Thus, in this work, only the high-level entity
that has a wider view of the network and more data available will use the data for training
the ML algorithms. The other nodes will use ML models and rules to detect the attacks.

The communications between all entities in the network are protected using an applica-
tion layer security framework called Vehicular Ad hoc Network Public Key Infrastructure
and Attribute-Based Encryption with Identity Manager Hybrid (VPKIbrID). It is a hy-
brid model that uses multiple techniques to fulfill the communication security requisites
for VANET.

The main contributions of the present research work are to:

• Propose a security framework for attack detection for VANETs;
• Define a hierarchy-based architecture that adapts each level roles and functions to

their capabilities and needs;
• Compare multiple ML algorithms for attack detection;
• Use datasets available publicly, enabling the replication and verification of the results.

Experimental results, obtained with the publicly available datasets, show that it
is possible to detect attacks with very high accuracy. Additionally, the framework can
benefit from different types of detection, using more complex algorithms at the higher
levels, providing better accuracy, although slower response times. At lower levels, rule-
based detection with lighter processing is more appropriated as it leads to faster detection.
However, it works only as the first line of defense, detecting mostly Denial of Service
(DoS) attacks.

2. Background

This section is divided into three subsections. First, related work found in the literature
that addresses the same problems is described. Then, due to their importance for this work,
the datasets used in this work are presented. Finally, the security model used to protect the
communications between all the architecture’s entities is explained.

2.1. Related Work

VANET security is a well-researched topic, with solutions ranging from the most
common and traditional Public Key Infrastructure (PKI) [10–14] to others, such as ID-
based or situation-modeling approaches [15]. However, the approach using IDSs, more
precisely, intelligent IDSs, is more recent, with interest growing since 2010 [8]. In the
Systematic Literature Review (SLR) performed in previous works [8], it was found that

Information 2021, 12, 455 3 of 26

the most common approach type of solution used a hierarchical architecture, with 10 of the
19 research works choosing this approach.

There is a variety of technologies in the solutions found; however, authors seem to
prefer the following: anomaly detection (8 works) with Simulation of Urban Mobility
(SUMO) (4 works) and a version of Network Simulator (4 works) as the traffic and network
simulators, respectively. A large variety of attacks has been addressed, including DoS,
Probing, Blackhole attack, and Sybil attack. The most commonly chosen ML algorithm
seems to be Support Vector Machine (SVM) (3 works). The works found in the SLR are
summarized in Table 1.

Authors in [16] propose an ML-based IDS for VANETs based on the ToN-IoT [17].
This dataset is an updated version of the NSL-KDD dataset, containing the most updated
attacks. The authors use the SMOTE technique to fix the class unbalance and then compare
the performance of the following algorithms in attack detection: Logistic Regression, Naive
Bayes, Decision Tree, SVM, k-Nearest Neighbor, Random Forrest, and XGBoost. The
dataset is divided using 70% for the training and validation of the algorithm and the rest
for testing its performance. The results show that XGBoost has the best performance either
in binary class and multi-class classification problems.

In [18] the authors present a SVM-based IDS for VANETs, using an enhanced penalty
function for reinforcing the regularization of the classifier and comparing three different
ML algorithms for optimization. The test and training are made using the NSL-KDD
dataset by dividing it into ten groups. One is used for the test, and the remaining 9 are
used for training. The results show that SVM performs better when optimized using the
Genetic Algorithm.

The ML-based IDS that is proposed in [19] targets spoofing attacks using a probabilistic
cross-layer approach in a VANET comprised of Electric Vehicles. If an attack is detected,
the attackers are excluded from the Dynamic Wireless Charging mechanism. One of the
contributions of the papers is the introduction of a novel metric used to separate features for
the ML algorithms, which is named Position Verification using Relative Speed. It is based
on the relative speed that is estimated through the interchanged signals in the PHY layers.
The introduction of the new metric increased the performance of the probabilistic IDS by 6%.
The authors designed their simulations and attacks using SUMO and OMNET++/VEINS
simulators. The data created was evaluated using k-Nearest Neighbor and Random Forrest.
The performance of both algorithms using the new metric for both was very similar with
91.3% accuracy.

The biggest limitation of these works is related to the datasets. Most of the research
works that we found use self-fabricated datasets but fail to publish them or even the
methodology used to create them. The ones that use publicly available datasets choose the
Kyoto [20] and NSL-KDD [21]. There are two of the most known datasets and they have
great quality, but do not originate from VANETs. The authors in [18] choose the ToN-IDS,
which is an update of the older NSL-KDD, which is also not from VANETs.

Table 1. Related Work—ML-Based IDSs for VANETs.

Paper Net Sim Traffic
Sim Attacks IDS Type Detection

Type ML Dataset Placement

[22] Own Own Malicious packets Hierarchical Anomaly Learning
Automata

From
Simulation

Base
Station

[23] NS2 N.A. DoS Hierarchical Anomaly Neural Networks NS2 Trace
file

Access
Points

[24] NS3 SUMO DoS, R2L, U2R,
Probing

Hierarchical Anomaly
Naive Bayes

and
Logistic Regression

TCPdump Each cell
and

vehicle

Information 2021, 12, 455 4 of 26

Table 1. Cont.

Paper Net Sim Traffic
Sim Attacks IDS Type Detection

Type ML Dataset Placement

[25] NS3 SUMO

Selective Forwarding,
Black Hole, Packet

duplication, Resource
Exhaustion and Sybil

attack

Hierarchical
Rule Based

and
Anomaly

SVM NS3 Trace
file

Vehicles and
RSUs

[26] — — DoS Hierarchical Misuse and
Anomaly Neural Networks Kyoto

Dataset N.A.

[27] Matlab VANET
Mobisim packet dropping Hierarchical

Watchdog
and

Anomaly
SVM From

Simulation
Vehicles

[28]
NetSim

and
Matlab

SUMO Wormhole, Selective
Forwarding, Packet

Drop

Hierarchical Anomaly SVM NS2 Trace
file Vehicles

[29] N.A. N.A. DoS Hierarchical N.A. N.A. N.A. N.A.

[30] - - Network Anomalies Hierarchical Anomaly Logistic
Regression

NSL-KDD Vehicles

[31] NS2 SUMO Network Anomalies Hierarchical N.A. HGNG From
Simulation

Vehicles

N.A.: Not Available.

2.2. Datasets

Despite the advantages of ML algorithms’ anomaly detection capabilities, they need
large sets of data to be trained and tested. Therefore, this is a key aspect of this work.
Unfortunately, in the previously performed SLR [8], it was found that most of the research
work in the literature fails to publish their datasets or the methodology used to produce
them. Thus, the VANETs datasets that were made and publicly published in a prior
work [32] were selected.

The datasets were created through simulation using the SUMO and Network Simula-
tor 3 (ns-3) as the traffic and network simulator, two of the most popular simulators [8].
These can be used individually by running the simulation in SUMO and then feeding
the output to ns-3. However, if coupled together, more functionalities and bidirectional
communication can be obtained. V2X Simulation Runtime Infrastructure (VSimRTI) [33]
was the chosen framework to do this. Developed in Java by the Daimler Center for Auto-
motive IT Innovations (DCAITI) institute it has permanent support and frequent updates.
Additionally, the structure of the framework abstracts the application development from
the network, facilitating the independent development.

Ideally, the datasets would be from real-world data, not from simulation, but real
data collection is a complicated process as currently there are not so many vehicles with
wireless communication devices that allow message collection. Additionally, the entities
that possess this data do not make it available. Nevertheless, using publicly available
datasets enables the results to be verified and compared with others.

Thus, a simple scenario was implemented where all vehicles are loaded with an
application that generates Context Awareness Messages (CAMs) according to the standard
EN 302 637-2 [34]. The parameters used are shown in Table 2. These Indicate that a CAM
is only generated if there is a position change of at least 4 m, a change in heading bigger 4.0
degrees, or a speed change of more than 0.5 m/s. However, the interval between CAMs
must be at least 100 ms. If none of the parameters varies enough, a CAM must be generated
each 1000 ms. The CAMs were chosen due to their generation rate. They have a dynamic
rate that changes according to a set of parameters, accurately simulating a real-world
scenario. Moreover, the usage of CAM simulates a scenario easily implementable in the
real world. It is a generic standard used by all vehicles that have communications-enabled
devices. Thus, it seems to be the most indicated application to use in the message collection.

Information 2021, 12, 455 5 of 26

Forty-two different datasets, collected from seven different maps, are publicly avail-
able. Each map deals with a different geographic location, with different characteristics
(number of vehicles, types of roads, intersections, etc.). The maps range from 2618 to 37,248
m and the average vehicle density—computed using the number of vehicles in radio range
per second—ranges from 6 to 35.

The datasets also contain two different simulated attacks, DoS and Fabrication. In the
former, all the messages have real values but are generated at much higher frequencies
to overload the medium and the receiving equipment. The latter contains messages with
fake data simulating an attacker or even a faulty sensor. The fabrication attack can be
subdivided into three: speed fabrication, acceleration fabrication, and heading fabrication.

Table 2. CAM generation parameters—EN 302 637-2 [34].

Field Value

Max Interval >1000 ms
Min Interval <100 ms
Position Change >4 m
Heading Change >4.0 degress
Velocity Change >0.5 m/s

All the attacks are performed in all maps, so more than one dataset is obtained from the
same map. However, the attack type and the number of attackers per simulation varies, and
the time and duration of each attack are random, resulting in entirely different scenarios.

All datasets contain data regarding the following information: senderId, receiveId, recev-
erTime, diffTime, heading, longAcceleration, generationTme, elevation, latitude, longitude,
bitLen, diffPos, diffSpeed, diffHeading, diffElevation, diffAcc, and isAttack.

The datasets are available at https://doi.org/10.5281/zenodo.4304411 (accessed 5
October 2021), and the code used for their fabrication is available at https://github.com/
fabio-r-goncalves/dataset-collection (accessed on 5 October 2021).

2.3. Securing Communications

A secure communication framework is needed to enable the nodes on a multi-cluster
multi-level architecture to exchange messages securely. There are several approaches to
security in VANETs, each presenting their stronger points and challenges. However, the
application layer security model Vehicular Ad hoc Network Public Key Infrastructure
and Attribute-Based Encryption with Identity Manager Hybrid (VPKIbrID) proposed in
a previous research work [35] can take advantage of multiple techniques and tackle the
challenges of other approaches.

VPKIbrID (shown in Figure 1) uses technologies from both Attribute-Based Encryp-
tion (ABE) and PKI, combining the flexibility of ABE with the infrastructure offered by
the PKI. The model comprises the following entities: Root Certification Authority (CA),
Long-Term CA, Root CA, Identity Manager (IdM), and Trusted Authority (TA).

https://doi.org/10.5281/zenodo.4304411
https://github.com/fabio-r-goncalves/dataset-collection
https://github.com/fabio-r-goncalves/dataset-collection

Information 2021, 12, 455 6 of 26

Figure 1. VPKIbrID Security Model(From [35]).

The first three entities are very similar in their basic functionalities, generate certificates
but differ in their roles. The Root CA is responsible for certifying the Pseudonym CA and
the Long-Term CA. It issues root certificates that are then used to sign the certificates
generated by the latter two entities.

The Pseudonym CA and the Long-Term CA generate certificates for the rest of the
system entities. The first generates Pseudonym Certificates (PCs), volatile certificates that
allow entities to sign and encrypt messages in the network without risking their privacy.
The Long-Term CA generates Long-Term Certificates (LTCs), certificates that represent the
real identity. These should be used only to access trustable services, as for example, to
access the IdM or to obtain PCs.

The IdM generates Oauth/OpenID connect like tokens. These can be used to access
services or resources while protecting privacy.

Lastly, the TA enables the usage of ABE keys. It is the only entity that can generate
Public Parameters and ABE decryption. The public parameters allow any entity in the
system to generate an ABE encryption key.

This model was designed to take into account the intrinsic needs and requirements of
the VANET environment. One of its key advantages is the available different encryption
modes: VPKIbrID Public Key Infrastructure (VPKIbrID-PKI) and VPKIbrID Attribute-
Based Encryption (VPKIbrID-ABE). The first uses the most commonly used PKI to cipher
the data to be exchanged. The VPKIbrID-ABE uses ABE encryption. It uses attributes to
encrypt the data, enabling data to be ciphered to multiple entities. This means that it fits
the scenario in this proposal, allowing the entities to secure messages without ciphering
them individually to each target. For example, if the goal is to cipher rules to each of
the nodes in layer 2 in map 2, the attributes “L2 map2 2of2” can be used. This enables
the higher-level entities to send the rules or models to all the intended targets without
the possibility for other entities to read them. More precisely, this rule specifies that only
entities with the attribute “L2” and “map2” will be able to decipher the message. The “2of2”
parameter means that both of the attributes need to be satisfied. With this methodology, it
is even possible for entities from different companies to send the rules for only the vehicles
subscribing to their service, such as “L0 company1 2of2”.

3. Intelligent Hierarchical Security Framework for VANETs

This work aims to propose an Intelligent Hierarchical Security Framework for VANETs,
which can detect multiple types of attacks at multiple levels while also providing strong
security mechanisms for all the entities to be able to have reliable communications.

This section describes the architecture of the framework, as well as the underlying
security framework and the interactions between all the entities.

Information 2021, 12, 455 7 of 26

3.1. Architecture

The architecture of the IDS is based on a hierarchy. Thus, it presents multiple levels,
each composed of multiple clusters of entities that share the same characteristics, function-
alities, and needs. Therefore, the design of the architecture should facilitate the detection
to be made at several levels, carefully evaluating each cluster’s best functions and detec-
tion types, according to their capabilities—processing power, storage capacity, etc.—and
needs—detection time, delay, accuracy.

The solutions should also encompass a security framework to enable the secure
exchange of information between the cluster nodes, considering the needs and requirements
of VANET applications. In addition, the security frameworks should provide an underlying
communication secure channel that should facilitate secure broadcast communications,
authentication at multiple levels (driver authentication, entity authentication), privacy, and
confidentiality, without disregarding the availability and latency requirements.

Figure 2 presents the architecture from the functional point of view. It includes
the layer division and the secure channel across the layers. The goal of the design was to
attribute more complex and CPU-heavy functions to the upper layers, reserving quicker and
lighter operations for the lower layers. Hence, this takes advantage of the characteristics of
the nodes at each layer and provides quick responses at the lower layers. The architecture
is divided into the following levels:

• L0—Each vehicle on the map. These are the smallest cluster composed of only one entity
• L1—A group of vehicles organized into a single cluster;
• L2—All the vehicle clusters within a geographical region;
• L3—Cluster of all geographic maps;

Figure 2. Intelligent Hierarchical IDS Security Framework Functional Architecture.

L0 is the lowest level in the hierarchy. It is made by a single vehicle that is the least
powerful entity in the network, containing less CPU power and storage capacity. However,
these are the entities closer to the communications. They receive the messages directly
and need to analyze them as quickly as possible to allow a decision in usable time. If
the detection at this level is too slow or heavy, it may facilitate a DoS attack, hence the
functionality that was chosen for this entity. It will receive messages from the other entities
and only apply Rule-based detection, one of the quickest types of detection. At this level,
quick decisions may be more important than the overall accuracy. However, the rule-based
detection needs to have a very low rate of false positives when analyzing the normal
messages; otherwise, it will discard authentic messages.

Information 2021, 12, 455 8 of 26

L1 is the first level composed of more than one entity. It is formed of multiple vehicles
that compose a cluster. The vehicles can be grouped, for example, according to their travel
path and speeds. This facilitates the sharing of information during bigger intervals of time,
as they will be traveling in the same route in communication range from each other. This
level will not perform any type of detection. The entities that compose it are the same
type as the node before and, thus, do not present any advantage of CPU power or storage
capacity. The only difference is the time the detection takes to reach the entity that needs
the response. So, at this level, all the entities will send the messages to the cluster head
(platooning leader), and this entity will relay the messages to the node above.

L2 is a cluster with entirely different characteristics from the previous clusters. It is
composed of infrastructural nodes capable of much more complex and heavy operations.
Additionally, it can have hardwired communications with the above level, being able to
communicate much more data. The RSUs will receive the messages from the nodes below
and simultaneously analyze them and forward them to the next node. If an attack is
found, it is communicated immediately to the sender. They can also trigger a system-wide
warning and warn the nodes above to blacklist the attackers. These nodes will use more
complex and powerful ML algorithms to detect the attacks, trading detection time for better
accuracy. The RSUs are not as close to the attacks and do not need to detect immediately; it
is more important to have better accuracy at this level.

L3 level is the highest level in the hierarchy. It comprises the most powerful entities
that may carry much more complex operations and store messages, models, and rules. In
addition, these entities are generally powerful backend servers with high-performance
CPUs. Hence, L3 entities can collect the messages sent from all the bellow nodes and
analyze them, creating ML models and rules to be used by the other levels. These high-
level entities are very far from the nodes needing detection; thus, the detection time is
not an issue here. They can also perform “offline” detection, using the result to trigger a
system-wide response, blacklist attackers, and, if needed, notify the authorities. So, at this
level, the goal is to use the more complex detection, which is slower but may detect attacks
that are undetectable by other entities.

The resulting architecture is presented in Figure 3. The figure is divided into two
blocks, representing the network level at which each node is located. The levels L0 and
L1 are in the VANET. The node L2 connects the two types of network, and the node L3
is located on the Internet, with only cabled communications; the right side depicts the
communication of the CAM messages from the sending vehicle to node L3. Each time the
message has a yellow padlock, it means that it is encrypted. As shown in the figure, the
multiple nodes also forward the messages and group them into bigger blocks; the left side
depicts the communication of the models and rules from the L3 nodes to the L0. The rules
are shown in orange and the models in green. Additionally, Figure 3 shows which function
each cluster has on top of forwarding messages. Nodes in L0 use the rules to analyze the
collected data and, in L2, they use the ML models.

Information 2021, 12, 455 9 of 26

Figure 3. Intelligent Hierarchical IDS Security Framework Architecture.

3.2. Secure Communications

The security implementation in this architecture is represented in Figure 3 by the blue
rectangle across all the layers. It provides multiple communication types allowing entities
to take advantage of the better suited for the situation. For example, one of the VPKIbrID
modes uses PKI, which is more suited for unicast communications, with only one receiver
for the sent message. The other uses ABE, which is useful in situations where there are
several targets for one message. Using VPKIbrID-ABE, the sending entity may encrypt
the message for multiple entities, using their corresponding attributes. In this case, the
VPKIbrID-ABE seems to be the better suited, as most of the communications will have
multiple targets, at least when happening between clusters. However, this mode is slower
and heavier than the PKI mode. Still, the VPKIbrID provides the possibility to use key
cashing, significantly increasing its performance. For example, when receiving CAMs, the
vehicles can encrypt the received messages using the attributes “L2 L3 1o f 2”; thus, all the
clusters L2 or L3 entities can read the messages. The field 1of2 means that only one attribute
needs to be fulfilled. It is even possible to use attributes like “L2-company1 L3-company1
1o f 2,” specifying that only the nodes from clusters L2 or L3 from company1 can decrypt
the message.

Multiple entities in the architecture need to communicate to exchange the information
necessary for the detection. The lower entities send the received messages for the upper
nodes (Upstream communication, Section 3.2.1), and the higher-level entities send the
models or rules created for the lower entities (Downstream communication, Section 3.2.2).

3.2.1. Upstream Communication

The upstream communication refers to messages sent from the nodes in level L0
to the upper nodes in level L3. In this case, the vehicles receive the CAMs sent from

Information 2021, 12, 455 10 of 26

other vehicles and, after analyzing them, send them to the other levels. The messages are
going to be processed both in nodes L2 and L3. So, the encryption mechanism needs to
be able to encrypt the message so that entities in both nodes can decrypt them without
needing multiple encryptions. Otherwise, if the vehicles, an already low resource entity
that needs to be constantly analyzing the received messages would also need to encrypt
the messages multiple times, would easily be overwhelmed. Thus, VPKIbrID-ABE seems
to be the optimal choice for this scenario, mainly when taking advantage of the key caching
mechanism. The entities receiving the data have the same attributes during long periods,
being the perfect scenario for key caching. If L2 and L3 nodes detect any attacks in the
messages received they can send the warnings encrypted using ABE to the nodes on L0
and L1.

Figure 4 shows the complete interaction from the vehicles (L0) to the L3 whose de-
scription follows. Firstly, the L0 vehicle receives a CAM (1), and using the rules sent by
the L3 entity, verifies if it is any attack (2). If so, the message will not be processed by the
vehicle (3); the message is then ciphered (4) and sent to the upper level (5). The level L1
only acts as a relay. So it will do so for the level L2 (6). L2 will decipher the message (7) and
verify if it is an attack using the models built by the level L3 (8). If an attack is detected,
the other entities are warned about the attack. So, a message is sent ciphered using the
attributes “L0 L1 1o f 2” (9), enabling all the lower entities to read the message. Regardless
of whether it is an attack, the message is relayed to the upper level (10). The next level will
then decipher the message (11), verify if it is an attack (12), and add it to the dataset (13). If
an attack is detected, a system-wide warning is triggered (14).

3.2.2. Downstream Communication

The downstream communication is exactly the opposite of the previous type. This
communication process happens when the higher-level nodes, L3, need to communicate
the computed rules and ML models to the lower nodes, in this case, to the L0 and L2 nodes,
respectively. This is less complex than the upstream communication because there is no
warning going in the opposite direction. This communication mode also takes advantage
of the encryption to multiple targets provided by the ABE mode of the VPKIbrID security
framework. It enables the higher-level entities to send the models and rules for all the nodes
in L2 and L0 levels simultaneously using the attributes that describe the cluster where they
are located instead of the node itself. Otherwise, the L3 nodes would have to send messages
individually to each target, with the risk of saturating the communication channels.

Information 2021, 12, 455 11 of 26

Figure 4. CAM upstream communications and processing.

The top-level entities can then use the attributes “L2 1o f 1” and “L0 1o f 1” to cipher
the created model and rule, respectively. This rule ensures that only the nodes in level
L2 will receive this particular model, and the vehicles in L0 will receive these rules. The
process is shown in mode detail in Figure 5. Before the process is started, node L3 needs
to receive multiple CAMs from the lower nodes (1). These will be used to build a dataset
(2), which will be analyzed to create rules and models (3) for the other levels. The models
will be ciphered with different rules for the different levels (4 and 5). After being correctly
secured, it will be sent for level L2 (6). This level will decipher its model (7) and relay the
rules for the lower level (8). The level L1 does not perform any detection and thus does not
need any rules or models, and forwards (9) the received rules for the level L0. These nodes
will be able to decipher the rules (10). The complete interaction is shown in Figure 5.

Information 2021, 12, 455 12 of 26

Figure 5. Rules and models communication downstream communication.

4. Clustering, Preprocessing and Analysis

The datasets described in Section 2.2 are raw data containing all the messages received
by any vehicle in the network. However, the IDS in this work should only consider the
messages received from vehicles from its clusters. Firstly, the clusters need to be defined,
defining which entities belong to each cluster at each level, according to a logical division;
then, the training datasets are filtered, eliminating any message that does not belong to
each of those vehicles. The test datasets contain all the data, as the goal is just to have
the most test data possible for evaluating the IDS’s detection capabilities. This process is
described in Section 4.1.

Additionally, the authors’ datasets contain multiple parameters, which can accurately
describe the vehicle’s movement. However, not all of them have significance for the
detection and may even create overfitting or bias learning. Section 4.2 describes the
manipulation of the datasets and the training and testing of the IDS.

4.1. Clustering

The previously presented architecture is an abstraction, simply indicating each clus-
ter’s functions and network location. However, for its implementation and testing, a clear
definition of the cluster is needed. Depending on the implementation, multiple clustering
algorithms can be used. There are multiple algorithms and methods to create clusters that
agglomerate the nodes according to some characteristic or variable.

The levels L3 and L0 are clear. The first is a high-level entity that receives all the data
from the previous levels and the latter is a single vehicle on the road.

The levels L2 and L1, however, need to be organized into clusters. The level L2 clusters
can be defined by using the already natural separation offered by the collected datasets.
These are divided into 7 (6 for testing and 1 for training). So, this division provides 6
different clusters (the testing dataset is not included) that are composed of all the L1 nodes
in that geographical region.

The L1 clusters are, in this implementation, organized into Platoonings, as described
in Ribeiro et al. [36], facilitating the constructions of the clusters. Figure 6 shows an
example of a platooning, the cluster of trucks moving in a coordinated convoy inside the
red brackets. The other vehicles are non-platooning vehicles traveling along the same road.

Platooning is an ITS application that allows vehicles to travel in a convoy manner very
close to each other with constant speeds and gaps [36] (Figure 6). It may be composed of
several vehicle types, including trucks, buses, and passenger vehicles. Each vehicle can

Information 2021, 12, 455 13 of 26

either be a follower or a leader [37]. The leader controls the platooning behavior, and the
follower follows its orders. The information between vehicles is exchanged using Vehicle
to Vehicle (V2V) communications as described in Ribeiro et al. [38].

Figure 6. Platooning Example (Trucks between brackets).

The Platoonings were built by running several simulations and analyzing their output
in conjunction with the configuration files. Then the vehicles that traveled the same path
were grouped together. The simulations were performed using SUMO and VSimRTI with
the code described and published in a past research work [32].

The IDS can only use data collected by one of its nodes. So, even though the rest of the
vehicles in the simulation may receive messages, these will not be collected. However, any
vehicle in the simulation can become an attacker, either belonging to the platooning or not.

The clusters are shown in Table 3. The cluster-level decreases left to right, with the
higher level on the left and lower on the right. The leftmost column, “L2,” identifies each
of the geographical maps from which the dataset was obtained, represented by “Map x,”
where the x indicates the map number. Next, the column “L1” identifies each platooning
convoy that moves within each map. So, “Platoon x.y” identifies the “y” platooning in
the geographical map x. Finally, the third column, L0, identifies the individual vehicles
that compose each platooning. The identification of each vehicle was the one used by the
simulator (by convenience, it was shortened from “veh_z” to “v_z”). Thus, the ID of a
vehicle may appear repeated in different Maps, although they refer to different vehicles.

Table 3. Cluster division using the entities from the dataset.

L2 L1 L0

Map 1

Platoon 1.1 v_0, v_1, v_2, v_3, v_4

Platoon 1.2 v_14, v_15, v_17, v_21

Platoon 1.3 v_16, v_18, v_20, v_23, v_26

Map 2

Platoon 2.1 v_0, v_6, v_12, v_18, v_24

Platoon 2.2 v_1, v_7, v_13, v_19, v_25, v_23, v_26

Platoon 2.3 v_32, v_35, v_37, v_40, v_43

Platoon 2.4 v_38, v_41, v_44, v_45, v_46, v_47, v_50

Platoon 2.5 v_49, v_52, v_54, v_56, v_59

Platoon 2.6 v_48, v_51, v_53, v_55

Map 3
Platoon 3.1 v_1, v_3, v_7, v_10, v_12

Platoon 3.2 v_13, v_15, v_17, v_18, v_19

Map 4

Platoon 4.1 v_4, v_5, v_7, v_10, v_11

Platoon 4.2 v_18, v_20, v_23, v_25

Platoon 4.3 v_32, v_25, v_27, v_40, v_43

Platoon 4.4 v_38, v_41, v_44, v_45, v_46, v_47, v_50

Platoon 4.5 v_49, v_52, v_54, v_56, v_59

Platoon 4.6 v_48, v_51, v_53, v_55

Information 2021, 12, 455 14 of 26

Table 3. Cont.

L2 L1 L0

Map 5

Platoon 5.1 v_2, v_3, v_5, v_7

Platoon 5.2 v_10, v_12, v_14

Platoon 5.3 v_19, v_21, v_23, v_25, v_26

Map 6

Platoon 6.1 v_0, v_1, v_2, v_3, v_4, v_6, v_8

Platoon 6.2 v_14, v_15, v_17, v_19, v_21, v_24, v_27

Platoon 6.3 v_16, v_18, v_20, v_23

4.2. Methodology

Most of the ML-based IDSs found in the literature use the IDS, an oracle-like entity
capable of listening to all network messages. However, this approach is unreal, as the IDS
can at most access to the messages collected by its nodes. So, the datasets were filtered
using the division presented in Table 3, maintaining only the messages received from each
entity indicated for each map. Thus, the quantity of the data available for the IDS training
is reduced.

The parameters in the datasets allow the message behavior to be completely and
accurately followed, but some of these fields may create errors or overfitting. Even though
the datasets were obtained from different maps, the simulator repeats the same vehicle IDs
in the different maps. So, the sender or receiver ID parameters should not be associated
with the attacks. The same happens to the generationTime and receiverTime. These are
also dependent on the simulation.

All the elevation, latitude, longitude, and acceleration values are kept between the
same bounds for attacks and normal messages. Thus, these are not of major significance.
The diffPos, diffSpeed, diffHeading, diffElevation, diffAcc, and diffTime seem much more
significant because they indicate the difference between two consecutive messages received
from the same vehicle. Thus, the parameters kept were diffPos, diffSpeed, diffHeading,
diffElevation, diffAcc, and diffTime. The parameter isAttack is the label that indicates
which type of attack the message is, so it is maintained as well. The isAttack parameter can
assume any of the following values: 0 (no attack), 1 (DoS), 2 (fabrication attack speed), 3
(fabrication attack acceleration), 4 (fabrication attack heading). So, the output of the ML
engine is the type of attack detected. The outputs and inputs of the ML algorithms can be
seen in Figure 7.

Figure 7. Inputs and Ouputs of ML engine.

The order of the dataset can influence the final results. Thus, the datasets used in
evaluations were built in the following way: First, we use the datasets resulting from
the message filtering and join them by their numbering order, i.e., the dataset from the

Information 2021, 12, 455 15 of 26

geographical Map 1, then the dataset from Map 2, and so on. This process was repeated for
each of the attacks, obtaining 4 datasets, one for each attack. Then the resulting datasets
were joined, starting with the dataset containing the DoS attacks, then the speed fabrication
attack, followed by the acceleration fabrication attack, and, finally, the heading fabrication
attack. The resulting dataset is available at https://zenodo.org/record/5567417 (accessed
7 October 2021) [39].

The most common way of training and testing the ML algorithms is to split the data
into test and training data. However, having datasets originating from different sources
allows using different datasets to train and test the ML algorithms. Thus, the datasets are
divided into two groups. The ones originating from Maps 1 through 6 are the training
datasets and the dataset originating from Map 7, the test dataset, providing a more accurate
evaluation of the trained IDS. Dataset 7 was obtained from the more complex map, with
multiple road types and more complex traffic and vehicle behavior. Table 4 contains the
total number of messages, normal messages, and messages per attack for both training and
test datasets. Although the test dataset is composed only of the data from the geographical
map 7, unlike the training that has data from 6 different maps, it has the biggest size. Map
7 is the most complex one. It has the biggest size with 15,083 m of road, 176 vehicles, and a
vehicle density of 35.05. The second biggest map has 11,249 m of road, 63 vehicles, and
18.21 of average vehicle density [32].

Due to the characteristics of the attacks, the DoS attack produces much more messages.
The non-attack and DoS messages are more than 97% of the training and test datasets’
total data.

Table 4. Contents of the test and training datasets per message type.

Training Test

Parameter Value % of Total Value % of Total

Messages (Total) 2,491,271 100.00 17,237,722 100.00
Non-Attack 1,508,873 60.57 9,062,023 52.57
DoS 912,875 36.64 7,756,817 45.00
Fab. Speed 30,002 1.20 172,892 1.00
Fab. Acc 23,819 0.95 62,686 0.36
Fab. Heading 15,702 0.63 183,304 1.06

Weka was the tool chosen to perform the tests. It does not allow the same granularity
in configurations as other tools, but it has multiple already available algorithms that can be
modified with simple clicks. It uses a proprietary file format, ARFF, which is very similar
to CSV but contains a header indicating the name and type of each parameter. So, after
filtering the data according to Table 3 and preprocessing it, removing the extra parameters,
it was fed to the multiple algorithms provided by Weka. First, it creates the model that was
then used to classify the test dataset.

5. Evaluation and Results

Multiple types of attack detection have been tested. Thus, the results presented in this
section evaluate the detection capabilities of each algorithm in each category.

First, we show the results obtained using the ML algorithms from weka, including
rules. These also include the size of the built models and the time taken to train and test all
the datasets. Then, the algorithms that can better detect each of the attacks are joined using
an ensemble algorithm. Finally, the rule-based model is evaluated in a more individual
and complete way, trying to assess its capabilities.

5.1. Evaluation Using Multiple ML Approaches

Table 5 presents the results obtained from the classification of the test datasets using
multiple algorithms. The first three columns represent the accuracy Mean Absolute Error

https://zenodo.org/record/5567417

Information 2021, 12, 455 16 of 26

(MAE) and Root Mean Square Error (RMSE) values. The individual True Positive Rate
(TPR) and FPR are then presented for each different attack. Finally, the last two columns
show the average TPR and FPR for each algorithm (the TPR and FPR for the normal
messages are not included in the calculated average).

Usually, the first three columns are representative of the model quality. However,
this is not accurate in this case due to the characteristics of the datasets. Table 4 shows an
unbalance between the collected datasets as the nonattack and DoS messages make 97%
of the total. So, if the ML algorithm can only detect both of these correctly, it will have an
accuracy of 97%.

Thus, instead of looking at the accuracy, the individual TPR and FPR can help find a
better solution. The goal is to find an algorithm that maximizes the TPR while minimizing
the FPR. The average TPR in the results presented varies from 0.26 to 0.88, with both J48
and Random Forrest performing the best. For the average FPR, all algorithms perform
quite well, with very low values.

Table 5. Results obtained from the ML classification.

Normal DoS Speed Acc Heading

Algorithm Accuracy MAE RMSE TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR Avg TPR Avg FPR

Random Forest 0.98 0.02 0.08 0.98 0.02 0.98 0.00 0.77 0.01 0.77 0.00 0.90 0.00 0.88 0.01
MLP 0.98 0.01 0.09 1.00 0.05 1.00 0.00 0.26 0.00 0.10 0.00 0.00 0.00 0.47 0.06
J48 0.97 0.01 0.11 0.97 0.02 0.98 0.00 0.77 0.01 0.78 0.01 0.89 0.01 0.88 0.01
REP Tree 0.97 0.01 0.10 0.97 0.02 0.99 0.00 0,71 0.01 0.62 0.01 0.87 0.00 0.83 0.01
LMT 0.97 0.01 0.10 0.98 0.03 0.98 0.00 0.76 0.00 0.76 0.00 0.89 0.00 0.87 0.01
Random Tree 0.97 0.01 0.11 0.97 0.03 0.98 0.01 0.69 0.01 0.61 0.01 0.86 0.00 0.82 0.01
Hoeffding Tree 0.96 0.05 0.12 0.98 0.06 0.97 0.00 0.64 0.00 0.28 0.00 0.62 0.00 0.70 0.01
Logistic 0.95 0.04 0.13 0.99 0.09 0.96 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.02
OneR 0.94 0.03 0.16 0.99 0.13 0.92 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.03
Decision Stump 0.94 0.04 0.16 0.99 0.13 0.92 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.02
SMO 0.92 0.24 0.32 0.91 0.05 1.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.02
PART 0.97 0.01 0.11 0.97 0,02 0.99 0.00 0.66 0.00 0.63 0.01 0.84 0.00 0.82 0.01
Naive Bayes 0.85 0.06 0.24 0.74 0.03 0.99 0.21 0.75 0.01 0.53 0.01 0.53 0.01 0.65 0.06
Decision Table 0.66 0.18 0.29 1.00 0.71 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.14

The results from Table 5 indicate that Multilayer Perceptron (MLP) can better detect
the normal messages and DoS attacks, with 1.00 TPR for both and only 0.05 FPR for the
normal messages. Nonetheless, it cannot detect any other attack accurately. Random
Forest can better detect Speed Fabrication attack and Heading Fabrication attack with a
correspondent 0.78 and 0.90 TPR and 0.01 and 0 FPR. The Acceleration Fabrication attack is
better detected using J48, which can do so with 0.78 TPR and 0.01 FPR. However, the best
overall performance indicated by the average TPR and FPR shows a tie between Random
Forrest and J48 (0.88 average TPR) with a slight advantage for the Random Forrest that
presents a higher accuracy.

Table 6 presents the sizes of the models created by weka for each algorithm and the
times needed for training and testing it. This table can help to decide which algorithm
is better suited for each level, where the lower layers benefit from smaller models (less
traffic) and quicker detection. The results presented show that Logistic Model Tree (LMT)
is clearly the slowest to train. However, Random Forrest is the slowest to evaluate all the
messages from the test dataset. Decision Stump, while not being the quickest to train it, is
the quickest to detect the attacks. Moreover, it is the lighter model needing only 3 KB to be
transmitted. Additionally, the decision stump algorithm can easily be translated into a few
if statements, needing, in reality, only a few bytes. On the other side, Random Forrest is the
heavier algorithm needing 54,497 KBs.

Information 2021, 12, 455 17 of 26

Table 6. Comparison of the size and elapsed time taken during training and testing.

Algorithm Train Time (s) Test Time (s) Size (KB)

LMT 21,879 23 1225
Decision Table 4514 169 29,684
PART 3128 281 4860
Random Forrest 3014 476 54,497
SMO 2688 23 10
MLP 1176 25 16
J48 335 31 1024
Logistic 139 30 9
REPTree 123 19 791
HoeffdingTree 10 77 512
Decision Stump 7 15 3
OneR 7 29 17
Naive Bayes 4 79 5

5.2. Ensemble-Based Evaluation

The results do not need to be applied individually. Using an ML technique called
ensemble learning, multiple algorithms can be used together to take advantage of each
algorithm’s properties. This can be especially useful in this case, as each algorithm performs
well in one attack but poorly in others. Weka supports two ensemble techniques that
we used; stacking and voting. Both methods use several algorithms to achieve better
results. Stacking calculates each model’s outputs and then applies another ML algorithm
(meta classifier) to the output. Voting may use different methods: the most voted option,
average of probabilities, minimum of probabilities, maximum probability, and product
of probabilities.

Both ensemble techniques were used to evaluate the datasets using the following
algorithms: Random Forrest, J48, and MLP. The configurations of the selected algorithms
are presented in Table 7. The algorithm used as the meta classifier was Random Forrest. It
was the algorithm with the better overall performance, being the ideal candidate. Addition-
ally, a custom stacking technique was implemented. Instead of using the meta classifier, it
uses the algorithms in the order that can benefit each one’s properties. So, each instance
of the dataset is evaluated using the following algorithm: (1) Apply Random Forrest. If
speed or heading fabrication attack is detected, the algorithm stops; otherwise, it goes
to the next step. Random Forrest can detect Speed and Heading fabrication with almost
no False-Positives, so if one of those attacks is detected, it has a high probability of being
correct. (2) Apply J48, if an acceleration fabrication attack is detected, the algorithm stops;
otherwise, it goes to the next step. The reasoning is similar to the previous step. (3) Apply
MLP, this is the last step, and if no attack is detected at this point, then the message is
considered normal. MLP is the last algorithm to be applied as it is the one with a higher
FPR at detecting normal messages. Otherwise, it could classify the message as normal,
even if it was an attack. The algorithm is shown in Figure 8.

Information 2021, 12, 455 18 of 26

Table 7. Configuration of the algorithms for the ensemble learning.

MLP RF J48

batchSize 100 batchSize 100 batchSize 100

numDecimalPlaces 2 numDecimalPlaces 2 numDecimalPlaces 2

hiddenLayers a bagSizePercent 100 confidenceFactor 0.25

learningRate 0.3 maxDepth 0 minNumObj 2

momentum 0.2 numExecutionSlots 1 numFolds 3

seed 0 numFeatures 0 seed 1

trainingTime 500 numIterations 100

validationSetSize 0 seed 1

validationThreshold 20

Figure 8. Custom Stacking Algorithm.

The results from the ensemble learning are presented in Table 8.
These show that the detection capabilities can be increased using an ensemble tech-

nique, mainly the custom one. It has a small increase over the best performant single
algorithm, Random Forrest, ranging from 0.01 to 0.02 across all the message types, with
the overall average TPR also increasing from 0.88 to 0.89.

Table 8. Results for the classification using Ensemble learning.

Normal DoS Speed Acc Heading

Ensemble Accuracy TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR Avg TPR Avg FPR

Stacking Custom 0.98 0.98 0.01 0.99 0.00 0.79 0.00 0.79 0.01 0.90 0.00 0.89 0.00
Stacking 0.98 0.98 0.02 0.98 0.00 0.79 0.00 0.67 0.00 0.90 0.00 0.86 0.00
Vote Major 0.98 0.99 0.02 0.99 0.00 0.76 0.00 0.72 0.00 0.87 0.00 0.87 0.00
Vote Average 0.98 0.99 0.02 0.99 0.00 0.75 0.00 0.71 0.00 0.88 0.00 0.86 0.00
Vote Maximum 0.97 0.97 0.03 0.98 0.00 0.77 0.00 0.77 0.01 0.61 0.00 0.82 0.01
Vote Product 0.97 0.97 0.03 0.98 0.00 0.77 0.00 0.76 0.01 0.84 0.00 0.86 0.01
Vote Minimum 0.97 0.97 0.03 0.98 0.00 0.77 0.00 0.77 0.01 0.61 0.00 0.82 0.01

Information 2021, 12, 455 19 of 26

5.3. Rule-Based Evaluation

Despite the accuracy of the algorithms, the lower levels need to have quick and light
detections. Decision Stump is a one-level decision tree. It creates very basic rules, usually
an if statement that can quickly perform decisions. Additionally, it has a smaller size and
can easily be sent through the network. So, a Decision Stump algorithm was fed datasets
containing only one type of attack at a time. As it is a one-level decision tree, it will only
create a rule for each time it is trained. Therefore, in reality, four different rules are being
created. The test dataset used was the same as in the other tests. The results obtained are
indicated in Table 9. Each line corresponds to a different attack. The columns represent
the TPR and FPR for the detection of normal messages or attacks. As the Decision Stump
algorithm is a one-step decision tree, it will only create a rule for the attack fed. Thus, it
will only detect the attack it was created to detect. It can detect Normal messages and DoS
quite well (0.99 TPR), but it is quite poor in the other attacks. On the plus side, it has very
low FPR when detecting any of the attacks. Thus, it has a very low danger of discarding
authentic messages.

In all the analyzed algorithms, detecting the fabrication attacks seems less accurate
than detecting DoS. The unbalance in detecting the fabrication attacks may be due to
the number of messages for each attack class. DoS has more messages, allowing the ML
algorithm to be better fitted. The same happens for the Decision Stump. As it is shown, the
attack with more messages, DoS, has better detection performance.

Table 9. In-depth evaluation of the Decision Stump Algorithm.

Normal Attack

Attack Type TPR FPR TPR FPR

DoS 0.99 0.1 0.94 0.01
Speed 1.00 1.00 0.47 0.00
Acceleration 1.00 1.00 0.00 0.00
Heading 0.99 0.99 0.47 0.00

6. Intelligent Hierarchical Security Framework for VANETs Detection Algorithms and
Use-Case

The goal of dividing the architecture into multiple cluster levels was to attribute
different roles and capabilities to each entity, depending on its capabilities and needs,
resulting in four different levels. The capabilities and needs grow inversely from each
other, as shown in Figure 9, with higher levels more capabilities and fewer needs in terms
of detection time. These entities are far from the entities receiving the CAMs and are
not able to respond in time. The lower entities need to have a quick decision but have
fewer capabilities.

Figure 9. Cluster level needs vs. characteristics.

Information 2021, 12, 455 20 of 26

6.1. L0 Detection

The first level, with fewer capabilities but higher speed demand, is the L0. These nodes
are simply vehicles on the road. Although new advancements in technology may provide
better communication devices with more computing power, these nodes are usually less
powerful than those in the above nodes. Additionally, these receive many messages from
the surrounding vehicles. Because they are an easy target for DoS, any more computation
power or time in the message analysis may be enough to overwhelm them. So, this entity
should also not be overwhelmed with the need to build rules or machine learning models,
and, at this level, the detection tool should be as quick and light as possible.

The results presented in Section 5, indicating the performance of each algorithm, show
Random Forrest with the best overall performance. However, this algorithm is heavy,
slow, and needs some computing power. So, a lighter algorithm should be equated at
this level. One of the other algorithms we tested was Decision Stump. It is an algorithm
that generates rules that other nodes can easily use for detection. It is a one-level decision
tree, and it creates basic rules with only an “if” statement, which is traduced in very high
detection speed.

Decision Stump presents a good tradeoff between speed and accuracy. On the plus
side, it detects DoS with an accuracy of 0.94 and Fabrication with the tampered speed with
0.47 accuracy. This algorithm also classifies almost all the normal messages with a very
low FPR, not discarding authentic messages. It is a very light and quick algorithm, and,
even though it does not have the best accuracy, it seems a good choice to be used as a first
defense line. The nodes at level L0 will also send the received CAMs to the nodes above
for further analysis.

6.2. L1 Detection

Level L1 is the next level on the hierarchy. It is a group of vehicles organized into a
cluster. Hence, this has very similar characteristics to the cluster below as all its entities are
still vehicles. Thus, this level does not present more computing power or storage capacity
than the level L0. Thus, using the same algorithm in two consecutive levels does not seem
useful, as the rules would probably detect the exact same messages. Thus the nodes on this
level will only perform forwarding of the received messages to the nodes above. Hence,
the best situation seems to be that all nodes communicate the received messages to the
cluster-head (the platooning leader), then group them together and send them to a node in
level L2.

6.3. L2 Detection

Level L2 is the first cluster with infrastructural entities. These entities may have much
more CPU power and storage capacity as they have few power limitations. However, these
are still not the most powerful entities. The RSUs are mainly communication entities and
not exactly made for processing information.

The decision at this level does not need to be as fast as in the level L0. Although these
entities are close enough that they may be able to produce decisions in useful time, this will
not be immediate because of the time needed for the communications. So, L2 nodes can use
more heavy ML algorithms focusing on detection accuracy instead of speed. Nevertheless,
the L2 nodes will still forward all the received messages to the above nodes to correctly
analyze them and create models. Therefore, even with more power available, these nodes
are still not the best choice for creating models and rules. The main issue at this level is the
narrowed vision of the network. L2 nodes do not have a view of the network as broad as
L3 and may create biased models that would tamper with the detection in the levels below,
creating models with low accuracy, as shown in [9].

This level may use a more complex algorithm that is more CPU-heavy. The one
presenting the best accuracy is Random Forrest, with the best overall performance with
low false positives. It has an accuracy of 0.98 with an average TPR of 0.85 and only 0.01
in FPR. This algorithm is particularly good at detecting DoS and fabrication attacks with

Information 2021, 12, 455 21 of 26

the tampered heading. In addition, the very low FPR is very good because it indicates that
almost no normal message is wrongly classified as an attack, decreasing the possibility of
discarding normal messages.

6.4. L3 Detection

Level L3 is the highest level in the architecture and, thus, it has the most powerful
entities with the most storage capacity. Furthermore, the L3 entities are all infrastructural,
with all the communications made through high-capacity cabled connections. Hence,
they do not have any problem with the size of data to be transmitted. Moreover, these
are backend servers designed for complex and heavy computations, so they can carry
multiple operations.

First, these receive and analyze the data sent from the levels below, storing it to analyze
further or prove detected attacks. The data storage also allows “offline” detection using
more complex ML algorithms. However, due to the sheer size of the data received at this
level, the detection will also be slower. Therefore, the L3 level has the perfect conditions to
use ensemble detection. It is a more complex type of ML that uses multiple algorithms to
detect attacks. This case uses MLP, Random Forrest, and J48, combined using the custom
stacking algorithm. It has a small increase in performance, with a higher TPR and smaller
FPR than the Random Forrest algorithm used in the level below. At this level, it does not
make much sense to try and warn the vehicle that received the message because it may
not be possible to do so in a usable time. However, it can trigger a system-wide response,
blacklisting the attacking vehicle and, if needed, warn the authorities.

However, and perhaps the main job of the L3 level is to create rules and models to
be used by the nodes below. As previously mentioned, the entities forming the L3 level
are the more powerful in the architecture with a wider view of the overall system. Thus,
they can detect attacks much more accurately, as shown in [9], without compromising their
performance. So, due to their more complete vision of the system, they are more suited to
analyze the data and create models and rules as this is a more CPU expensive operation
than using the models or rules for the detection. These models can be constantly updated
and sent to the nodes below.

6.5. Hierarchical Intelligent IDS Architecture: Application Use-Case

In this section, the components described and chosen in the previous sections are
organized into a more refined architecture. This includes the framework for secure com-
munications across all the architecture levels, the role for each entity, and the ML applied
at each level. The goal was to design an easy to deploy architecture that took advantage
of the multiple layers to attribute roles well suited for the characteristics of each level’s
entities. Furthermore, we carefully chose ML techniques that could balance accuracy with
each entity’s capabilities, providing good accuracy without overwhelming the nodes at
each level. Finally, the security model was chosen based on the security features provided
including, authentications of drivers and vehicles and confidentiality and privacy. Also,
the choice was impacted by the communication modes offered by the security framework
chosen, mainly the encryption capability for multiple targets. The architecture with all
the components, roles, and technologies is shown in Figure 10. It shows a real-world use
case implementation, using the platooning as the most basic cluster and, at the level L2, a
cluster between multiple RSUs. The latter may be multiple RSUs that constitute a specific
geographical map working together to detect attacks and gather messages. The higher
entity is represented by the cloud in the infrastructural network.

Information 2021, 12, 455 22 of 26

Figure 10. Intelligent Hierarchical IDS Security Framework—A platooning application.

The level L0 entities are the multiple vehicles on the road; these can be road vehicles,
from truck to passenger vehicle or motorcycle. Their functionality and detection type are
indicated in the bottom blue rectangle. These will perform message collection, collecting
the CAMs sent by other vehicles, and perform the first line of defense, using Decision
Stump, the lightest and quick detection type.

Then, the green, red and blue rectangles represent multiple L0 clusters. These are
platooning of vehicles that can be composed of different types of vehicles. For example, blue
platooning is formed exclusively of trucks, while the other two can encompass multiple
vehicle types. These will only act as message relays (orange square on the right), forwarding
information from lower to upper nodes and vice-versa.

The yellow rectangle cluster represents the L2, grouping multiple RSUs together.
These will receive messages from the nodes below and use the LMT algorithm to perform
a more robust detection. These are the first infrastructural entities in the architecture.

Finally, the higher level, L3, is represented by a cloud as this is usually composed of
high-capacity backend servers similar to a cloud. It is the level with the most powerful
entities being able of more complex operations. So, the entities will perform the most
complex decision using an ensemble learning algorithm at this level. Furthermore, they
are responsible for generating models and rules for the nodes below, taking advantage of
their more powerful CPUs.

The green rectangle, vertical on the right, across all levels represents the security
framework. Although the security model that was chosen, VPKIbrID, has more than one
encryption mode, the VPKIbrID-ABE seems more indicated to communicate between the
layers as most of the messages sent over the network have multiple targets. The model
should be used with the key cashing, which enables much faster and lighter encryptions.
However, the nodes can use the PKI mode to communicate between themselves, as de-
scribed in a previous work [37].

7. Conclusions

In this paper, an Intelligent Hierarchical Security Framework for VANETs is proposed,
which ensures mechanisms for attack detection and supports secure communication. Com-
munication between all entities is secured using the VPKIbrID model and its ABE mode
allows communication to multiple targets without individually encrypting the data. Attack
detection is done at multiple levels, using different algorithms for each level, according to
the corresponding needs and characteristics. Multiple algorithms, available in Weka, were
tested and selected in order to achieve a high level of detection. Multiple tests were also
performed using ensemble techniques in order to verify the improvements of the detection
capabilities of the IDS.

Information 2021, 12, 455 23 of 26

Results show that the different algorithms are most useful at specific hierarchical
layers. At the first layer, L0, Decision Stump seems to be the most suitable. It does not have
the best detection accuracy, but it makes up for it in terms of speed and complexity. This
algorithm generates only a few “IF” statements, and is very fast at performing detection.

The L1 level is the platoon level. Its cluster head is also a vehicle to ensure that the
necessary computation power is not increased. The best role of this entity is to serve as a
relay for messages collected using rules established from the high hierarchy levels.

At the next level, L2 is at the RSU level, one can expect the availability of higher
computational power. This level can use a heavier algorithm. More accurate detection was
obtained using Random Forrest, which is a better choice to be used at this level.

The top level (L3) is reserved for the most CPU-hungry algorithm. It uses a combi-
nation between the decisions of the MLP, J48, and Random Forrest algorithm, using a
custom staking algorithm. The middle layers (L1 and L2) are also responsible for relaying
the messages received from the nodes below. The lower layer will pick up all messages
in range.

The framework created is then applied to a specific use case, with platooning as the
implementation of a clustering level. The results obtained indicate excellent performance
in detecting DoS and non-attack messages, but performance declines in comparison to
other types of attacks. This may be due to the imbalance of the types of attacks that exist in
the datasets. Therefore, it makes sense to produce more datasets using different maps and
other crafting attacks.

Additionally, this work could benefit from more datasets, preferably from third-parties
and, ideally, from the real world, to confirm the results obtained. It is also important to
carry out a study on the impact of the burden of the amount of data communicated
between the different levels, analyzing the usage of compression to reduce the size of the
communication data.

Author Contributions: Author Contributions: The first author, F.G., is the major contributor to
this work; A.S. and J.M. supervised all the research work. Conceptualization: F.G., A.S., J.M.;
Methodology: A.S., J.M., F.G.; Original draft: F.G.; Validation: F.G., J.M., A.S.; Writing-Review and
editing: A.S., J.M., F.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by national funds through FCT – Fundação para a Ciência e
Tecnologia within the Project Scope: UIDB/00319/2020.

Data Availability Statement: The data presented in this study are openly available in Zenodo at
https://doi.org/10.5281/zenodo.4304411 and https://zenodo.org/record/5567417 (accessed on 12
September 2021), reference numbers [32,39]. The first datasets were the raw data and the second the
ones obtained after filtering and used for the test and training of the ML algorithms in this work. The
datasets were produced using the code available at https://github.com/fabio-r-goncalves/dataset-
collection.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ABE Attribute-Based Encryption
CA Certification Authority
CAM Context Awareness Message
DCAITI Daimler Center for Automotive IT Innovations
DoS Denial of Service
DSRC Dedicated Short Range Communications
FPR False Positive Rate
IdM Identity Manager
IDS Intrusion Detection System
IEEE Institute of Electrical and Electronics Engineers

https://doi.org/10.5281/zenodo.4304411
https://doi.org/10.5281/zenodo.4304411
https://zenodo.org/record/5567417
https://github.com/fabio-r-goncalves/dataset-collection
https://github.com/fabio-r-goncalves/dataset-collection

Information 2021, 12, 455 24 of 26

ITS Intelligent Transportation Systems
LMT Logistic Model Tree
LTC Long-Term Certificate
MAE Mean Absolute Error
ML Machine Learning
MLP Multilayer Perceptron
ns-3 Network Simulator 3
OBU On-Board Unit
PC Pseudonym Certificate
PKI Public Key Infrastructure
RMSE Root Mean Square Error
RSU Road Side Unit
SLR Systematic Literature Review
SUMO Simulation of Urban Mobility
SVM Support Vector Machine
TA Trusted Authority
TPR True Positive Rate
VANET Vehicular Ad hoc Network
V2V Vehicle to Vehicle
VPKIbrID Vehicular Ad hoc Network Public Key Infrastructure and Attribute-Based

Encryption with Identity Manager Hybrid
VPKIbrID-ABE VPKIbrID Attribute-Based Encryption
VPKIbrID-PKI VPKIbrID Public Key Infrastructure
VSimRTI V2X Simulation Runtime Infrastructure

References
1. Cseh, C. Architecture of the dedicated short-range communications (DSRC) protocol. In Proceedings of the VTC 98. 48th IEEE

Vehicular Technology Conference, Ottawa, ON, Canada, 21–21 May 1998; Volume 3, pp. 2095–2099. [CrossRef]
2. IEEE. IEEE Standard for Information Technology—Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments; IEEE:
Piscataway, NJ, USA, 2010; pp. 1–51. [CrossRef]

3. Dias, B.; Santos, A.; Costa, A.; Ribeiro, B.; Goncalves, F.; Macedo, J.; Nicolau, M.J.; Gama, O.; Sousa, S. Agnostic and Modular
Architecture for the Development of Cooperative ITS Applications. J. Commun. Softw. Syst. 2018, 14, 218–227. [CrossRef]

4. Engoulou, R.G.; Bellaiche, M.; Pierre, S.; Quintero, A. VANET security surveys. Comput. Commun. 2014, 44, 1–13. [CrossRef]
5. Mitchell, R.; Chen, I.R. A survey of intrusion detection in wireless network applications. Comput. Commun. 2014, 42, 1–23.

[CrossRef]
6. Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: San Francisco, CA, USA,

2016; Chapter 7, pp. 1–45. [CrossRef]
7. Aburomman, A.A.; Reaz, M.B.I. Survey of learning methods in intrusion detection systems. In Proceedings of the 2016

International Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES), Putrajaya, Malaysia, 14–16
November 2016; pp. 362–365. [CrossRef]

8. Goncalves, F.; Ribeiro, B.; Gama, O.; Santos, A.; Costa, A.; Dias, B.; Macedo, J.; Nicolau, M.J. A Systematic Review on
Intelligent Intrusion Detection Systems for VANETs. In Proceedings of the 2019 11th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT), Dublin, Ireland, 28–30 October 2019; pp. 1–10. [CrossRef]

9. Goncalves, F.; Macedo, J.; Santos, A. Evaluation of VANET Datasets in context of an Intrusion Detection System. In Proceedings
of the 29th International Conference on Software, Telecommunications and Computer Networks (SoftCOM 2021), Split, Croatia,
23–25 September 2021.

10. Raya, M.; Hubaux, J.P. The security of VANETs. In Proceedings of the 2nd ACM international workshop on Vehicular ad hoc
networks—VANET’05, Cologne, Germany, 2 September 2005; pp. 93–94. [CrossRef]

11. Hesham, A.; Abdel-Hamid, A.; El-Nasr, M.A. A dynamic key distribution protocol for PKI-based VANETs. IFIP Wirel. Days 2011,
1, 1–3. [CrossRef]

12. Bellur, B. Certificate Assignment Strategies for a PKI-Based Security Architecture in a Vehicular Network. In Proceedings of the
IEEE GLOBECOM 2008—2008 IEEE Global Telecommunications Conference, New Orleans, LA, USA, 30 November–4 December
2008; pp. 1–6. [CrossRef]

13. Liu, Q.; Wu, Q.; Yong, L. A hierarchical security architecture of VANET. Cyberspace Technol. 2013, 6–10. [CrossRef]
14. Wagan, A.A.; Mughal, B.M.; Hasbullah, H.; Iskandar, B.S. VANET Security Framework for Trusted Grouping using TPM

Hardware. In Proceedings of the 2010 Second International Conference on Communication Software and Networks, Singapore,
26–28 February 2010; pp. 309–312. [CrossRef]

http://doi.org/10.1109/VETEC.1998.686127
http://dx.doi.org/10.1109/IEEESTD.2010.5514475
http://dx.doi.org/10.24138/jcomss.v14i3.550
http://dx.doi.org/10.1016/j.comcom.2014.02.020
http://dx.doi.org/10.1016/j.comcom.2014.01.012
http://dx.doi.org/10.1016/C2009-0-19715-5
http://dx.doi.org/10.1109/ICAEES.2016.7888070
http://dx.doi.org/10.1109/icumt48472.2019.8970942
http://dx.doi.org/10.1145/1080754.1080774
http://dx.doi.org/10.1109/WD.2011.6098221
http://dx.doi.org/10.1109/GLOCOM.2008.ECP.355
http://dx.doi.org/10.1049/cp.2013.2080
http://dx.doi.org/10.1109/ICCSN.2010.115

Information 2021, 12, 455 25 of 26

15. Bariah, L.; Shehada, D.; Salahat, E.; Yeun, C.Y. Recent advances in VANET security: A survey. In Proceedings of the 2015 IEEE
82nd Vehicular Technology Conference, VTC Fall 2015, Boston, MA, USA, 6–9 September 2015. [CrossRef]

16. Gad, A.R.; Nashat, A.A.; Barkat, T.M. Intrusion Detection System Using Machine Learning for Vehicular Ad Hoc Networks Based
on ToN-IoT Dataset. IEEE Access 2021, 9, 142206–142217. [CrossRef]

17. Moustafa, N. TON-IOT. Dataset. Available online: https://research.unsw.edu.au/projects/toniot-datasets (accessed on 5
October 2021).

18. Alsarhan, A.; Alauthman, M.; Alshdaifat, E.; Al-Ghuwairi, A.R.; Al-Dubai, A. Machine Learning-driven optimization for
SVM-based intrusion detection system in vehicular ad hoc networks. J. Ambient. Intell. Humaniz. Comput. 2021, 1–10. [CrossRef]

19. Kosmanos, D.; Pappas, A.; Maglaras, L.; Moschoyiannis, S.; Aparicio-Navarro, F.J.; Argyriou, A.; Janicke, H. A novel Intrusion
Detection System against spoofing attacks in connected Electric Vehicles. Array 2020, 5, 100013. [CrossRef]

20. Song, J.; Takakura, H.; Okabe, Y.; Eto, M.; Inoue, D.; Nakao, K. Statistical analysis of honeypot data and building of Kyoto 2006+
dataset for NIDS evaluation. In Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security—BADGERS ’11, Kyoto, Japan, 5 November 2011; pp. 29–36. [CrossRef]

21. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the IEEE
Symposium on Computational Intelligence for Security and Defense Applications, CISDA 2009, CISDA’09, Ottawa, ON, Canada,
8–10 July 2009; pp. 53–58. [CrossRef]

22. Misra, S.; Krishna, P.V.; Abraham, K.I. A stochastic learning automata-based solution for intrusion detection in vehicular ad hoc
networks. Secur. Commun. Netw. 2011, 4, 666–677. [CrossRef]

23. Tian, D.; Wang, Y.; Lu, G.; Yu, G. A vehicular ad hoc networks intrusion detection system based on BUSNet. In Proceedings of
the 2010 2nd International Conference on Future Computer and Communication, ICFCC 2010, Wuhan, China, 21–24 May 22010;
Volume 1, pp. 1–229. [CrossRef]

24. Liu, X.; Yan, G.; Rawat, D.B.; Deng, S. Data mining intrusion detection in vehicular ad hoc network. IEICE Trans. Inf. Syst. 2014,
E97-D, 1719–1726. [CrossRef]

25. Sedjelmaci, H.; Senouci, S.M. An accurate and efficient collaborative intrusion detection framework to secure vehicular networks.
Comput. Electr. Eng. 2015, 43, 33–47. [CrossRef]

26. Ali Alheeti, K.M.; McDonald-Maier, K. Hybrid intrusion detection in connected self-driving vehicles. In Proceedings of the 2016
22nd International Conference on Automation and Computing, ICAC 2016: Tackling the New Challenges in Automation and
Computing, Colchester, UK, 7–8 September 2016; pp. 456–461. [CrossRef]

27. Wahab, O.A.; Mourad, A.; Otrok, H.; Bentahar, J. CEAP: SVM-based intelligent detection model for clustered vehicular ad hoc
networks. Expert Syst. Appl. 2016, 50, 40–54. [CrossRef]

28. Sharma, S.; Kaul, A. Hybrid fuzzy multi-criteria decision making based multi cluster head dolphin swarm optimized IDS for
VANET. Veh. Commun. 2018, 12, 23–38. [CrossRef]

29. Tan, H.; Gui, Z.; Chung, I. A Secure and Efficient Certificateless Authentication Scheme With Unsupervised Anomaly Detection
in VANETs. IEEE Access 2018, 6, 74260–74276. [CrossRef]

30. Zhang, T.; Zhu, Q. Distributed Privacy-Preserving Collaborative Intrusion Detection Systems for VANETs. IEEE Trans. Signal Inf.
Process. Over Netw. 2018, 4, 148–161. [CrossRef]

31. Ayoob, A.; Su, G.; Al, G. Hierarchical Growing Neural Gas Network (HGNG)-Based Semicooperative Feature Classifier for IDS
in Vehicular Ad Hoc Network (VANET). J. Sens. Actuator Netw. 2018, 7, 41. [CrossRef]

32. Gonçalves, F.; Ribeiro, B.; Gama, Ó.; Santos, J.; Costa, A.; Dias, B.; Nicolau, M.J.; Macedo, J.; Santos, A. Synthesizing Datasets with
Security Threats for Vehicular Ad-Hoc Networks. In Proceedings of the IEEE Globecom 2020: 2020 IEEE Global Communications
Conference (GLOBECOM’2020), Taipei, Taiwan, 7–11 December 2020.

33. DCAITI. VSimRTI. Available online: https://www.dcaiti.tu-berlin.de/research/simulation/ (accessed on 12 November 2020).
34. ETSI. ETSI EN 302 637-2 V1.3.1 Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2:

Specification of Cooperative Awareness Basic Service; ETSI: Sophia, France, 2014.
35. Gonçalves, F.; Santos, A.; Costa, A.; Dias, B.; Ribeiro, B.; Macedo, J.; Nicolau, M.J.N.; Sousa, S.; Gama, O.; Barros, S.; et al.

Hybrid Model for Secure Communications and Identity Management in Vehicular Ad Hoc Networks. In Proceedings of the
9th International Congress on Ultra Modern Telecommunications and Control Systems (ICUMT’2017), Munich, Germany, 6–8
November 2017; pp. 414–422.

36. Ribeiro, B.; Gonçalves, F.; Hapanchak, V.; Gama, Ó.; Barros, S.; Araújo, P.; Costa, A.; Nicolau, M.J.; Dias, B.; Macedo, J.; et al.
PlaSA-Platooning Service Architecture. In Proceedings of the 8th ACM Symposium on Design and Analysis of Intelligent
Vehicular Networks and Applications, Montreal, QC, Canada, 28 October–2 November 2018; pp. 80–87.

37. Gonçalves, F.; Ribeiro, B.; Hapanchak, V.; Barros, S.; Gama, O.; Araújo, P.; Nicolau, M.J.; Dias, B.; Macedo, J.; Costa, A.; et al.
Secure Management of Autonomous Vehicle Platooning. In Proceedings of the 14th ACM International Symposium on QoS and
Security for Wireless and Mobile Networks, Q2SWinet’18, Montreal, QC, Canada, 28 October–2 November 2018; ACM: New
York, NY, USA, 2018; pp. 15–22 [CrossRef]

http://dx.doi.org/10.1109/VTCFall.2015.7391111
http://dx.doi.org/10.1109/ACCESS.2021.3120626
https://research.unsw.edu.au/projects/toniot-datasets
http://dx.doi.org/10.1007/s12652-021-02963-x
http://dx.doi.org/10.1016/j.array.2019.100013
http://dx.doi.org/10.1145/1978672.1978676
http://dx.doi.org/10.1109/CISDA.2009.5356528
http://dx.doi.org/10.1002/sec.200
http://dx.doi.org/10.1109/ICFCC.2010.5497798
http://dx.doi.org/10.1587/transinf.E97.D.1719
http://dx.doi.org/10.1016/j.compeleceng.2015.02.018
http://dx.doi.org/10.1109/IConAC.2016.7604962
http://dx.doi.org/10.1016/j.eswa.2015.12.006
http://dx.doi.org/10.1016/j.vehcom.2017.12.003
http://dx.doi.org/10.1109/ACCESS.2018.2883426
http://dx.doi.org/10.1109/TSIPN.2018.2801622
http://dx.doi.org/10.3390/jsan7030041
https://www.dcaiti.tu-berlin.de/research/simulation/
http://dx.doi.org/10.1145/3267129.3267146

Information 2021, 12, 455 26 of 26

38. Ribeiro, B.; Gonçalves, F.; Santos, A.; Nicolau, M.; Dias, B.; Macedo, J.; Costa, A. Simulation and testing of a platooning manage-
ment protocol implementation. In Proceedings of the International Conference on Wired/Wireless Internet Communication, St.
Petersburg, Russia, 21–23 June 2017; pp. 174–185. [CrossRef]

39. Gonçalves, F.; Santos, A.; Macedo, J. V2X Security Threats for Cluser-Based Evaluation [Data Set]; Zenodo: Genève, Switzerland,
2021. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-61382-6_14.
http://dx.doi.org/10.5281/zenodo.5567417

	Introduction
	Background
	Related Work
	Datasets
	Securing Communications

	Intelligent Hierarchical Security Framework for VANETs
	Architecture
	Secure Communications
	Upstream Communication
	Downstream Communication

	Clustering, Preprocessing and Analysis
	Clustering
	Methodology

	Evaluation and Results
	Evaluation Using Multiple ML Approaches
	Ensemble-Based Evaluation
	Rule-Based Evaluation

	Intelligent Hierarchical Security Framework for VANETs Detection Algorithms and Use-Case
	L0 Detection
	L1 Detection
	L2 Detection
	L3 Detection
	Hierarchical Intelligent IDS Architecture: Application Use-Case

	Conclusions
	References

