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Abstract: There is spiking interest in graph analysis, mainly sparked by social network analysis 
done for various purposes. With social network graphs often achieving very large size, there is a 
need for capable tools to perform such an analysis. In this article, we contribute to this area by pre-
senting an original approach to calculating various graph morphisms, designed with overall per-
formance and scalability as the primary concern. The proposed method generates a list of candidates 
for further analysis by first decomposing a complex network into a set of sub-graphs, transforming 
sub-graphs into intermediary structures, which are then used to generate grey-scaled bitmap im-
ages, and, eventually, performing image comparison using Fast Fourier Transform. The paper dis-
cusses the proof-of-concept implementation of the method and provides experimental results 
achieved on sub-graphs in different sizes randomly chosen from a reference dataset. Planned future 
developments and key considered areas of application are also described. 
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1. Introduction 
Social networks play an essential role in everyone’s lives. People get involved in so-

cial networks for various reasons, such as leisure, hobby, or work. The last reason is espe-
cially valid in the context of development projects, during which online project manage-
ment and collaboration platforms are often used, such as JIRA, Basecamp, Asana, or 
Trello. The social network data obtained from such platforms can be effectively used, e.g., 
to improve team structure and performance [1] or help in the information systems re-
quirements elicitation process [2]. There is, similarly, a lot to be gained from the analysis 
of social networks formed by the end-users of information systems, for such purposes as 
identifying members of the social network [3], behavioral rules detection [4], pattern 
matching [5], predicting bias [6], planning the improvement of the infrastructure thanks 
to the identification of bottlenecks, extending the system functionality thanks to under-
standing trends in the system usage, improving user experience thanks to building user 
models, and many more [7]. The analysis of social networks can be done from multiple 
angles, such as complexity, structure, strength of ties, evolution, value concept, and social 
capital [8]. 

Many of the social network analysis methods use graph analysis as their base. As 
social network graphs may achieve a very large size, analyzing them often becomes a 
highly time-consuming process. This motivates the search for new time-efficient methods 
for graph analysis. 

In this paper, we are particularly interested in the solution of problems in graph 
morphism. Our proposal deals directly with effectively obtaining a list of candidate solu-
tions to the morphism problems rather than finding their exact solution. Our key idea is 
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to treat graph structure as an image and use image comparisons in frequency domain to 
solve morphism problems. 

Although we were directly motivated by the need to analyze user interactions in 
team collaboration platforms by identifying cliques and similarities in user behaviors that 
may adversely impact business processes (e.g., hurt software development quality and 
costs), the proposed method can as well be used for any other analytical purposes. 

Our paper is structured as follows. First, we briefly present the problem of identify-
ing graph morphisms. We discuss the key idea of our approach, which is the abstract rep-
resentation of the sub-graph in the form of an image. Next, we skim through the image 
comparison methods that can be applicable in this context. A proof-of-concept solution is 
described in the fourth section. The final section of the paper summarizes the findings, 
and the steps to follow next are given. 

2. Identifying Graph Morphisms 
The problem of identifying graph morphisms is usually solved by a time- and 

memory-expensive algorithm [9] or various application-specific algorithms, such as Fre-
quent Subgraph Mining (FSM) algorithms [10]. There is especially active research dedi-
cated to solving the problem of isomorphism. This problem is known to belong to the NP 
class of problems. It can be solved using Ullman’s algorithm [9], whose main operation 
consists in matching pair generation by adding and removing edges from the analyzed 
graph. It is a time-expensive algorithm as any failure to identify a matching edge requires 
returning to the previous choice and continuing with the next iteration by adding another 
edge. When processing massive, big data graphs (like social media graphs) whose size 
keeps growing with every year, reducing execution time and memory consumption be-
comes a concern of increasing importance. 

This concern has been addressed, to some extent, by FSM algorithms. These can be 
split into three categories: candidate generation strategy, search strategy, or frequency 
counting. Candidate generation strategy extracts candidate sub-graphs to check how fea-
sible is probed vertex in terms of morphism determination. Search strategy determines 
the order of vertices to be visited. Frequency counting is related to the identification of the 
occurrence of the sub-graphs in the graph. 

Candidate generation of various algorithms [11–14] operates on approximation. The 
approximation might be represented by identifying sub-graphs that partially match the 
chosen sub-graph with one from a probed vertex. Having a smaller population of candi-
dates for exact graph matching reduces computational time spent on exact morphism cal-
culation. These methods operate on sub-graph models and create various possible op-
tions. They all operate on graphs rather than breaking the problem into more generic ob-
jects. The overall process of possible candidate generation leads to a considerable popula-
tion of potential candidates for each sub-graph. In practice, any further analysis requires 
recalculation of the candidates’ population whenever there is a change in a sub-graph as-
sociated with a probed vertex. A different solution is needed to address the temporal as-
pect of big data applications, where vertices and edges are constantly modified in the 
graph (added or removed). The analysis of each potential candidate sub-graph in such 
detail by existing algorithms is infeasible, especially that the sub-graph analysis has to be 
performed in many viewpoints simultaneously. 

The development of the method proposed here stems from the idea that generated 
candidate population can be shared between various potentially available vertices in the 
graph. This approach requires an abstract generation of candidate sub-graph populations 
from the comparison and matching processes. Instead of building sub-graphs in the con-
text of a matching graph, where edges are added and removed in matching perspective, 
the candidate sub-graph generation must always proceed independently. As part of the 
preliminary research, it was found that an alternative representation of sub-graphs could 
help make the matching process more efficient. This approach is adopted in the proposed 
method and will be described in the following section. 
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3. Sub-Graph Representation Using a Bitmap Image 
Before we proceed to description of the procedure leading to the solution of the can-

didate generation strategy, we shall first discuss the characteristics of sub-graph represen-
tation and how it is central to the discussed solution. 

Candidate generation strategy must have the following properties: context-inde-
pendent, repeatable (creating the canonical form), comparable, and configurable. We as-
sume that sub-graph representation must be generated in an abstraction of application. 
The sub-graph representation has to be generated in the same manner for nodes within 
the same graph as for nodes from other graphs. Having a context-independent represen-
tation has several advantages stemming from being usable in different applications and 
regardless of the actual implementation. The single way of representation allows checking 
various morphisms, e.g., isomorphism or homomorphism. From an implementation per-
spective, candidates can be calculated just once and then re-used. Re-use can be material-
ized by a persistence layer (for example, using in-memory cache) or be incorporated in 
actual morphism algorithms implementation. 

Candidate generation must give the same results over multiple iterations and com-
parisons to a different target node. The sub-graph representation must be computationally 
feasible to compare. The representation should have well-known algorithms available for 
that purpose with a complexity of less than the exponential growth rate. Finally, the rep-
resentation must be configurable to the target application. 

The proposed solution has two representation components: sub-graph structure and 
vertex degree. Sub-graph structure representation is configurable using a threshold value. 
The threshold value represents the depth of the sub-graph traversal. All vertices con-
nected to the probed vertex are visited until a given depth level is reached. From the 
probed vertex, a tree-like structure is built. The probed vertex becomes the parent node in 
a tree. Its neighbors become children in the tree. For each child, the structure is repeated, 
where its neighbors in the graph (excluding parent node) become its children. The struc-
ture-building process repeats until the target depth of sub-graph transition is reached. The 
candidate generation process will create the same structure for graphs with loops, as any 
loops in the graph are represented by a duplicate representation of the same vertex in the 
tree. 

If all children nodes in the generated tree are sorted by their degree, the process be-
comes repeatable. Vertex degree representation is also used for tree node labeling with 
the maximal degree in the graph. The maximal degree can be calculated using all nodes 
in graphs or assigned as an input parameter of arbitrary value (i.e., according to the ex-
pected graph structure or tailored to the target computing environment). 

There are multiple ways to represent a graph. It could be a graphical form with ver-
tices drawn as circles and lines as edges (see Figure 1), an adjacency matrix, or an adja-
cency list. All forms rely on placing the vertices, which turns into another well-known 
problem consisting of checking if a graph is planar. Here, we propose to use a bitmap 
image as a representation of the tree-like structure discussed above. This has the obvious 
advantage of unifying structure representation without introducing additional computa-
tional complexity. 

 
Figure 1. Exemplary simple graph having four nodes and five edges. 
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If the structure is represented as a bitmap, there are two aspects of image represen-
tation to consider: size and color. The size of the bitmap is related to the two parameters: 
depth threshold (t) and maximal degree (d). In this paper, we assume that the height of 
the bitmap is t + 1, while the width is d^(t + 1). The tree structure determines the bitmap 
contents. Each line in a bitmap represents a level in a tree from its parent perspective; 
therefore, the first line becomes a representation of the root node. The second line is 
equally split into parts. The number of parts is equal to a maximal degree. Each part be-
comes a representation of a child in the tree. If fewer children are in the tree than the 
maximal degree, the remaining parts are left blank. In the next line, the process repeats. 
Each new part of the line is split into the same number of parts, and in the last line, each 
node in a tree is represented by a part of size one. A color is assigned to each part of the 
bitmap, representing the value of the quotient of node degree and maximum degree. 

The use of bitmap image representation for each node brings the following ad-
vantages: 
1. Bitmap image can be used regardless of the target morphism graph calculation. 
2. The same bitmap image generation rules applied for the same sub-graphs must give 

the same results, including the same size. 
3. There are many image comparison methods developed and available for use. 
4. It is possible to generate bitmap images for vertices using a given threshold. 

Regarding the last point, from an implementation perspective, respective bitmap im-
ages can be persisted between various morphism calculations to make calculations taking 
less time between various morphism calculations [15]. In the actual implementation, 
thresholds can be defined depending on the target application. The height of the bitmap 
associated with a threshold can be set accordingly to the graph characteristics. A relatively 
small maximal degree and an equally distributed degree of vertices might be a reason to 
set a higher threshold value. This would result in images with a bigger size and more 
accurate graphical representation at the cost of requiring additional computational re-
sources. In the opposite situation, if the allocated system resources are constrained, the 
prefiltering of vertices might be an option to reduce the width of the bitmap. Considering 
a situation in which a graph contains outliers in node degree, they can be safely removed 
to significantly reduce the width of the generated bitmaps and thus memory consump-
tion. Similarly, reducing the number of possible colors might result in smaller memory 
structures (e.g., taking 16 instead of 64 bits per element). The tuning of such parameters 
can be essential in finding an adequate trade-off between the quality of the results and the 
memory and computational time needed for processing. 

4. Image Comparison Algorithm 
Many algorithms are dedicated to image comparison, starting from simple ones, 

based on pixel-by-pixel color comparison, to more advanced methods, developed in com-
puter vision and artificial intelligence. In this section, we shall not go into a full review of 
the available methods, but we shall focus only on the image comparison chosen for the 
proposed method. The choice was made considering bitmap image generation character-
istics, which is the point we start at. 

The proposed bitmap image representation has the overall shape as a two-dimen-
sional matrix with a content characterized by shape and color. Generated shapes are in 
triangular forms. The proposed method does not need to recognize objects, so there is no 
need to apply computer vision algorithms to perform such a task. 

The single value of each cell in the bitmap image contains a single number, which 
simplifies various aspects of further processing (see Figure 2). 

Shape and color comparisons are two vital aspects of bitmap image matching. Each 
horizontal and vertical line can be interpreted as a one-dimensional array with color val-
ues in each cell. Values of those cells can be interpreted as signal values. Signals that may 
change over time with a frequency can be represented as functions. Having a function that 
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represents frequency factors allows the image to be processed using existing frequency 
processing methods. Two basic frequency analysis methods are Discrete Cosine Trans-
form (DCT) and Discrete Fourier Transform (DFT). The definition of DFT is 
∑ 𝑥𝑥(𝑛𝑛)𝑊𝑊𝑁𝑁

𝑛𝑛𝑛𝑛𝑁𝑁−1
𝑛𝑛=0  where n, N, k are integer numbers, 𝑊𝑊𝑛𝑛 = 𝑒𝑒−𝑗𝑗2𝜋𝜋/𝑁𝑁, 𝑗𝑗 =  √−12 , the basis func-

tions are the N roots of unity [16]. 
DFT is the base calculation component of the proposed method, whose practical im-

plementation is based on the Fast Fourier Transform (FFT), an umbrella set of algorithms 
effectively implementing DFT. Here, FFT is used as a black-box function to transform a 
two-dimensional bitmap image into the frequency domain. Applying the two-dimen-
sional FFT is also a two-dimensional array that can be further processed as an abstraction 
of a bitmap image. 

Discussion about applying specific signal processing algorithms for image pro-
cessing (FFT or substitutes [17]) is not out of scope for this research. The choice of a par-
ticular image analysis algorithm may significantly impact the performance or introduce 
additional requirements for the bitmap image (i.e., some algorithms may be optimized for 
input arrays being square or having dimension size in the power of two). There are many 
examples of using FFT to solve image matching challenges [18,19]. Early experiments gave 
positive results of using FFT in bitmap image comparison, which resulted in choosing FFT 
for the method proposed here. 

 
Figure 2. Image bitmaps generated from four vertices of the simple graph presented in Figure 1. 

In the proposed method, the results of the two-dimensional FFT for a given vertex 
and a probed vertex are checked for their statistical relationship. Multiple measures can 
be used to measure the distance between factors of two matrices. The expected measure 
must accept two two-dimensional matrices as its parameters and provide a distance meas-
ure as its result. The lower the value, the more considerable similarity between the com-
pared matrices exists. If both matrices contain the same values, the output value should 
be zero, meaning no distance. In the described proof-of-concept implementation, the Eu-
clidean measure has been used, where the distance between two matrixes (A and B in-
dexed respectively by i and j) is expressed as �∑ 𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴𝑖𝑖,𝑗𝑗 − 𝐵𝐵𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗 . 

The distinct steps of the overall algorithm are presented in Figure 3. Each step of the 
algorithm can be implemented in a way tailored to the target application. The steps related 
to a sub-graph derived from a single node (see the middle section of the diagram) can be 
executed in parallel to reduce processing time. 
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Figure 3. The visual representation of the proposed algorithm flow using BPMN. 

5. Proof-of-Concept Implementation 
A proof of concept for the proposed method was implemented, and simple experi-

ments were performed. The details are presented below. 
The algorithm was implemented in Python 3 AMD64 environment using dedicated 

libraries for the most complex calculations. Graph processing (parsing raw files, the trans-
formation of graphs, calculating maximum degree, graph traversal) was implemented us-
ing the NetworkX library [20]. The FFT implementation of the SciPy library was used [21]. 
The entire code was written as a Python library with additional scripts for running various 
tests and performing utilitarian functions (i.e., visualization of the bitmap images). No 
caching was implemented in the proof-of-concept script. 

The main experiments were performed using well-known datasets acquired from the 
Stanford Network Analysis Project [22]. In the discussed experiment, the DBLP (Com-
puter Science bibliography) sample was used. In each experiment, a sub-graph was ran-
domly extracted for a given number of vertices. The outcome was a Cartesian matrix with 
distances between all vertexes (i.e., for 32 vertexes, there are 1024 pairs to be measured for 
distance). Tests were evaluated multiple times to emulate real-life applications. 

All tests were run on the same machine with Ryzen 3 3200, 64 GB of RAM (2400 
MHz), and SSD running Windows 10 Professional 64-bit. The threshold for tests presented 
in Figure 4 was three, and the maximum degree of the graph was calculated using a ran-
dom sub-graph sample. 

Figure 4 shows the algorithm execution times in seconds (Avg stands for average, 
Max for maximum, and Min for minimum) measured for 16 runs each on sub-graphs of 
various sizes (with 32, 64, 128, 256, and 512 vertexes, respectively). 

The dotted line shows the regression function built on top of raw data. Due to the 
skewed distribution of the average, a logarithm-based scale was used to visualize the re-
gression results. The visible regression seems to confirm the relationship between the 
number of analyzed vertexes and execution time. Overall computational complexity must 
be carefully analyzed, and it goes beyond the scope of this paper, but it depends on the 
complexity of each step of the algorithm. Most of the steps are related to the two-dimen-
sional matrix transformations and have respectively polynomial complexity related to the 
size of the matrix (i.e., up to the width of the matrix multiplied by its height). There is an 
extraordinary step of calculating the two-dimensional FFT related to the size of the matrix 
processed. In this case, it is related to the size of the image, thus: 𝑑𝑑𝑡𝑡+1 multiplied by t, 
where t is depth threshold, and d is maximal degree. As two-dimensional FFT has quasi-
linear complexity, the overall complexity of the FFT steps in this algorithm is: 

𝑇𝑇(𝑡𝑡,𝑑𝑑) =  𝑡𝑡 ∗  𝑑𝑑𝑡𝑡+1 ∗ log (𝑡𝑡 ∗  𝑑𝑑𝑡𝑡+1). 
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Figure 4. Sub-graph size versus execution time. 

In order to compare the running times of the proposed method to the BLISS [23] soft-
ware library representing the current state of the art in automorphism algorithms, another 
experiment has been performed. In it, the Flower Snark [24] 𝐽𝐽5 graph, which contains 20 
vertices and 30 edges, has been used as the benchmark dataset. The tests were run on the 
same machine using the same Python environment. Version 2.7.18 of BLISS was used via 
the PyBliss (Python wrapper around the BLISS library) version 0.5 beta. Tests were re-
peated five times in the same operating conditions; PyBliss had average runtimes of 1212 
microseconds, and the proposed method had an average of 998 microseconds. It shows 
that even though our proof-of-concept implementation has not been optimized in any 
way, and it did not even exploit the opportunity of parallel execution of the key stage of 
the procedure, it managed to outperform the well-known algorithm. 

6. Conclusions and Future Work 
Graphs are important elements of modern social network analysis [25]. Much re-

search was done to identify efficient ways of checking graph morphism. This paper pre-
sents a novel approach to address this problem based on bitmap image generation and 
processing. The novelty of the proposed algorithm lies in the combined use of represen-
tation of graph as an image, image comparison, and frequency analysis. 

We have experimentally proven the method to be operational. We have developed 
its proof-of-concept implementation and evaluated it using multiple random sub-graphs 
chosen randomly from a well-known dataset. Even the initial experimental time measure-
ments compare favorably with the existing algorithms, although the known optimization 
opportunities were not exploited in the first implementation of our method. 

The obtained results are promising, although we are aware that the presented 
method in its current form is not suitable for graphs with a high number of loops. It pro-
duces many false positives in the generated candidate population. Therefore, our future 
work will be to extend it with special handling for graphs with many loops to address this 
known weak point. 
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The purpose of the described implementation was to prove that the method works. 
For real-life applications on big-data sets, there is a need to implement it in a distributed 
environment. One of the options considered from an implementation perspective is to use 
a map-reduce solution, where each portion of data (i.e., sub-graph structure) is passed to 
a computational node with a program that generates a bitmap image, calculates the FFT, 
and stores the results. To gain the most performance from the proposed method, the use 
of distributed processing and cache would be necessary. However, such an implementa-
tion is not trivial, as pre-caching bitmaps and its FFT results to reduce the time for costly 
recalculations creates a problem with cache invalidation whenever a change to the sub-
graph structure occurs. 

The authors plan to apply the presented method to analyze user interactions in busi-
ness collaboration software applications (particularly ticket management systems) to 
identify cliques and similarities in user behaviors that may adversely impact business pro-
cesses (i.e., software development quality and costs). Random human factors may shape 
the interaction graphs, so that exact graph matching algorithms may be considered irrel-
evant, whereas graph morphism approximation might become the necessary choice [25]. 

On a more general level, the presented positive results of applying signal frequency 
processing algorithms to graph data inspired the authors to look for other possible appli-
cations. One such idea is to build a graph query engine using bitmap image representation 
of graphs and FFT analysis. 
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