
  information

Article

On Information Orders on Metric Spaces

Oliver Olela Otafudu 1 and Oscar Valero 2,3,*

����������
�������

Citation: Otafudu, O.O.; Valero, O.

On Information Orders on Metric

Spaces. Information 2021, 12, 427.

https://doi.org/10.3390/

info12100427

Academic Editor: Willy Susilo

Received: 7 September 2021

Accepted: 13 October 2021

Published: 18 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics and Applied Mathematics, North-West University, Potchefstroom Campus,
Potchefstroom 2520, South Africa; olivier.olelaotafudu@nwu.ac.za

2 Departament de Ciències, Matemàtiques i Informàtica, Universitat de les Illes Balears,
07122 Palma de Mallorca, Spain

3 Institut d’ Investigació Sanitària Illes Balears (IdISBa), Hospital Universitari Son Espases,
07120 Palma de Mallorca, Spain

* Correspondence: o.valero@uib.es

Abstract: Information orders play a central role in the mathematical foundations of Computer
Science. Concretely, they are a suitable tool to describe processes in which the information increases
successively in each step of the computation. In order to provide numerical quantifications of the
amount of information in the aforementioned processes, S.G. Matthews introduced the notions of
partial metric and Scott-like topology. The success of partial metrics is given mainly by two facts. On
the one hand, they can induce the so-called specialization partial order, which is able to encode the
existing order structure in many examples of spaces that arise in a natural way in Computer Science.
On the other hand, their associated topology is Scott-like when the partial metric space is complete
and, thus, it is able to describe the aforementioned increasing information processes in such a way
that the supremum of the sequence always exists and captures the amount of information, measured
by the partial metric; it also contains no information other than that which may be derived from
the members of the sequence. R. Heckmann showed that the method to induce the partial order
associated with a partial metric could be retrieved as a particular case of a celebrated method for
generating partial orders through metrics and non-negative real-valued functions. Motivated by this
fact, we explore this general method from an information orders theory viewpoint. Specifically, we
show that such a method captures the essence of information orders in such a way that the function
under consideration is able to quantify the amount of information and, in addition, its measurement
can be used to distinguish maximal elements. Moreover, we show that this method for endowing a
metric space with a partial order can also be applied to partial metric spaces in order to generate new
partial orders different from the specialization one. Furthermore, we show that given a complete
metric space and an inf-continuous function, the partially ordered set induced by this general method
enjoys rich properties. Concretely, we will show not only its order-completeness but the directed-
completeness and, in addition, that the topology induced by the metric is Scott-like. Therefore, such
a mathematical structure could be used for developing metric-based tools for modeling increasing
information processes in Computer Science. As a particular case of our new results, we retrieve, for a
complete partial metric space, the above-explained celebrated fact about the Scott-like character of
the associated topology and, in addition, that the induced partial ordered set is directed-complete
and not only order-complete.

Keywords: information order; increasing sequence; directed-completeness; metric; partial metric;
completeness

1. Introduction: Information Orders and Partial Metric Spaces

In 1970, D.S. Scott introduced the domain theory with the aim of developing a suitable
mathematical foundation of computation (see [1]). This theory is based on the notion of
a domain. A domain is a partially ordered structure for modeling computing processes,
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where the “information” about the final “stage” of the process is increased successively in
each step of the process. The partial orders used for this aim are called information orders.

Let us recall the basics about order theory that we will need in our subsequent
discussion (see, for instance, [2,3]).

A partially ordered set is a pair (X,�) where X is a non-empty set and � is a binary
relation on X satisfying, for all x, y, z ∈ X, the following axioms:

(i) x � x; (reflexivity)

(ii) x � y and y � x ⇒ x = y; (antisymmetry)

(iii) x � y and y � z⇒ x � z; (transitivity)

An element x ∈ X is a maximal element of Y ⊆ X if x � y implies y = x. A least
element of Y is an element z ∈ Y, such that z � y for all y ∈ Y. An upper bound of Y is an
element x ∈ X such that y � x for all y ∈ Y. The least upper bound (or supremum) of Y is
the least of the set of all its upper bounds, provided it exists.

A non-empty subset Y ⊆ X is directed if for every pair x, y ∈ Y, there exists z ∈ Y,
such that x � z and y � z.

An ordered set (X,�), in which every directed subset has a supremum, is called
a directed-complete partially ordered set (dcpo for short). Directed complete partially
ordered sets are also called pre-cpos in [3].

A sequence (xn)n∈N in (X,�) is said to be increasing, provided that xn � xn+1 for all
n ∈ N, where N stands for the positive integers.

In a partially ordered structure (X,�), endowed with an information order�, the con-
dition x � y is interpreted as all information contained in the datum x is also contained in
the datum y. Thus, the condition x � y is understood as the amount of information.

The use of algorithms, which obtain successively refined “approximations” of a desired
result in the spirit of Scott is very usual in Computer Science. When an approximation is
obtained in some stage of the computation, it seems natural to consider a specific question:
How well does the computation approximate the result? In order to determine how “good”
an approximation is, the computer scientist models this process using information orders.
A computation of an element of the model is considered as a “sequence” of increasing
elements in such a way that each element of the sequence is greater than (or equal to)
the preceding one, i.e., each stage of the computation gives more information about the
result. Hence, the approximated object is regarded as the supremum of the sequence of
approximations. For a more full treatment of the topic, we refer the reader to [3].

However, under this point of view it is not possible to measure the amount of infor-
mation in each approximation. So the necessity of reconciling the order-theoretic approach
with a topological one arises in a natural way. A recent detailed account of the theory from
this point of view can be found in the recent monograph [4].

In order to get a framework useful to unify topological and order-theoretic ideas
and, in addition, to provide numerical quantifications of the aforementioned amount of
information, several works have been developed for reasoning about programs using
“metric” ideas. Among these works, the most prominent references are the paper by M.B.
Smyth [5] and the paper by S.G. Matthews [6].

In the framework introduced by Matthews, partial metrics play the role of the metric
tools.

On account of [6], a partial metric on a non-empty set X is a function p : X× X → R+

such that, for all x, y, z ∈ X, the following axioms are satisfied:

(i) x = y⇔ p(x, x) = p(x, y) = p(y, y); (T0-separation)

(ii) p(x, x) ≤ p(x, y); (small self-distances)

(iii) p(x, y) = p(y, x); (symmetry)

(iv) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y); (triangularity)
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Of course, R+ denotes the set of non-negative real numbers.
A partial metric space is a pair (X, p), such that X is a non-empty set and p is a partial

metric on X.
Note that a metric space is a partial metric space (X, d) where d satisfies, in addition,

the condition: (v) d(x, x) = 0 for all x ∈ X.
Each partial metric p on X generates a T0 topology T (p) on X, which has as a base in

the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) <
p(x, x) + ε} for all x ∈ X and ε > 0. Observe that, contrarily to the metric case, the topology
induced by a partial metric is only T0 and not Hausdorff.

From this fact, it immediately follows that a sequence (xn)n∈N in a partial metric space
(X, p) converges to x ∈ X (limn→∞ xn = x for short) with respect to T (p) if and only if
p(x, x) = limn→∞ p(x, xn).

According to [6], a partial metric p, defined on a non-empty set X, induces a partial
order �p on X, so-called the specialization order, as follows: x �p y⇔ p(x, y) = p(x, x).

Notice that the specialization order matches up with the flat order when the partial
metric is exactly a metric.

Of course, �p can be understood as an information order in the sense that x �p y
can be interpreted as all information contained if x is also contained in the information
content of y. The amount of information is given by the numerical measure p(x, x). Indeed,
if x �p y, then p(y, y) ≤ p(x, x). Observe that those elements with p(x, x) = 0 are maximal
from an information point of view.

Obviously, in those cases where the information content about the final stage of the
computational process is increased successively in each step of such a process, the interest
is focused on the study of increasing sequences of the form x0 �p x1 �p x2..., called chains
of increasing information, where �p is an information order and the supremum of the
sequence captures the amount of information and, besides, such an amount is measured by
a partial metric.

In order to guarantee that such a supremum contains no information other than that
which may be derived from the members of the chain, the supremum must be the “limit”
of the mentioned chain. Matthews showed that this last condition can be modeled using a
Scott-like topology [6]. Indeed, a topology T on a partially ordered set (X,�) is a Scott-like
topology with respect to the partial order if each increasing sequence in (X,�) has a least
upper bound as a limit point of the sequence with respect to T . Let us recall that a partial
ordered set (X,�) is�-complete provided that every increasing sequence has a least upper
bound [7]. Matthews proved that when a non-empty set X is endowed with a partial metric
p, the induced partially-ordered set (X,�p) is �p-complete and, in addition, the associated
topology T (p) is, in fact, a Scott-like topology with respect to the specialization order �p
when the partial metric space (X, p) is complete.

Recall that a sequence (xn)n∈N in a partial metric space (X, p) is called a Cauchy
sequence if there exists limn,m→∞ p(xn, xm) and, in addition, a partial metric space (X, p) is
said to be complete if every Cauchy sequence (xn)n∈N in X converges, with respect to T (p),
to any element x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm). Of course, the completeness
coincides with the standard completeness when the partial metric is exactly a metric.

Since Matthews introduced the notion of partial metrics, many works have delved
into the study of topological and order-theoretical properties of domains through partial
metrics as, for instance, [8–18].

In the context of metric spaces, a partial order can be induced by a non-negative
real valued function. In particular, on account of [19,20], the classical method is given as
follows:

If (X, d) is a metric space, then any real function ϕ : X → R+, induces a partial order
�d,ϕ on X given by x �d,ϕ y⇔ d(x, y) ≤ ϕ(x)− ϕ(y).

In the remainder of the paper, our target is two-fold.
On the one hand, we show that the method for generating the partial order �d,ϕ, on a

metric space (X, d), through a function ϕ : X → R+, captures the essence of information
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orders in such a way that the function ϕ is able to quantify the amount of information
contained in the elements of the partially ordered set and its measurement can be used
to distinguish between the maximal elements. Moreover, we show that this method for
endowing a metric space with a partial order can also be applied to partial metric spaces in
such a way that new partial orders, different from the specialization one, can be induced
and, in addition, Matthews’ method can be retrieved as a particular case.

On the other hand, we show that, given a complete metric space (X, d), the partial
ordered set (X,�d,ϕ) induced by a function ϕ : X → R+ enjoys rich properties from an
information order viewpoint. Concretely we will show not only its �d,ϕ-completeness but
the directed-completeness and, in addition, that the topology T (d) is a Scott-like topology
when the metric space (X, d) is complete and the function ϕ enjoys a distinguished property
that we have called inf-continuity. Therefore, the mathematical structure (X,�d,ϕ) could
be used for developing metric-based tools for modeling increasing information processes
in Computer Science. As a particular case, our new results we retrieve, for a complete
partial metric space (X, p), the Scott-like character of the topology T (p) and, in addition,
that the partial ordered set (X,�p) is a dcpo, and not only �p-complete when the partial
metric space (X, p) is complete.

2. The New Induced Order: Metric versus Partial-Metric Spaces

We next show that the method for generating the partial order �d,ϕ on a metric space
(X, d), through a function ϕ : X → R+ provides a partial order which can be understood
as an information order and extends the Matthews method when partial metric spaces are
under consideration.

In [21], R. Heckmann, given a partial metric (X, p), characterized the specialization
order �p in terms of an induced metric δp on X in the following manner:

Proposition 1. Let (X, p) be a partial metric space. Then the following holds:

(1) The function δp : X× X → R+ given by δp(x, y) = p(x, y)− p(x,x)+p(y,y)
2 is a metric.

(2) For x, y ∈ X, x �p y⇔ δp(x, y) ≤ ϕp(x)− ϕp(y) with ϕp(x) = p(x,x)
2 .

In view of the preceding proposition, the specialization order is induced by means of
the above exposed classical method, where the metric space and the function under consid-
eration are exactly (X, δp), and ϕp, respectively. However, the aforesaid classical method
helps us to induce new partial orders, different from the specialization one, in partial-metric
spaces, as follows:

If (X, p) is a partial metric space and ϕ : X → R+ is any function on X, then the binary
relation �δp ,ϕ given by:

x �δp ,ϕ y⇔ δp(x, y) ≤ ϕ(x)− ϕ(y),

is a partial order on X.
The value of partial metrics is given, among others, by the fact that there are many

examples of spaces which arise in a natural way in Computer Science, whose order structure
can be expressed in terms of a partial metric (see [11–14,16,22]. Following [22], partial
metrics that capture the partial order of a partially ordered set are called satisfactory. Three
samples of this type of situations are given in Examples 1–3, below. These examples show
that partial metrics are relevant in several fields of Computer Science.

Example 1 (Domain of words). Let Σ be a non-empty alphabet. Denote by Σ∞ the set of all
finite and infinite sequences (“words”) over Σ. As usual, if w ∈ Σ∞, then we will denote by
`(w) the length of w. Thus, `(v) ∈ [1,+∞]. We will write w := w1w2...wn when w ∈ Σ∞ with
`(w) = n < ∞. Moreover, we will write w := w1w2.... when w is an infinite word.

G. Kahn introduced a model of parallel computation in order to describe mathematically
communicating computing processes by sending unending streams of information (infinite words)
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between them (see [6,23]). Thus, such a model was based on the set Σ∞ endowed with the Baire
metric. In order to study the existence of a possible deadlock in the communication processes
(see [24]), Matthews defined the Baire partial metric on the set Σ∞. The Baire partial metric
pB : Σ∞ × Σ∞ → R+ is given by:

pB(v, w) =

{
2−`(v,w) if `(v, w) < +∞
0 otherwise

,

where `(v, w) = sup{n ∈ N : vi = wi whenever i ≤ n} when v and w have a nonempty common
prefix, and `(v, w) = 0 otherwise. Notice that `(v, w) = +∞ and that this situation occurs when
`(v) = `(w) = +∞ and u = v. Moreover, observe that `(u, w) ≤ min{`(u), `(w)}.

Typically the set Σ∞ is ordered by v in the following way:

v v w⇔ v is a prefix of w.

Obviously the prefix orderv coincides with the specialization order�pB and, thus, with�ϕpB ,pB ,
i.e., the partial order induced by the metric δpB through ϕpB , where:

ϕpB(v) =
{

2−(`(v)+1) if `(v) < +∞
0 otherwise

.

The partial metric space (Σ∞, pB) endowed with the prefix order is called the domain of words.
The infinite words can be viewed as elements with total information content, while finite words

can be considered as elements with partial information content. Note that the partial metric pB
allows us to distinguish between them. Indeed, `(w) = +∞⇔ pB(w, w) = 0. The elements with
total information content are maximal elements. Moreover, notice that when we observe (Σ∞,v)
as the partially ordered set (Σ∞,�δpB ,ϕpB

), we can appreciate that the function ϕpB can be used to
distinguish the words with total information content (maximal elements) from those with partial
information content because `(v) = +∞⇔ ϕpB(v) = 0).

Example 2 (Flat domain). Let S be a non-empty set and ⊥6∈ S. Consider X = S ∪ {⊥} and the
partial order � on X given by:

x � y⇔ x =⊥ or x = y ∈ S.

According to [6], X becomes a partial metric space when we endowed it with the flat partial
metric p⊥ defined by:

p⊥ : X× X → {0, 1} by

p⊥(x, y) = 0⇔ x = y ∈ S.

Clearly the partial order � coincides with the specialization order �p⊥ . The computational
intuition underlying the ordered space (X,�) is given by the fact that the set S is formed by
elements with totally defined information content (all of them have the same information content)
and the element ⊥ which is undefined and, thus, its information content is partial. Observe that
the flat partial metric p⊥ captures the notion of maximality from the information viewpoint, since
x ∈ S⇔ p⊥(x, x) = 0. Hence all elements in S are maximal.

Note that that such a structure can also be induced by the new general method taking the
function ϕ⊥ : X → R+ given by:

ϕ⊥(x) =
{

1 if x =⊥
0 otherwise

.

Of course the partial order � is induced by the flat partial metric through ϕ⊥, i.e., � coincides
with �δp⊥ ,ϕ⊥ . Again, the function ϕ⊥ can be used to distinguish the elements with totally defined
information content and the element ⊥, since x ∈ S⇔ ϕ⊥(x) = 0.
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Example 3 (Domain of complexity functions). In [25], S. Oltra, S. Romaguera and E.A.
Sánchez-Pérez introduced the partial metric complexity space (C, pC) given by:

C =
{

f : N→]0, ∞] :
∞

∑
n=1

2−n 1
f (n)

< ∞
}

,

and

pC( f , g) =
∞

∑
n=1

2−n max
{

1
f (n)

,
1

g(n)

}
.

It must be pointed out that the convention 1
∞ = 0 is adopted.

According to [15,25] (see [26] for detailed applications), the partial metric complexity space
is suitable to develop a topological foundation for asymptotic complexity analysis of algorithms.
In fact, one can assign a function in C to the running time of the computing of an algorithm P
in such a way that f (n) represents the time taken by P to solve the problem for which it has been
implemented. When an algorithm process of an input of size n provides an undefined output value,
then f (n) = ∞. Observe that the partial order �pC allows us to discuss the asymptotic complexity
behaviors of the running time for computing of the algorithms. That is, f �pC g⇔ f (n) ≤ g(n)
for all n ∈ N. Thus, from an information point of view, f �pC g can be interpreted as f is “at least
as efficient” as g on all inputs. Therefore, g provides an asymptotic upper bound of f and, hence,
of the running time of computing that it represents.

In this context, the element with its totally defined information content is the complexity
function f∞ ∈ C, such that f∞(n) = ∞ for all n ∈ N, since pC( f∞, f∞) = 0. Thus, the information
content is conceived in a reverse sense. The smaller pC( f , f ), the less the information about the
running time of complexity. Thus, those elements with partial information content, providing
information about running time, belong to C \ { f∞}. Here, the maximal element is f∞, that is,
the element with less information about running time.

Observe that the partial order �pC is exactly �δpC ,ϕC , i.e., induced by the metric δpC through
ϕC where:

ϕC(v) =

{
0 if f = f∞

∑∞
n=1 2−(n+1) 1

f (n) otherwise .

Consequently, the function ϕC can be used to distinguish the functions with total information
content (maximal elements) from those with partial information content because ϕC( f ) = 0 ⇔
f = f∞.

Example 4 gives an instance of partial metric space which is not satisfactory and, thus,
it shows that partial metrics are not always able to encode the partial order given in a
non-empty set. Moreover, the example shows that it can be turned into a satisfactory result
using our new method.

Example 4. Consider the partial metric space (R+, pm), where pm(x, y) = max{x, y} for all
x, y ∈ R+. The restriction of pm to pm|[0,1] is denoted again by pm. It is known that the partial
metric pm is not satisfactory when R+ is endowed with the usual partial order ≤. Indeed �pm (or
equivalently �δpm ,ϕpm

) does not coincide with ≤, since x �pm y⇔ y ≤ x.
Nevertheless we show that choosing a suitable function ϕ : [0, 1] → R+, the usual order

≤ can be induced by the partial metric pm through ϕ, i.e., �δpm ,ϕ coincides with ≤. Indeed, take
ϕ(x) = − x

2 + 1
2 . It is a simple matter to see that, given x, y ∈ R+,

x≤δpm ,ϕy⇔ x ∨ y ≤ y.
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Indeed, x ≤δpm ,ϕ y⇔ δpm(x, y) ≤ ϕ(x)− ϕ(y). Hence, x ≤δpm ,ϕ y⇔

max{x, y} − x
2
− y

2
≤ − x

2
+

1
2
+

y
2
− 1

2
.

Thus we obtain:

max{x, y} ≤ y.

Whence:
x≤δpm ,ϕy⇔ x ≤ y.

If we interprete the fact that x ≤ y as the number y has more information than x, then the
function ϕ captures the amount of information. Since smaller ϕ(x) values have more information
content in x, in such a way that the element with total information content 1 (the maximal element)
satisfies ϕ(1) = 0. Moreover, the function ϕ distinguishes between the maximal element and others
because ϕ(x) = 0⇔ x = 1.

Observe that the partial ordering method due to Heckmann, and introduced in Proposition 1,
cannot turn the partial metric pm into a satisfactory result by means of the function ϕ.

The above examples suggest that the function ϕ can be used as a feature to quantify
the amount of information contained in the elements of the partially ordered set in such a
way that the value ϕ(x) allows us to distinguish maximal elements because x is maximally
totally (defined), provided that ϕ(x) = 0.

In the following result, we formally prove that such a hypothesis is true. To this
end, let us recall that, given two partially ordered sets, (X,�1) and (Y,�2), a mapping
ϕ : X → Y is said to be decreasing provided that ϕ(y) �2 ϕ(x), whenever x �1 y.

First of all, we stress that, given a metric space (X, d), a function ϕ : X → R+ is
decreasing with respect to�d,ϕ. Therefore, the smaller values ϕ(x) match up with the more
information content in x. Hence, x ≤d,ϕ y can be understood, as the element y has at least
as much information content as the element x.

Proposition 2. Let (X, d) be a metric space and let ϕ : X → R+ be a function. Then the following
assertions hold:

(1) For all z ∈ X, ϕ(z) = minx≤d,ϕ z ϕ(x).

(2) Elements z ∈ X with ϕ(z) = 0 are maximal.
(3) If ϕ(x) = ϕ(y) and x �d,ϕ y, then x = y.

Proof. (1). Let z ∈ X. Then ϕ(z) ≤ ϕ(x) for all x ∈ X, such that x�d,ϕz. Whence we deduce
that ϕ(z) ≤infx≤d,ϕ z ϕ(x). Suppose that ϕ(z) <infx≤d,ϕ z ϕ(x). Then, ϕ(z) <infx≤d,ϕ z ϕ(x) ≤
ϕ(z), which is a contradiction. Since z�d,ϕz, we have that minx≤d,ϕ z ϕ(x) = infx≤d,ϕ z ϕ(x).

(2). Let z ∈ X, such that ϕ(z) = 0. Assume that there exists y ∈ X with z≤d,ϕy. Then:

d(z, y) ≤ ϕ(z)− ϕ(y) ≤ 0.

It follows that d(z, y) = 0 and so z = y, which implies that z is a maximal element in
(X,�d,ϕ).

(3). Let x, y ∈ X such that ϕ(x) = ϕ(y) and x≤d,ϕy. Then we have:

d(x, y) ≤ ϕ(x)− ϕ(y) = 0.

Therefore x = y.
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3. Increasing Information Sequences

Taking into account the exposed facts, and that it has been suggested that the partial
ordered set (X,�d,ϕ), induced from a metric space (X, d) and a non-negative real valued
function ϕ on X, is able to quantify the amount of information contained in a sequence of
elements by means of the function ϕ in Section 2. Next, we show the directed-completeness
of (X,�d,ϕ), when the metric space (X, d) is complete and the function ϕ is inf-continuous.
Moreover, under the same hypothesis, we prove that the topology T (d) is a Scott-like
topology. Furthermore, we retrieve from our results the Scott-like character of the topology
T (p) and that the partial ordered set (X,�p) is a dcpo, and not only �p-complete, when
(X, p) is a complete partial metric space.

3.1. Increasing Information Sequences and Direct-Completeness

Let us introduce the following notion that will play a central role in our subsequent dis-
cussion.

Definition 1. Let (X, d) be a metric space. A function ϕ : X → R+ will be said to be inf-
continuous at x ∈ X provided that limn→∞ ϕ(xn) = ϕ(x), whenever (xn)n∈N is an increasing
sequence in (X,�d,ϕ), such that limn→∞ xn = x, with respect to T (d). A function ϕ that is
inf-continuous at x for all x ∈ X will be called simply inf-continuous.

Let us recall that a function ϕ : X → R+ is (lower semi) continuous provided that
it is (lower semi) continuous from (X, T (d)) into (R+, T (dE)), where dE stands for the
Euclidean metric. Lower semicontinuity and continuity of the function ϕ plays a crucial
role in the study of the structure of (X,�d,ϕ) and its applications to metric fixed point
theory (see [19,20]). Accordingly, it seems natural to wonder whether there exists any
relationship between (lower semi) continuity and inf-continuity.

Clearly, every continuous function is always inf-continuous. However, the next
example shows that the converse is not true in general. In fact, it gives an instance of a
function which is inf-continuous and not lower semicontinuous and, thus, is not continous.

Example 5. Consider the metric space (R+, dE). Define the function ϕ : R+ → R+ by ϕ(0) = 1
and ϕ(x) = 0 for all x 6= 0. Observe that the unique increasing sequences in (R+,�dE ,ϕ) are those
that are constants. It follows that ϕ is inf-continuos. Nevertheless, it is not lower semicontinuous.
Indeed, take the sequence (xn)n∈N given by xn = 1

n for all n ∈ N. It is clear that limn→∞ xn = 0
but 1 = ϕ(0) > ϕ(xn) = 0 for all n ∈ N. So ϕ is not lower semicontinuos and, hence, it is not
continuous.

The next example gives an instance of a function that is lower semicontinuous and
not inf-continuous (see [19]).

Example 6. Consider the metric space ([0, 1], dE) and the function ϕ : [0, 1] → R+ defined by
ϕ(0) = 0, ϕ(1) = 1 and ϕ(x) = x + 2 for all x ∈]0, 1[. A straightforward computation shows
that ϕ is lower semicontinuous. Clearly, it is not inf-continuous, since the sequence (xn)n∈N, given
by xn = 1

n+1 for all n ∈ N, is increasing in ([0, 1],�dE ,ϕ) and limn→∞ xn = 0 with respect to
T (dE). However, limn→∞ ϕ(xn) = 2 6= ϕ(0) = 0.

The next results are useful to describe the interconnection between the order-theoretic
and topological properties that will be key to prove the directed-compleness of (X,�d,ϕ).

Proposition 3. Let (X, d) be a complete metric space and let ϕ : X → R+ be an inf-continuous
function. If (xn)n∈N is an increasing sequence in (X,�d,ϕ), then the following assertions are true.

(1) There exist x? ∈ X such that limn→∞ xn = x? with respect to T (d).
(2) If limn→∞xn = x?, then x? is the least upper bound of (xn)n∈N in (X,�d,ϕ).
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Proof. (1). It is clear that (ϕ(xn))n∈N is a decreasing sequence in R+ and, thus, it is
convergent. Thus, the sequence (xn)n∈N is Cauchy in (X, d) because (ϕ(xn))n∈N is Cauchy
in R+. Consequently, there exists x? ∈ X such that limn→∞ xn = x? with respect to T (d).

(2). From limn→∞ xn = x? and from the fact that ϕ is inf-continuous we obtain that
limn→∞ ϕ(xn) = ϕ(x?). Fix n ∈ N. Then, given ε > 0, there exists m ∈ N with m > n, such
that d(xm, x?) < ε and ϕ(x?) < ϕ(xm) + ε. Since xn ≤ϕ,d xm we deduce that:

d(xn, x?) ≤ d(xn, xm) + d(xm, x?) < ϕ(xn)− ϕ(xm) + ε

< ϕ(xn)− ϕ(x?) + 2ε.

Consequently, d(xn, x?) ≤ ϕ(xn)− ϕ(x?) and, hence, we have that xn �d,ϕ x? for all
n ∈ N. It follows that x? is an upper bound of (xn)n∈N.

It remains to prove that x? is the least upper bound of (xn)n∈N. With this aim, assume
that z ∈ X is an arbitrary upper bound of (xn)n∈N. Then xn ≤ϕ,d z for all n ∈ N. Whence

d(x?, z) ≤ d(x?, xm) + d(xm, z) < ε + ϕ(xm)− ϕ(z)

< 2ε + ϕ(x?)− ϕ(z),

since d(x?, xm) < ε and ϕ(xm) < ϕ(x?) + ε eventually. Therefore d(x?, z) ≤ ϕ(x?)− ϕ(z),
and thus x?�d,ϕz. This completes the proof.

In the next result, for an element x of a partially ordered set (X,�), we will denote its
upper set by ↑� x, that is, ↑� x = {y ∈ X : x � y}.

Proposition 4. Let (X, d) be a complete metric space and let ϕ : X → R+ be an inf-continuous
function. If x0 ∈ X, then there exists an increasing sequence (xn)n∈N in (X,�d,ϕ) with least
upper bound x? such that x∗ ∈ ↑�d,ϕ x0 and x? is maximal.

Proof. Let x0 ∈ X. Next, we construct a sequence (xn)n∈N inductively as follows:
We choose x1 ∈ ↑�d,ϕ x0, such that ϕ(x1) < 1+infy∈↑�d,ϕ x0 ϕ(y) and, for all n ∈ N with

n > 1, we choose xn with xn ∈ ↑�d,ϕ xn−1, such that ϕ(xn) < 1
n+infy∈↑�d,ϕ xn−1 ϕ(y). We

continue in this fashion, obtaining an increasing sequence (xn)n∈N such that xn ∈ ↑≤d,ϕ xn−1
for all n ∈ N.

Proposition 3 warranties the existence of x? ∈ X such that x? is the least upper bound
of (xn)n∈N in (X,�d,ϕ) and, thus, that x∗ ∈ ↑�d,ϕ x0.

It remains to prove that x∗ is a maximal element. By Proposition 3 we have that
limn→∞ xn = x? with respect to T (d). The inf-continuity of ϕ gives that limn→∞ ϕ(xn) =
ϕ(x?). Now, assume that there exists z ∈ X such that x? �d,ϕ z. Then, we have that
ϕ(z) ≤ ϕ(x?). Moreover, xn �d,ϕ z for all n ∈ N. Thus, z ∈↑�d,ϕ xn for all n ∈ N. Whence,
we have that ϕ(xn) <

1
n + in fy∈↑�d,ϕ xn−1 ϕ(y) ≤ 1

n + ϕ(z) for all n ∈ N. Whence, we deduce

that ϕ(x?) = limn→∞ ϕ(xn) ≤ limn→∞
1
n + ϕ(z) = ϕ(z). So ϕ(x?) ≤ ϕ(z) ≤ ϕ(x?). It

follows that, ϕ(x?) = ϕ(z). By Proposition 2, we conclude that x? = z. This gives that x? is
maximal.

It must be stressed that the counterparts of Propositions 3 and 4 have been obtained
requiring lower semicontinuity for the function ϕ in [19,20], respectively. Observe that
when inf-continuity is assumed, the proofs are different and are not based on the Cantor’s
Intersection Theorem.

The next result guarantees the directed-completeness of (X,�d,ϕ).

Theorem 1. Let (X, d) be a complete metric space and let ϕ : X → R+ be an inf-continuous
function. Then (X,�d,ϕ) is a dcpo.
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Proof. Let D be a directed subset of X and let x0 ∈ D. According to Proposition 4, we have
guaranteed the existence of an increasing sequence (xn)n∈N in (X,�d,ϕ) with least upper
bound x? such that x∗ ∈ ↑�d,ϕ x0 and x? is maximal.

Let y ∈ D. Then, by directedness of D, there exists z0 ∈ D, such that x0�d,ϕz0 and
y�d,ϕz0. Now, let z1 be an upper bound of z0 and x1 in D. In this way, we obtain an
increasing sequence (zn)n∈N ⊂ D such that zn ∈↑�d,ϕ xn for all n ∈ N. By Proposition 3 we
have that there exists z? ∈ X which is the least upper bound of (zn)n∈N and z? ∈↑�d,ϕ z0.
Therefore, y �d,ϕ z?.

Since xn �d,ϕ z? for all n ∈ N and x? is the least upper bound of (xn)n∈N we deduce
that x? �d,ϕ z?. The maximality of x? gives that x? = z?.

The above is true for all y ∈ D. Then we follow that x∗ is an upper bound of D.
Next, we show that x? is the unique upper bound of D, and thus the least upper

bound of D. Otherwise, if we assume that there exists d? ∈ X which is an upper bound of
D then, d? ∈ ↑�d,ϕ xn for all n ∈ N. Thus, d? is an upper bound of (xn)n∈N. Since x? is the
least upper bound of (xn)n∈N we have that x? �d,ϕ d?. Since x? is a maximal element, we
conclude that x? = d?, which is our claim.

The following example shows that there are metric spaces (X, d) such that (X,�d,ϕ)
is a dcpo and, however, (X, d) is not complete. Therefore, the converse of the preceding
result is not true.

Example 7. Consider the metric space (X, dE), where X = { 1
n : n ∈ N} and dE is the Euclidean

metric on X. Define the function ϕ : X → R+ by ϕ(x) = 0 for all x ∈ X. Clearly (X,�dE ,ϕ)
is a dcpo (the unique directed sets are those formed by a singleton). Nevertheless, (X, dE) is not
complete because the sequence (xn)n∈N with xn = 1

n for all n ∈ N is Cauchy but does not converge
with respect to T (dE).

Notice that Theorem 1 guarantees that the least upper bound of the dcpo (X,�d,ϕ) is
always a maximal element.

From Theorem 1 we obtain the next result for partial metric spaces.

Corollary 1. Let (X, p) be a complete partial metric space. Then (X,�p) is a dcpo.

Proof. According to [25], a partial metric space (X, p) is complete if and only if the as-
sociated metric space (X, δp) is complete. Moreover, Proposition 1 gives that x �p y ⇔
x �δp ,ϕp y, where the function ϕp : X → R+ is given by ϕp(x) = p(x,x)

2 for all x ∈ X.
The function ϕp is in f -continuous because it is the continuous from of (X, T (δp)) into
(R+, dE). Applying Theorem 1, we have that (X,�δp ,ϕp) is a dcpo. Therefore, (X,�p) is a
dcpo.

3.2. Increasing Information Sequences and Scott-like Topology

Next, we focus our efforts on discussing if the topology T (d) is a Scott-like topology
with respect to the partial order �d,ϕ. With this aim we get the following results:

Proposition 5. Let (X, d) be a complete metric space and let ϕ : X → R+ be an inf-continuous
function. If (xn)n∈N is an increasing sequence in (X,�d,ϕ) with least upper bound x? ∈ X, then
infn∈N ϕ(xn) = ϕ(x?).

Proof. Clearly (ϕ(xn))n∈N is a decreasing sequence in (R+,≤) bounded below. Therefore,
limn→∞ ϕ(xn) = infn∈N ϕ(xn). By Proposition 3, there exists y? ∈ X such that limn→∞ xn =
y? with respect to T (d) and y? ∈ X is the least upper bound of (xn)n∈N in (X,�d,ϕ).
Whence we obtain that x? = y?. The inf-continuity of ϕ provides that limn→∞ ϕ(xn) =
ϕ(x?). Thus, infn∈N ϕ(xn) = ϕ(x?).

The next equivalence is crucial in our subsequent discussion.
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Theorem 2. Let (X, d) be a complete metric space and let ϕ : X → R+ be an inf-continuous
function. If (xn)n∈N is an increasing sequence in (X,�d,ϕ), then the following statements are
equivalent:

(1) x? ∈ X is the least upper bound of (xn)n∈N.
(2) x? ∈ X is an upper bound of (xn)n∈N and infn∈N ϕ(xn) = ϕ(x?).
(3) (xn)n∈N converges to x? with respect to T (d).

Proof. (1)⇒ (2). Assume that x? is the least upper bound of (xn)n∈N, then x? is an upper
bound of (xn)n∈N. By Proposition 5 we have that infn∈N ϕ(xn) = ϕ(x?).

(2) ⇒ (3). Since x? is an upper bound of (xn)n∈N we have that d(xn, x?) ≤ ϕ(xn)−
ϕ(x?) for all n ∈ N. Consequently, we deduce that limn→∞ d(xn, x?) = 0 because the
sequence (ϕ(xn))n∈N is decreasing and, in addition, limn→∞ ϕ(xn) = infn∈N ϕ(xn) =
ϕ(x?).

(3) ⇒ (1). From Proposition 3, we deduce that x? is the least upper bound of
(xn)n∈N.

As a consequence of Theorem 2, we assert that the least upper bound of every chain
of increasing information (increasing sequence) captures the amount of such information,
and it does not contain more information that can be derived from the members of the
chain, as happens in the case of the specialization order induced by a partial metric (see [6]).

In view of Theorems 1 and 2, we are able to show that T (d) is a Scott-like topology
with respect to the partial order ≤d,ϕ.

Theorem 3. Let (X, d) be a complete metric space and let ϕ : X → R+ be an inf-continuous
function. Then the following assertions hold:

(1) (X,�d,ϕ) is �d,ϕ-complete.
(2) Every increasing sequence (xn)n∈N in (X,�d,ϕ) converges with respect to T (d) to its least

upper bound which is a maximal element in (X,�d,ϕ).

Proof. (1). Let (xn)n∈N be an increasing sequence in (X,�d,ϕ). Theorem 1 provides that
there exists x? ∈ X such that x? is the supremum of (xn)n∈N. Thus, (X,�d,ϕ) is �d,ϕ-
complete.

(2). Assume that (xn)n∈N is increasing. From (1) we have that x? is its least upper
bound. Theorem 1 provides that x? is maximal. By Theorem 2 we deduce that limn→∞ xn =
x? with respect to T (d).

It must be pointed out that Theorem 3 does not require continuity for the function ϕ
(compare [19]).

Example 7 shows that there are metric spaces (X, d) such that (X,�d,ϕ) is �d,ϕ-
complete but (X, d) is not complete. Therefore, the converse of Theorem 3 does not
hold in general.

From Theorem 3 we can retrieve the�p-completeness of (X,�p) and the fact that T (p)
is a Scott-like topology when (X, p) is a complete partial metric space. Indeed, with this
aim let us introduce the following result:

Proposition 6. Let (X, p) be a partial metric space and let (xn)n∈N be a sequence in X. If (xn)n∈N
is convergent with respect to T (δp) then it is so with respect to T (p).

Proof. Let x ∈ X such that limn→∞ xn = x with respect to T (δp). Then,

p(x, xn)−
p(x, x)

2
− p(xn, xn)

2
= δp(x, xn) < ε,

eventually. Thus, 2p(x, xn)− p(x, x)− p(xn, xn) < ε and p(x, xn) < ε + p(x, x), eventually.
Consequently, (xn)n∈N converges to x with respect to T (p).
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As a consequence of Proposition 1, Theorem 3, and Proposition 6 we retrieve the
celebrated result below.

Corollary 2. Let (X, p) be a complete partial metric space. Then the following assertions hold:

(1) (X,�p) is �p-complete.
(2) Every increasing sequence (xn)n∈N in (X,�p) converges with respect to T (p) to its least

upper bound, which is a maximal element of (X,�p).

4. Conclusions

Information orders are suitable to describe processes in which the information in-
creases successively in each step of the computation processes. S.G. Matthews introduced
the notions of partial metric and Scott-like topology as a part of a mathematical method for
providing numerical quantifications of the amount of information in the aforementioned
processes. Later on, R. Heckmann showed that the method due to Matthews could be
retrieved as a particular case of a celebrated method for generating partial orders through
metrics and non-negative real-valued functions. In this paper, we have explored this gen-
eral method from an information orders theory viewpoint. Specifically, we have shown that
such a method captures the essence of information orders in such a way that the function
under consideration is able to quantify the amount of information and, in addition, its
measurement can be used to distinguish maximal elements. Moreover, we have shown that
this method for endowing a metric space with a partial order can also be applied to partial
metric spaces in order to generate new partial orders different from the specialization one.
Furthermore, we have shown that, given a complete metric space and an inf-continuous
function (a special continuous function that we have introduced), the partial ordered set
induced by this general method enjoys rich properties. Concretely, we have shown not only
its order-completeness but the directed-completeness and, in addition, that the topology
induced by the metric is Scott-like. Therefore, such a mathematical structure could be
useful for developing metric-based tools for modeling increasing information processes in
Computer Science. As a particular case of our new results we have retrieved, for a complete
partial metric space, the Scott-like character of the associated topology and, in addition,
that the induced partial ordered set is a directed-complete and not only order-complete.
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