

Information 2021, 12, 454. https://doi.org/10.3390/info12110454 www.mdpi.com/journal/information

Article

Graph Analysis Using Fast Fourier Transform Applied on
Grayscale Bitmap Images
Pawel Baszuro 1,* and Jakub Swacha 2

1 Bugolka, 02-654 Warsaw, Poland
2 Department of IT in Management, University of Szczecin, 71-004 Szczecin, Poland;

jakub.swacha@usz.edu.pl
* Correspondence: pbaszuro@acm.org

Abstract: There is spiking interest in graph analysis, mainly sparked by social network analysis
done for various purposes. With social network graphs often achieving very large size, there is a
need for capable tools to perform such an analysis. In this article, we contribute to this area by pre-
senting an original approach to calculating various graph morphisms, designed with overall per-
formance and scalability as the primary concern. The proposed method generates a list of candidates
for further analysis by first decomposing a complex network into a set of sub-graphs, transforming
sub-graphs into intermediary structures, which are then used to generate grey-scaled bitmap im-
ages, and, eventually, performing image comparison using Fast Fourier Transform. The paper dis-
cusses the proof-of-concept implementation of the method and provides experimental results
achieved on sub-graphs in different sizes randomly chosen from a reference dataset. Planned future
developments and key considered areas of application are also described.

Keywords: graphs; social network analysis; isomorphism; big data; image comparison

1. Introduction
Social networks play an essential role in everyone’s lives. People get involved in so-

cial networks for various reasons, such as leisure, hobby, or work. The last reason is espe-
cially valid in the context of development projects, during which online project manage-
ment and collaboration platforms are often used, such as JIRA, Basecamp, Asana, or
Trello. The social network data obtained from such platforms can be effectively used, e.g.,
to improve team structure and performance [1] or help in the information systems re-
quirements elicitation process [2]. There is, similarly, a lot to be gained from the analysis
of social networks formed by the end-users of information systems, for such purposes as
identifying members of the social network [3], behavioral rules detection [4], pattern
matching [5], predicting bias [6], planning the improvement of the infrastructure thanks
to the identification of bottlenecks, extending the system functionality thanks to under-
standing trends in the system usage, improving user experience thanks to building user
models, and many more [7]. The analysis of social networks can be done from multiple
angles, such as complexity, structure, strength of ties, evolution, value concept, and social
capital [8].

Many of the social network analysis methods use graph analysis as their base. As
social network graphs may achieve a very large size, analyzing them often becomes a
highly time-consuming process. This motivates the search for new time-efficient methods
for graph analysis.

In this paper, we are particularly interested in the solution of problems in graph
morphism. Our proposal deals directly with effectively obtaining a list of candidate solu-
tions to the morphism problems rather than finding their exact solution. Our key idea is

Citation: Baszuro, P.; Swacha, J.

Graph Analysis Using Fast Fourier

Transform Applied on Grayscale

Bitmap Images. Information 2021, 12,

454. https://doi.org/10.3390/

info12110454

Academic Editors: Aneta

Poniszewska-Maranda and Arkaitz

Zubiaga

Received: 15 September 2021

Accepted: 29 October 2021

Published: 1 November 2021

Publisher’s Note: MDPI stays

neutral with regard to jurisdictional

claims in published maps and

institutional affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Information 2021, 12, 454 2 of 9

to treat graph structure as an image and use image comparisons in frequency domain to
solve morphism problems.

Although we were directly motivated by the need to analyze user interactions in
team collaboration platforms by identifying cliques and similarities in user behaviors that
may adversely impact business processes (e.g., hurt software development quality and
costs), the proposed method can as well be used for any other analytical purposes.

Our paper is structured as follows. First, we briefly present the problem of identify-
ing graph morphisms. We discuss the key idea of our approach, which is the abstract rep-
resentation of the sub-graph in the form of an image. Next, we skim through the image
comparison methods that can be applicable in this context. A proof-of-concept solution is
described in the fourth section. The final section of the paper summarizes the findings,
and the steps to follow next are given.

2. Identifying Graph Morphisms
The problem of identifying graph morphisms is usually solved by a time- and

memory-expensive algorithm [9] or various application-specific algorithms, such as Fre-
quent Subgraph Mining (FSM) algorithms [10]. There is especially active research dedi-
cated to solving the problem of isomorphism. This problem is known to belong to the NP
class of problems. It can be solved using Ullman’s algorithm [9], whose main operation
consists in matching pair generation by adding and removing edges from the analyzed
graph. It is a time-expensive algorithm as any failure to identify a matching edge requires
returning to the previous choice and continuing with the next iteration by adding another
edge. When processing massive, big data graphs (like social media graphs) whose size
keeps growing with every year, reducing execution time and memory consumption be-
comes a concern of increasing importance.

This concern has been addressed, to some extent, by FSM algorithms. These can be
split into three categories: candidate generation strategy, search strategy, or frequency
counting. Candidate generation strategy extracts candidate sub-graphs to check how fea-
sible is probed vertex in terms of morphism determination. Search strategy determines
the order of vertices to be visited. Frequency counting is related to the identification of the
occurrence of the sub-graphs in the graph.

Candidate generation of various algorithms [11–14] operates on approximation. The
approximation might be represented by identifying sub-graphs that partially match the
chosen sub-graph with one from a probed vertex. Having a smaller population of candi-
dates for exact graph matching reduces computational time spent on exact morphism cal-
culation. These methods operate on sub-graph models and create various possible op-
tions. They all operate on graphs rather than breaking the problem into more generic ob-
jects. The overall process of possible candidate generation leads to a considerable popula-
tion of potential candidates for each sub-graph. In practice, any further analysis requires
recalculation of the candidates’ population whenever there is a change in a sub-graph as-
sociated with a probed vertex. A different solution is needed to address the temporal as-
pect of big data applications, where vertices and edges are constantly modified in the
graph (added or removed). The analysis of each potential candidate sub-graph in such
detail by existing algorithms is infeasible, especially that the sub-graph analysis has to be
performed in many viewpoints simultaneously.

The development of the method proposed here stems from the idea that generated
candidate population can be shared between various potentially available vertices in the
graph. This approach requires an abstract generation of candidate sub-graph populations
from the comparison and matching processes. Instead of building sub-graphs in the con-
text of a matching graph, where edges are added and removed in matching perspective,
the candidate sub-graph generation must always proceed independently. As part of the
preliminary research, it was found that an alternative representation of sub-graphs could
help make the matching process more efficient. This approach is adopted in the proposed
method and will be described in the following section.

Information 2021, 12, 454 3 of 9

3. Sub-Graph Representation Using a Bitmap Image
Before we proceed to description of the procedure leading to the solution of the can-

didate generation strategy, we shall first discuss the characteristics of sub-graph represen-
tation and how it is central to the discussed solution.

Candidate generation strategy must have the following properties: context-inde-
pendent, repeatable (creating the canonical form), comparable, and configurable. We as-
sume that sub-graph representation must be generated in an abstraction of application.
The sub-graph representation has to be generated in the same manner for nodes within
the same graph as for nodes from other graphs. Having a context-independent represen-
tation has several advantages stemming from being usable in different applications and
regardless of the actual implementation. The single way of representation allows checking
various morphisms, e.g., isomorphism or homomorphism. From an implementation per-
spective, candidates can be calculated just once and then re-used. Re-use can be material-
ized by a persistence layer (for example, using in-memory cache) or be incorporated in
actual morphism algorithms implementation.

Candidate generation must give the same results over multiple iterations and com-
parisons to a different target node. The sub-graph representation must be computationally
feasible to compare. The representation should have well-known algorithms available for
that purpose with a complexity of less than the exponential growth rate. Finally, the rep-
resentation must be configurable to the target application.

The proposed solution has two representation components: sub-graph structure and
vertex degree. Sub-graph structure representation is configurable using a threshold value.
The threshold value represents the depth of the sub-graph traversal. All vertices con-
nected to the probed vertex are visited until a given depth level is reached. From the
probed vertex, a tree-like structure is built. The probed vertex becomes the parent node in
a tree. Its neighbors become children in the tree. For each child, the structure is repeated,
where its neighbors in the graph (excluding parent node) become its children. The struc-
ture-building process repeats until the target depth of sub-graph transition is reached. The
candidate generation process will create the same structure for graphs with loops, as any
loops in the graph are represented by a duplicate representation of the same vertex in the
tree.

If all children nodes in the generated tree are sorted by their degree, the process be-
comes repeatable. Vertex degree representation is also used for tree node labeling with
the maximal degree in the graph. The maximal degree can be calculated using all nodes
in graphs or assigned as an input parameter of arbitrary value (i.e., according to the ex-
pected graph structure or tailored to the target computing environment).

There are multiple ways to represent a graph. It could be a graphical form with ver-
tices drawn as circles and lines as edges (see Figure 1), an adjacency matrix, or an adja-
cency list. All forms rely on placing the vertices, which turns into another well-known
problem consisting of checking if a graph is planar. Here, we propose to use a bitmap
image as a representation of the tree-like structure discussed above. This has the obvious
advantage of unifying structure representation without introducing additional computa-
tional complexity.

Figure 1. Exemplary simple graph having four nodes and five edges.

Information 2021, 12, 454 4 of 9

If the structure is represented as a bitmap, there are two aspects of image represen-
tation to consider: size and color. The size of the bitmap is related to the two parameters:
depth threshold (t) and maximal degree (d). In this paper, we assume that the height of
the bitmap is t + 1, while the width is d^(t + 1). The tree structure determines the bitmap
contents. Each line in a bitmap represents a level in a tree from its parent perspective;
therefore, the first line becomes a representation of the root node. The second line is
equally split into parts. The number of parts is equal to a maximal degree. Each part be-
comes a representation of a child in the tree. If fewer children are in the tree than the
maximal degree, the remaining parts are left blank. In the next line, the process repeats.
Each new part of the line is split into the same number of parts, and in the last line, each
node in a tree is represented by a part of size one. A color is assigned to each part of the
bitmap, representing the value of the quotient of node degree and maximum degree.

The use of bitmap image representation for each node brings the following ad-
vantages:
1. Bitmap image can be used regardless of the target morphism graph calculation.
2. The same bitmap image generation rules applied for the same sub-graphs must give

the same results, including the same size.
3. There are many image comparison methods developed and available for use.
4. It is possible to generate bitmap images for vertices using a given threshold.

Regarding the last point, from an implementation perspective, respective bitmap im-
ages can be persisted between various morphism calculations to make calculations taking
less time between various morphism calculations [15]. In the actual implementation,
thresholds can be defined depending on the target application. The height of the bitmap
associated with a threshold can be set accordingly to the graph characteristics. A relatively
small maximal degree and an equally distributed degree of vertices might be a reason to
set a higher threshold value. This would result in images with a bigger size and more
accurate graphical representation at the cost of requiring additional computational re-
sources. In the opposite situation, if the allocated system resources are constrained, the
prefiltering of vertices might be an option to reduce the width of the bitmap. Considering
a situation in which a graph contains outliers in node degree, they can be safely removed
to significantly reduce the width of the generated bitmaps and thus memory consump-
tion. Similarly, reducing the number of possible colors might result in smaller memory
structures (e.g., taking 16 instead of 64 bits per element). The tuning of such parameters
can be essential in finding an adequate trade-off between the quality of the results and the
memory and computational time needed for processing.

4. Image Comparison Algorithm
Many algorithms are dedicated to image comparison, starting from simple ones,

based on pixel-by-pixel color comparison, to more advanced methods, developed in com-
puter vision and artificial intelligence. In this section, we shall not go into a full review of
the available methods, but we shall focus only on the image comparison chosen for the
proposed method. The choice was made considering bitmap image generation character-
istics, which is the point we start at.

The proposed bitmap image representation has the overall shape as a two-dimen-
sional matrix with a content characterized by shape and color. Generated shapes are in
triangular forms. The proposed method does not need to recognize objects, so there is no
need to apply computer vision algorithms to perform such a task.

The single value of each cell in the bitmap image contains a single number, which
simplifies various aspects of further processing (see Figure 2).

Shape and color comparisons are two vital aspects of bitmap image matching. Each
horizontal and vertical line can be interpreted as a one-dimensional array with color val-
ues in each cell. Values of those cells can be interpreted as signal values. Signals that may
change over time with a frequency can be represented as functions. Having a function that

Information 2021, 12, 454 5 of 9

represents frequency factors allows the image to be processed using existing frequency
processing methods. Two basic frequency analysis methods are Discrete Cosine Trans-
form (DCT) and Discrete Fourier Transform (DFT). The definition of DFT is
∑ 𝑥𝑥(𝑛𝑛)𝑊𝑊𝑁𝑁

𝑛𝑛𝑛𝑛𝑁𝑁−1
𝑛𝑛=0 where n, N, k are integer numbers, 𝑊𝑊𝑛𝑛 = 𝑒𝑒−𝑗𝑗2𝜋𝜋/𝑁𝑁, 𝑗𝑗 = √−12 , the basis func-

tions are the N roots of unity [16].
DFT is the base calculation component of the proposed method, whose practical im-

plementation is based on the Fast Fourier Transform (FFT), an umbrella set of algorithms
effectively implementing DFT. Here, FFT is used as a black-box function to transform a
two-dimensional bitmap image into the frequency domain. Applying the two-dimen-
sional FFT is also a two-dimensional array that can be further processed as an abstraction
of a bitmap image.

Discussion about applying specific signal processing algorithms for image pro-
cessing (FFT or substitutes [17]) is not out of scope for this research. The choice of a par-
ticular image analysis algorithm may significantly impact the performance or introduce
additional requirements for the bitmap image (i.e., some algorithms may be optimized for
input arrays being square or having dimension size in the power of two). There are many
examples of using FFT to solve image matching challenges [18,19]. Early experiments gave
positive results of using FFT in bitmap image comparison, which resulted in choosing FFT
for the method proposed here.

Figure 2. Image bitmaps generated from four vertices of the simple graph presented in Figure 1.

In the proposed method, the results of the two-dimensional FFT for a given vertex
and a probed vertex are checked for their statistical relationship. Multiple measures can
be used to measure the distance between factors of two matrices. The expected measure
must accept two two-dimensional matrices as its parameters and provide a distance meas-
ure as its result. The lower the value, the more considerable similarity between the com-
pared matrices exists. If both matrices contain the same values, the output value should
be zero, meaning no distance. In the described proof-of-concept implementation, the Eu-
clidean measure has been used, where the distance between two matrixes (A and B in-
dexed respectively by i and j) is expressed as �∑ 𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴𝑖𝑖,𝑗𝑗 − 𝐵𝐵𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗 .

The distinct steps of the overall algorithm are presented in Figure 3. Each step of the
algorithm can be implemented in a way tailored to the target application. The steps related
to a sub-graph derived from a single node (see the middle section of the diagram) can be
executed in parallel to reduce processing time.

Information 2021, 12, 454 6 of 9

Figure 3. The visual representation of the proposed algorithm flow using BPMN.

5. Proof-of-Concept Implementation
A proof of concept for the proposed method was implemented, and simple experi-

ments were performed. The details are presented below.
The algorithm was implemented in Python 3 AMD64 environment using dedicated

libraries for the most complex calculations. Graph processing (parsing raw files, the trans-
formation of graphs, calculating maximum degree, graph traversal) was implemented us-
ing the NetworkX library [20]. The FFT implementation of the SciPy library was used [21].
The entire code was written as a Python library with additional scripts for running various
tests and performing utilitarian functions (i.e., visualization of the bitmap images). No
caching was implemented in the proof-of-concept script.

The main experiments were performed using well-known datasets acquired from the
Stanford Network Analysis Project [22]. In the discussed experiment, the DBLP (Com-
puter Science bibliography) sample was used. In each experiment, a sub-graph was ran-
domly extracted for a given number of vertices. The outcome was a Cartesian matrix with
distances between all vertexes (i.e., for 32 vertexes, there are 1024 pairs to be measured for
distance). Tests were evaluated multiple times to emulate real-life applications.

All tests were run on the same machine with Ryzen 3 3200, 64 GB of RAM (2400
MHz), and SSD running Windows 10 Professional 64-bit. The threshold for tests presented
in Figure 4 was three, and the maximum degree of the graph was calculated using a ran-
dom sub-graph sample.

Figure 4 shows the algorithm execution times in seconds (Avg stands for average,
Max for maximum, and Min for minimum) measured for 16 runs each on sub-graphs of
various sizes (with 32, 64, 128, 256, and 512 vertexes, respectively).

The dotted line shows the regression function built on top of raw data. Due to the
skewed distribution of the average, a logarithm-based scale was used to visualize the re-
gression results. The visible regression seems to confirm the relationship between the
number of analyzed vertexes and execution time. Overall computational complexity must
be carefully analyzed, and it goes beyond the scope of this paper, but it depends on the
complexity of each step of the algorithm. Most of the steps are related to the two-dimen-
sional matrix transformations and have respectively polynomial complexity related to the
size of the matrix (i.e., up to the width of the matrix multiplied by its height). There is an
extraordinary step of calculating the two-dimensional FFT related to the size of the matrix
processed. In this case, it is related to the size of the image, thus: 𝑑𝑑𝑡𝑡+1 multiplied by t,
where t is depth threshold, and d is maximal degree. As two-dimensional FFT has quasi-
linear complexity, the overall complexity of the FFT steps in this algorithm is:

𝑇𝑇(𝑡𝑡,𝑑𝑑) = 𝑡𝑡 ∗ 𝑑𝑑𝑡𝑡+1 ∗ log (𝑡𝑡 ∗ 𝑑𝑑𝑡𝑡+1).

Start

Obtain graph
structure

For each node

Calculate distance
between frequency

distribution of
bitmap images

representing a node

Rank distance
results between

nodes.
.
.

Generated sub-
graph for node N

Generate grey-scale
bitmap image
representing

structure of sub-
graph for node N

Calculate bitmap
image frequency

using FFT for node N

Store results of FFT
calculation

associated with
node N

Generated sub-
graph for node 1

Generate grey-scale
bitmap image
representing

structure of sub-
graph for node 1

Calculate bitmap
image frequency

using FFT for node 1

Store results of FFT
calculation

associated with
node 1

Generated sub-
graph for node 0

Generate grey-scale
bitmap image
representing

structure of sub-
graph for node 0

Calculate bitmap
image frequency

using FFT for node 0

Store results of FFT
calculation

associated with
node 0

Information 2021, 12, 454 7 of 9

Figure 4. Sub-graph size versus execution time.

In order to compare the running times of the proposed method to the BLISS [23] soft-
ware library representing the current state of the art in automorphism algorithms, another
experiment has been performed. In it, the Flower Snark [24] 𝐽𝐽5 graph, which contains 20
vertices and 30 edges, has been used as the benchmark dataset. The tests were run on the
same machine using the same Python environment. Version 2.7.18 of BLISS was used via
the PyBliss (Python wrapper around the BLISS library) version 0.5 beta. Tests were re-
peated five times in the same operating conditions; PyBliss had average runtimes of 1212
microseconds, and the proposed method had an average of 998 microseconds. It shows
that even though our proof-of-concept implementation has not been optimized in any
way, and it did not even exploit the opportunity of parallel execution of the key stage of
the procedure, it managed to outperform the well-known algorithm.

6. Conclusions and Future Work
Graphs are important elements of modern social network analysis [25]. Much re-

search was done to identify efficient ways of checking graph morphism. This paper pre-
sents a novel approach to address this problem based on bitmap image generation and
processing. The novelty of the proposed algorithm lies in the combined use of represen-
tation of graph as an image, image comparison, and frequency analysis.

We have experimentally proven the method to be operational. We have developed
its proof-of-concept implementation and evaluated it using multiple random sub-graphs
chosen randomly from a well-known dataset. Even the initial experimental time measure-
ments compare favorably with the existing algorithms, although the known optimization
opportunities were not exploited in the first implementation of our method.

The obtained results are promising, although we are aware that the presented
method in its current form is not suitable for graphs with a high number of loops. It pro-
duces many false positives in the generated candidate population. Therefore, our future
work will be to extend it with special handling for graphs with many loops to address this
known weak point.

32 64 128 256 512
Avg 0,04 0,27 1,26 5,97 81,97
Max 0,16 1,39 6,97 33,33 554,00
Min 0,00 0,03 0,20 0,91 5,33

0,01

0,10

1,00

10,00

100,00

1000,00

32 64 128 256 512

Execution time in seconds versus number of
nodes in graph

Information 2021, 12, 454 8 of 9

The purpose of the described implementation was to prove that the method works.
For real-life applications on big-data sets, there is a need to implement it in a distributed
environment. One of the options considered from an implementation perspective is to use
a map-reduce solution, where each portion of data (i.e., sub-graph structure) is passed to
a computational node with a program that generates a bitmap image, calculates the FFT,
and stores the results. To gain the most performance from the proposed method, the use
of distributed processing and cache would be necessary. However, such an implementa-
tion is not trivial, as pre-caching bitmaps and its FFT results to reduce the time for costly
recalculations creates a problem with cache invalidation whenever a change to the sub-
graph structure occurs.

The authors plan to apply the presented method to analyze user interactions in busi-
ness collaboration software applications (particularly ticket management systems) to
identify cliques and similarities in user behaviors that may adversely impact business pro-
cesses (i.e., software development quality and costs). Random human factors may shape
the interaction graphs, so that exact graph matching algorithms may be considered irrel-
evant, whereas graph morphism approximation might become the necessary choice [25].

On a more general level, the presented positive results of applying signal frequency
processing algorithms to graph data inspired the authors to look for other possible appli-
cations. One such idea is to build a graph query engine using bitmap image representation
of graphs and FFT analysis.

Author Contributions: Conceptualization, P.B.; methodology, P.B. and J.S.; software, P.B..; valida-
tion, P.B.; formal analysis, P.B.; investigation, P.B.; resources, P.B.; writing—original draft prepara-
tion, P.B. and J.S.; writing—review and editing, J.S. and P.B.; visualization, P.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no specific grant from any funding agency.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, P.B., upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, H.-L.; Tang, J.-H. Team structure and team performance in IS development: A social network perspective. Inf. Manag.

2004, 41, 335–349. https://doi.org/10.1016/s0378-7206(03)00078-8.
2. Avesani, P.; Bazzanella, C.; Perini, A.; Susi, A. Supporting the Requirements Prioritization Process. A Machine Learning Ap-

proach. Available online: https://www.researchgate.net/profile/Anna-Perini-2/publication/221390930_Supporting_the_Re-
quirements_Prioritization_Process_A_Machine_Learning_approach/links/00463519e064cd7643000000/Supporting-the-Re-
quirements-Prioritization-Process-A-Machine-Learning-approach.pdf (accessed on 28 October 2021).

3. Wu, W.; Xiao, Y.; Wang, W.; He, Z.; Wang, Z. K-Symmetry Model for Identity Anonymization in Social Networks. In Proceed-
ings of the 13th International Conference on Extending Database Technology, Lausanne, Switzerland, 22–26 March 2010; pp.
111–122.

4. Leung, C.W.; Lim, E.-P.; Lo, D.; Weng, J. Mining Interesting Link Formation Rules in Social Networks. In Proceedings of the
19th ACM International Conference on Information and Knowledge Management, Toronto, Canada, 26–30 October 2010; pp.
209–218.

5. Gacitua-Decar, V.; Pahl, C. Structural Process Pattern Matching Based on Graph Morphism Detection. Int. J. Softw. Eng. Knowl.
Eng. 2017, 27, 153–189.

6. Szanto, A. Defuse the News: Predicting Misinformation and Bias in News on Social Networks via Content-Blind Learning.
Available online: https://dash.harvard.edu/bitstream/handle/1/38811538/SZANTO-SENIORTHESIS-2018.pdf?sequence=3&is-
Allowed=y (accessed on 28 October 2021).

7. Bonchi, F.; Castillo, C.; Gionis, A.; Jaimes, A. Social Network Analysis and Mining for Business Applications. ACM Trans. Intell.
Syst. Technol. 2011, 2, 1–37. https://doi.org/10.1145/1961189.1961194.

8. Shiau, W.-L.; Dwivedi, Y.K.; Yang, H.S. Co-citation and cluster analyses of extant literature on social networks. Int. J. Inf. Manag.
2017, 37, 390–399. https://doi.org/10.1016/j.ijinfomgt.2017.04.007.

9. Ullmann, J.R. An Algorithm for Subgraph Isomorphism. J. ACM 1976, 23, 31–42. https://doi.org/10.1145/321921.321925.
10. Jiang, C.; Coenen, F.; Zito, M. A survey of frequent subgraph mining algorithms. Knowl. Eng. Rev. 2013, 28, 75–105.

https://doi.org/10.1017/s0269888912000331.

Information 2021, 12, 454 9 of 9

11. Chen, C.; Yan, X.; Zhu, F.; Han, J. GApprox: Mining Frequent Approximate Patterns from a Massive Network. In Proceedings
of the Seventh IEEE International Conference on Data Mining (ICDM 2007), IEEE, Omaha, NE, USA, 28–31 October 2007; pp.
445–450. https://doi.org/10.1109/ICDM.2007.36.

12. Wang, X.; Huan, J.; Smalter, A.; Lushington, G.H. G-Hash: Towards Fast Kernel-Based Similarity Search in Large Graph Data-
bases. In Graph Data Management: Techniques and Applications; Sakr, S., Pardede, E., Taniar, D., Eds.; Advances in data mining
and database management; IGI Global: Hershey, PA, USA, 2012; pp. 176–213. https://doi.org/10.4018/978-1-61350-053-8.ch008.

13. Yan, X.; Yu, P.S.; Han, J. Graph Indexing. In Proceedings of the 2004 ACM SIGMOD International Conference on Management
of Data-SIGMOD ’04, Paris, France, 14–16, June 2004; ACM Press: New York, NY, USA, 2004; p. 335.
https://doi.org/10.1145/1007568.1007607.

14. Zhang, S.; Yang, J. RAM: Randomized Approximate Graph Mining. In Scientific and Statistical Database Management; Ludäscher,
B., Mamoulis, N., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2008; pp. 187–203. https://doi.org/10.1007/978-3-540-
69497-7_14.

15. Yuan, Z.; Li, F.; Zhang, P.; Chen, B. Description of shape characteristics through Fourier and wavelet analysis. Chin. J. Aeronaut.
2014, 27, 160–168. https://doi.org/10.1016/j.cja.2013.07.011.

16. Burrus, C.S. Fast Fourier Transforms. OpenStax CNX, 2012. Available online: http://cnx.org/contents/82e6ba6f-b828-42ef-9db1-
8de4b448b869@22.1 (accessed on 28 October 2021).

17. Mantoro, T.; Alfiah, F. Comparison Methods of DCT, DWT and FFT Techniques Approach on Lossy Image Compression. In
Proceedings of the 2017 International Conference on Computing, Engineering, and Design (ICCED), Kuala Lumpur, Malaysia,
23–25 November 2017; pp. 1–4. https://doi.org/10.1109/CED.2017.8308126.

18. Ye, Y.; Bruzzone, L.; Shan, J.; Bovolo, F.; Zhu, Q. Fast and Robust Matching for Multimodal Remote Sensing Image Registration.
IEEE Trans. Geosci. Remote Sens. 2019, 57, 9059–9070.

19. Zhang, Z.; Chen, J.; Li, X.; Li, W.; Yuan, W. An Image Matching Method Based on Fourier and LOG-Polar Transform. Sens.
Transducers 2014, 169, 61.

20. Scellato, S. NetworkX: Network Analysis with Python, 2010. Available online: https://www.cl.cam.ac.uk/~cm542/teach-
ing/2010/stna-pdfs/stna-lecture8.pdf (accessed on 28 October 2021).

21. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272.
https://doi.org/10.1038/s41592-019-0686-2.

22. Yang, J.; Leskovec, J. Community-Affiliation Graph Model for Overlapping Network Community Detection. In Proceedings of
the 2012 IEEE 12th International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012; IEEE, Manhattan, NY,
USA; pp. 1170–1175. https://doi.org/10.1109/ICDM.2012.139.

23. Junttila, T.; Kaski, P. Engineering an Efficient Canonical Labeling Tool for Large and Sparse Graphs. In Proceedings of the Ninth
Workshop on Algorithm Engineering and Experiments (ALENEX); New Orleans, Louisiana, USA, 6 January 2007.

24. Isaacs, R. Infinite Families of Nontrivial Trivalent Graphs Which Are Not Tait Colorable. Am. Math. Mon. 1975, 82, 221–239.
25. Majeed, A.; Rauf, I. Graph Theory: A Comprehensive Survey about Graph Theory Applications in Computer Science and Social

Networks. Inventions 2020, 5, 10. https://doi.org/10.3390/inventions5010010.

	1. Introduction
	2. Identifying Graph Morphisms
	3. Sub-Graph Representation Using a Bitmap Image
	4. Image Comparison Algorithm
	5. Proof-of-Concept Implementation
	6. Conclusions and Future Work
	References

