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Abstract: This paper proposes a method to ensure compatibility between physical devices for
implementing a service design. The method supports the relaxation of strict implementation. It
allows a set of compatible devices to be implemented instead of specifying specific devices in the
service design. This paper’s main contribution is the formalization of device constraints using
the device’s attributes and a method to check the compatibility between devices. The method’s
characteristic is that a service designer can decide the level of strictness and abstractness of the
design by adjusting the compatibility rate. We show the feasibility of the proposed method to achieve
the goal of “Design Once, Provide Anywhere” with an application example. We also evaluated
the quality of service of the implemented IoT service in a different environment using a platform
called Elgar.

Keywords: IoT; device compatibility; orchestration; device constraint; service design; SOA;
smart object

1. Introduction

The realization of Industry 4.0 [1] and Digital Transformation [2] relies heavily on
the Internet of Things (IoT). The IoT has undeniably matured and developed into a more
sophisticated and complex technology. It is not just a state-of-the-art concept that leads
to the idea of connecting physical objects called ’things’ but it is also to bring business
and industries to a whole new level. In recent years, physical IoT devices are being
manufactured to adapt to the requirements of communication protocols and, in some
cases, for a specific environment. Generally, IoT systems are built tailor-made to certain
environments and applications. Therefore, support from IoT platforms is required for
the implementation of IoT devices. Along with the development of new standards and
protocols [3], IoT technologies moved one step further.

Many IoT platforms were introduced to accelerate the development of IoT infras-
tructures and services. Some of the platforms are cloud-based or premise-based, which
adopt popular protocols such as Message Query Telemetry Transport (MQTT) [4] and
Constrained Application Protocol (CoAP) [5]. The IoT platform such as Thingsworx [6]
and Thingspeak [7] supports the integration of MQTT and CoAP protocols and targets
both industries and consumers. Although these platforms support the design and im-
plementation of IoT services, they specifically require devices that are tailor-made to the
environment. In other words, the device’s specifications, such as data range and data
type, must adhere to the requirement or restrictions of the environments. Industrial IoT
platforms such as NEC WISE [8] were designed for industries and require specialists from
the developer’s company to implement. Another flexible IoT platform such as Bosch
IoT Suite [9] provides hubs for large scale device communications that focus on message
telemetry. MindSphere [10] focuses on the storage of IoT data on the cloud so that they
can be analyzed for factual information. However, the end-users, either the industries or
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consumers, will have difficulties in connecting suitable devices when restrictions on data
type and capabilities are different. Most of these platforms nowadays limit the compatible
devices to a certain type of protocols, making the end-users have difficulties deciding on
whether the devices satisfy the services’ requirements.

This paper proposes a method to ensure compatibility between physical devices for
implementing a service design. The method supports the relaxation of strict implementa-
tion. It allows a set of compatible devices to be implemented instead of specifying specific
devices. This paper contributes to (i) formalization of device constraint using device’s
attributes; and (ii) a method to check the compatibility between devices. The characteristic
of the proposed method is that a service designer can decide the level of strictness of the
design by adjusting the tolerance between the subclasses of attributes in the ontology tree
and the range of capabilities of each device. We show the feasibility of using the proposed
method in order to achieve the goal of “Design Once, Provide Anywhere” (DOPA) with
an application example. We also evaluated the quality of service of the implemented IoT
service in a different environment using a platform called Elgar.

2. Preliminary
2.1. Service-Oriented-Architecture

Service-Oriented-Architecture (SOA) is regarded as an approach that enables hetero-
geneous components to connect and scale flexibly. Our research’s main goal is to achieve
“Design Once, Provide Anywhere” that embraces SOA as the base of the concept. Figure 1
shows the positioning of our research in the SOA’s layer. Our research focuses on the
process and orchestration layer. We utilize the process model representing the tasks and
attributes owned by logical devices and physical devices in the data-control flow model.
The process model represents the service design. A logical device can be assigned with
any compatible physical devices if they satisfy the constraint between devices described
using an ontology model. The study by Niknejad et al. [11] stated the characteristics of
SOA in order to enhance service delivery performance of existing conventional systems
while preserving essential features. Many design approaches and patterns adopt SOA
because it can be defined as an architectural concept that allows loose coupling, reusability,
interoperability, agility, and efficiency. It focuses on separating the process into components
of tasks and functions such as services. Based on this concept, we propose a model with
loose coupling using a Data Petri net, where we specify only the logical devices. On top
of the process model, we specify the constraint of the attributes of the compatible devices.
Then, we can check the compatibility of the physical devices implemented on the logical
devices using the ontology tree. Kohar et al. [12] published a study of utilizing SOA archi-
tecture in IoT systems. Therefore, it is well-known that SOA is applicable to IoT systems.
SOA is suitable for IoT systems because SOA architectural design allows heterogeneous
components to communicate at the lower level and allows loose coupling, enabling scala-
bility. To achieve “Design Once, Provide Anywhere,” we also allow heterogeneous devices
(physical devices) to be implemented without specifying a specific device in the design.
This relaxation method can ease the strict implementation of service design using different
devices in different environments. In Ref. [13], Azzedin et al. gave the overview of resource
management in P2P systems. Since IoT is similar to P2P systems, which are distributed,
there is a need to manage resources. Meanwhile, Washizaki et al. [14] proposed a landscape
of architecture and design patterns for IoT systems. From the literature, we can see that the
structure that operates IoT systems is essential. While embracing the SOA concept, “Design
Once, Provide Anywhere” can be achieved by allowing compatible physical devices to be
used. However, service design based on SOA does not focus mainly on the constraint of
compatibility.

2.2. Data Petri Net

A Data Petri Net (DPN for short) [15] is a 6-tuple DPN = (N, V, U, R, W, G). It
consists of a Petri net [16] N = (P, T, A) (where P, T, A ( ⊆ (P × T)∪(T × P)) are finite
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sets of places, transitions, and arcs, respectively. Let x be a place or transition, a set of data
variables V, a function U that defines the values admissible for each variable v ∈ V, a read
function R that labels each transition with the set of variables that it reads, a write function
W that labels each transition with the set of variables that it writes, a guard function G
that denotes a guard with each transition. A transition t ∈ T is enabled if its guard G(t)
returns true. If t has no guard, then G(t) = true. We define a subclass of DPN called Data
Workflow Net (DWF-net for short). A DPN is a DWF-net if N is a WF-net. A trace of
transition bindings’ execution sequences of DPN is denoted by a pair (t, ϕ) where t ∈ T
and ϕ is value assignment function for some variables v ∈ V, i.e., vw = x, vr = y, where
vw = x (vr = y) denotes writing (reading) value x (y) to (from) variable v ∈ V. We can
write the trace such as σ = 〈t1{ϕ1}, t2{ϕ2}, · · · , tn{ϕn}〉. A valid firing of (t, ϕ) satisfies
the state transition rule in Def. 4 of Ref. [15].

Let F be the set of functions fk(v1, v2, · · · , vi) for DPN with input vi ∈ R and output
wj ∈ W, where (k = 1, 2, 3...). L is a labeling function of fk such that L : fk→Σ where
Σ assigns to each transition’s label in DPN. The transition labels represent the task or
function executable by a logical device or physical device. A labeled Data Petri Net is a
2-tuple DPNL = (DPN, `), where ` is the set of labels for vertex E in an ontology tree L
and all labels ` in L correspond to the transitions in T, where ` : T→L ⊂ L .

2.3. Ontology Tree

An ontology tree L = (E, L) is a tree with a set of vertex E and a set of label L. Each
vertex is a pair of node n and label ` ∈ L such that (n, `). In this paper, we use an ontology
tree to store the classes and attributes of logical devices or physical devices and their
relationship.

3. Related Work

IPSO Smart Object [17] provides a common design pattern and an object model to
provide high-level interoperability between Smart Objects such as devices and software
applications. IPSO compliant smart objects were defined using a knowledge-based model.
In this paper, we extended the ontology to support object definitions such as capability,
quantity kind, and unit. The protocol of OMA Lightweight M2M [18] sends messages
over MQTT and HTTP. Our method utilizes ontology to describe components or smart
objects such as logical devices and physical devices that utilize MQTT and HTTP. The
attributes such as resource name, i.e., units and range value of these devices, are similar
to the IPSO object. Some objects, such as sensors and actuators, were defined in the
guideline of IPSO. In our work, we utilize ontology to define these objects (devices), which
follows the guideline by IPSO. Our method’s advantage is that we utilize ontology to
define the attributes of devices such as quantity kind, unit, and range. Then, we bind
the attributes to the tasks defined in the service design, which is the process model. The
process model represents the data-control flow of the system. Therefore, in our approach,
we have both the process and ontology model that describe the objects and their attributes
in the service design.

In 2012, Compton et al. proposed a semantic sensor Ontology model called a Se-
mantic Sensor Network (SSN) [19] as a structured form for linking sensors to the web
and enable them to be monitored on any IoT platform. In 2017, Bermudez-Edo et al.
proposed a lightweight semantic model for IoT called IoT-Lite [20] based on SSN. The
semantic model is highly scalable and suitable for a dynamic environment, such as an IoT
system. They showed that IoT-Lite is effective in getting high-performance query-response
times. Moreover, it is highly extensible depending on the requirements of the sensor
network. International Telecommunication Union (ITU) published technical specifications
on a framework to support data interoperability in IoT environments [21]. The technical
specification addressed the technology and requirements to enable data interoperability
to support semantic and syntactic functions and web-based objects. The specifications
roughly stated the models and architecture to support semantic data interoperability. One
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of them is SSN models, which can be linked to Web of Object (WoB). Later in 2020, Elsaleh
et al. proposed another ontology based on IoT-Lite for data streams in the IoT ecosystem
called IoT-Stream [22]. They showed that data stream is usually scarce and deserved to be
handled in a more structured form. Usually, in a dynamic system such as IoT, different
devices handle and exchange data in various ways depending on the environments’ re-
quirements. We know that the semantic model plays an important part in IoT ecosystems
based on these related works. However, interoperability cannot be assured by the only
good form of semantic models. As the next stage of using a semantic model, we propose a
method that utilizes ontology for binding physical devices to service design to implement
an IoT service.

Based on Figure 2, our research focuses on the process orchestration. Some related
works regarding the process or service composition focus on constraints such as quality-
of-service, context, and service tasks. In Ref. [23], Javaid et al. proposed a process model
for Web of Things (WoT) called CATSWoTS. The description utilized JSON for defining
the WoT components. The context was used as a constraint related to creating a reliable
context-aware trustworthy WoT system. Kwei et al. [24] proposed a method using a
function graph for orchestration based on the SOA concept. The description used is a suffix
tree that sets the quality of service (QoS) as its constraint for creating a process model.
Wang et al. [25] proposed a composite service model and utilized Semantic Annotations
for WSDL (SWSDL) and consider services as constraints for the composition of service
model. In our work, we utilize Data Petri Net (DPN) and ontology tree described in web
ontology language (OWL) by taking device attributes as constraints. We also show that our
method can be evaluated quantitatively when considering the trade-off of the constraint.

Smart Farm A
Humidity : Low
Temperature : Low

Irrigation

Fertilization
Monitoring

Temperature
Control

Data
Analysis

Smart Farm B
Humidity : High
Temperature : High

Monitoring
Irrigation

Temperature
Control Data

Analysis

Fertilization

Design A Design BSet of
Devices A

Set of
Devices B

IoT Service
Designer

Figure 1. Example of the problem of IoT service implementation in a different environment. Two
different environments but with the same IoT service, i.e., a smart farm, require specific devices for
each environment due to different capabilities and availability. Therefore, the designer will have to
repeat the design process and implementation process for each environment.
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Figure 2. Overview of the positioning of our research.

4. Problem Statement

This paper focuses on designing a single service design and implementing the same
design into different environments using different devices. There are two major phases
within the scope of this paper. The first phase is the design phase, and the second phase is
the implementation phase. We can give the scenario for the two major phases where there
is a need to implement the same service in a different environment.

First, we give the definition of a logical device, physical device, attribute, device
constraint, and service design. Then, with the given definitions, we define the problem of
physical device compatibility.

We give the definition of the attribute. Attributes represent the property of a device
that can be used for the compatibility check.

Definition 1 (Attribute). An attribute α is defined as an entity represented in the vertex e ∈ E of
ontology L . The set of attributes is given as A = {α1, α2, · · · , αi}.

Next, we define logical device and physical device as follows:

Definition 2 (Physical Device). A physical device p = (DPN, L, A ) is a 3-tuple with DPN,
label L assigned for the set of tasks T in DPN and a set of attributes A .

We define logical device as follows:

Definition 3 (Logical Device). A logical device d = (T, L) is a 2-tuple with a set of tasks T
assigned with label L.

A logical device is an abstract representation of an actual device where some parts of
the device are hidden, such as the control-flow. In this phase, we need to distinguish the
physical devices that are compatible or not to implement the service design Sspec. Therefore,
we restrict the logical device with constraints. In this paper, we focus on the attributes
of the device for our restriction. We can formalize the constraint of logical devices using
attributes as follows:

Definition 4 (Device Attribute). A device attribute δ is an n-tuple of attribute α such that
δ = (cα1 , cα2 , · · · , cαn) where cαn for task tn ∈ T of a logical device.

Definition 5 (Device Capability). A device capability r is a range of value between [a, b]. The
range of capability r is denoted as r : [a, b], where a is the minimum value and b is the maxi-
mum value.
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A given device constraint is configured by the service designer depending on the
application of the service. Based on this constraint, a physical device can be checked
for compatibility during a service design implementation. A logical device with a set of
constraints is denoted as d = (T, L, δ).

Next, we give the definition of service design as follows:

Definition 6 (Service Design). A service design is a 3-tuple Sspec = (D, V, C, R, U), where D is
a set of logical devices, a set of data variables V, a set of attributes C = {α1, α2, . . . , αm}, a set of
device capability R, and U which is the relation of input/output between logical devices and data
variables such that U ⊆ (D × V)∪(V × D). A constraint cm with a pair such that cm = (v, r)
denotes that a data variable v ∈ V has a constraint with device capability r ∈ R.

A service designer makes a service design Sspec and specifies the set of logical devices
D with a set of device constraints Σ = {δ1, δ2, · · · , δn}. An end-user implements the service
design Sspec by assigning the logical devices D with physical devices P that satisfy the set
of constraints Σ as shown in Figure 3. We can give the definition of compatible device as
follows:

Definition 7 (Compatible Device). For a given service design, Sspec = (D, V, C, R), physical de-
vice with attributes p = (DPN, Lp, A ) is said to be compatible for logical device d = (Td, Ld, Cd) if:

(i) Physical device p satisfies the constraint C of a logical device d i.e., for all tasks t ∈ Tp of
DPN, the attributes αt1 , αt2 , · · · , αtk , satisfy the attribute conditions Cd; and

(ii) For all relation of input/output between logical devices and data variables such that
U ⊆ (DI × V)∪(V × DO), where dI ∈ DI and dO ∈ DO are logical devices that output
and input variables V, when dI→pI and dO→pO the set of capabilities RI , and RO
satisfies the constraint RI ⊆ RO

Figure 3. Overview of the proposed method.

To verify whether the devices are implementable or not, we need to check the type of
devices and their functions. Here, we formalize the problem of device compatibility.

Problem 1 (Problem of Device Compatibility).
Input: Service Design Sspec with logical devices D = {d1, d2, · · · , dn}, set of physical devices
P = {p1, p2, · · · , pm}, set of device assignment Σ = {σ1, σ2, · · · , σk} of physical devices to logical
devices such that σ : D →P
Output: Is the set of physical devices P compatible for Sspec?
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For example, we consider the service design shown in Figure 4, an air conditioning
controller for a Heating, ventilation, and Air Conditioning (HVAC) system for a smart home.
The HVAC system requires an air thermometer and air conditioner that sends and receives
data of indoor temperatures. To decide the type of data handled between the devices, we
consider looking at an ontology tree for the related attributes. In this paper, we consider
three general types of attributes, i.e., quantity kind, unit, and capability. The ontology
tree is shown in Figures 5–7. Quantity kind is the type of data handling, for example,
Temperature or Humidity. Unit is the unit of the quantity kind such as Degree Celsius,
Kelvin, or Fahrenheit. Capability is the range between the minimum (min) and maximum
(max) value of the data, distinguishing between measurement and actuation range.

Figure 4. Example of a service design with logical devices and constraints.

Figure 5. A subtree of quantity kind. The level of compatibility is calculated by calculating the ratio
of the quantity class and its level in the ontology tree. The lower the subclass level, the device will be
more specific, but the implementation will be stricter. The higher the level, the implementation will
be more flexible.

Figure 6. A part of subtree of unit attribute.
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Figure 7. A subtree of capability.

Given two logical devices d1 , d2 and data v1, we need to assign the pair of logical
devices d1, d2 with physical devices x1, x2 and y1, y2. Note that d1 handles v1 as output and
d2 handles v1 as input. In the design, first, the service designer will specify the attributes of
the data such as quantity kind (q), unit (u), and capability (r). The attributes is attached
independently to the task t ∈ T of the logical and physical devices. V1 is specified with con-
straint (Indoor Temperature, Degree Celsius, R2 ⊆ R4). Indoor Temperature, Degree Celsius
are the attribute constraints, and R2 ⊆ R4 is the capability constraint. We need to check if
x1, x2, y1, and y2 are compatible for implementation into d1 and d2 or not.

5. Concept and Approach for Design Once, Provide Anywhere
5.1. Concept Overview

We considered the service design Sspec shown in Figure 4. In general, the service design
that specifies essential attributes and constraints for an IoT service allows re-usability to a
different environment. The overview is shown in Figure 8. We can specify a single design
by allowing logical devices to be assigned with a range of physical devices.

Design
Device

Specification

IoT Service
Designer

Environment A

Environment B

Implement

Implement

Set of devices
available for

Environment A

Set of devices
available for

Environment B

Figure 8. The concept of Design Once, Provide Anywhere. The service can be implemented with one
service design and only specify the required devices’ specifications.

To achieve “Design Once, Provide Anywhere”, this method allows compatible devices
that satisfy the constraint instead of specifying specific devices. For example, given two
logical devices d1 and d2 in a service design, what is the set of devices compatible for
each d1 and d2 that satisfies the constraint of devices with quantity kind, unit, and range
attributes represented by (q, u, r)? The attributes can be checked using an ontology tree by
verifying the superclass and subclass of the attributes owned by each task.

5.2. Our Approach

In this section, we give our approach. Definition 7 stated that, in Cond. (i), if all
physical device attributes satisfy the constraint of attributes C, then the physical device is
compatible with the target logical device. In Cond. (ii), for two physical devices, pI and pO,
the device capabilities must satisfy the constraint R. Figure 3 shows that a device which
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is the subclass of a device in the ontology tree is said to provide similar functionality and
capability as specified in the design. This is because a subclass under the ontology tree
is a child in the device family such that αn ⊆ cn. In any way, the service designers and
device manufacturers should manage the ontology tree so that the service design is valid
in general. In Cond. (ii), the logical device’s capability needs to match the constraint R.

Next, we give the following procedure to solve the given problem. We check the
design Sspec. If Sspec is implementable, the IoT service can run according to the specification.
We give the procedure as follows:
�Device Compatibility Check�
Input: Service Design Sspec with logical devices D = {d1, d2, · · · , dn}, set of physical devices
P = {p1, p2, · · · , pm}, set of device assignment Σ = {σ1, σ2, · · · , σk} of physical devices to
logical devices such that σ : D →P
Output: Is the set of physical devices P compatible for Sspec?

1◦ Check the compatibility based on Definition 7 for all p ∈ P.

1-1 Check if the constraint of a logical device i.e., for all tasks t ∈ T of DPN,
the attributes αt1 , αt2 , · · · , αtk , satisfy the attribute conditions Cd. If no, then,
output ’no’ and stop.

1-2 Check for all relations of input/output between logical devices and data
variables such that U ⊆ (DI × V)∪(V × DO), where dI ∈ DI and dO ∈ DO
are logical devices that output and input variables V, when dI→pI and
dO→pO, the set of capabilities RI and RO satisfies the constraint RI ⊆ RO.
If no, then output ’no’ and stop.

2◦ Output ’yes’ and stop.

Our approach relaxes the implementation by allowing the devices with similar at-
tributes and capabilities. For example, Ambient Temperature and Room Temperature are
both the subclass of Air Temperature, so we implement any Thermometer that can measure
Air Temperature. In the evaluation, we consider the number of sensors and actuators in
the ontology, including the number of its subclasses.

The results of the procedure are shown in Tables 1–3. Table 1 shows that physical
devices x1 and x2 are compatible for logical device d1. Table 2 shows that physical device
y2 is compatible for logical device d2. Finally, Table 3 shows that physical devices x1 and y2
are compatible with each other. Therefore, we can use x1 and y2 to implement Sspec.

Table 1. Compatibility check result for logical device d1.

Device Physical Device x1 Physical Device x2

Room
Temperature Kelvin Ambient Temperature Kelvin

Logical Device d1
Indoor Temperature Yes - Yes -

Degree Celsius - Yes - Yes

Table 2. Compatibility check result for logical device d2.

Device Physical Device y1 Physical Device y2

Air
Temperature Kelvin Room Temperature Fahrenheit

Logical Device d2
Indoor Temperature No - Yes -

Degree Celsius - Yes - Yes
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Table 3. Compatibility check result between input/output of physical devices.

Device Physical Device x1 Physical Device x2

Room
Temperature

Kelvin 15 ∼ 30 Ambient
Temperature

Kelvin 0∼60

Physical
Device

y2

Room
Temperature Yes - - No - -

Fahrenheit - Yes - - Yes -

25∼176
(-5-40) - - Yes - - No

During the design process, the designer can see how strict or abstract the design is
by testing it on a set of devices by calculating the compatibility rate. The user can also
assign a set of physical devices and evaluate the compatibility using the compatibility rate.
The attributes decide the compatibility rate of a device. In the ontology tree, the level of
subclass represents the abstractness of the device. For example, for a given physical device
p with attribute α of a task t, the compatibility rate when assigned to a logical device d with
constraint cα, where cα is the constraint of α can be given as Lα, and the constraint which
satisfies a true or false statement of satisfying a subset equation can be given as Lβ.

For each Lα, we can calculate it based on three types of constraints, i.e., (i) constraint
of subclass in the ontology tree, (ii) constraint of ontology class relation, and (iii) constraint
of a value range. First, the constraint of subclass in the ontology can be specified by setting
a class of an attribute. For example, in Figure 5, if we set cα = Indoor Temperature, only
the subclasses of Indoor Temperature satisfy the constraint Cα. In the ontology tree, let
the number of levels in the subtree in which the label of the root is α be n. The level of
the attribute of physical device is k where k = 0, 1, 2, · · · , (n− 1). Therefore, the level of
compatibility for quantity kind LQ = Lα is given as follows:

Lα =
n− k

n
(k = 0, 1, 2, · · · , (n− 1)) (1)

Second, the constraint of class relation can be calculated by checking if the relation
is true or not. This can be calculated when α is a true or false question. For example, as
shown in Figure 6, if hasBaseUnit is true or hasPrefix is true, then LU = 1, otherwise LU = 0.
Another example is when considering the range of value for capability r. If Cond. (ii) of
Definition 7 is satisfied, then LR = 1, otherwise LR = 0. Here, we decide LR = Lβ as 0 or 1:

Lβ = =

{
1, if RI ⊆ RO

0, otherwise
(2)

Therefore, we can give the compatibility rate H for a physical device pI and pO that
takes a common data V as inputs and outputs with a set of attributes α1, α2, · · · , αn. For
constraints cα1 , cα2 , · · · , cαn , we give the rate of compatibility using Lα and Lβ for physical
devices pI and pO as follows:

H (pI , pO) =
Σn

i=1LpI
αn+Σm

i=1LpO
αm

n + m
×

k

∏
i=1

L(pI ,pO)
βk

(3)

For example, we can calculate the compatibility rate of a physical device x1 and y2 in
service design Sspec as with quantity kind Lx1

Q and Ly1
Q , unit Lx1

U , Ly2
U , and the range of capabil-

ity L(x1,y2)
R1

. We get the compatibility rate for x1 and y2 as

H (x1, y2) =
L

x1
Q +L

y1
Q

2 × Lx1
U × Ly2

U × L(x1,y2)
R1

= 0.5+0.5
2 × 1 × 1 × 1 = 0.5. From this

example, the compatibility rate is decided by the level Lα of superclass in the ontology tree.
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It also depends on the constraint of Lβ of the true or false question which all of the Lβ must
be true. In the design stage, the compatibility rate can be used when a service designer
specifies a service design and tests the abstractness of the service design to a sample group
of physical devices. In the implementation stage, the user can use it to confirm the accuracy
of implementation when using a certain set of devices. The rate is given from 0 to 1, where
a value of 1 indicates the highest compatibility rate.

6. Application Example

We demonstrate our approach to the problem with an application example of a service
design and its implementation. Figure 9 shows a service design for an HVAC system. The
service requires an air thermometer, humidity sensor, and an HVAC controller. Each logical
device is represented as d1, d2, and d3. The constraints for each device and between devices
are shown in Figure 9. Figure 10 shows the candidates for each logical device. The physical
devices for air thermometer are px

1 and px
2 , humidity sensors are py

1 and py
2, and the HVAC

controllers are pz
1 and pz

2.

Figure 9. Service Design SHVAC for an HVAC system of a smart farm.

Figure 10. Example group of physical devices for SHVAC.

A service designer can check the design by checking the compatibility rate for a
sample group of available devices. The service designer utilizes the�Device Compatibility
Check� procedure to check the compatibility of each physical device. Then, the service
designer can evaluate the compatibility rate for the design using Equation (3). The result
is shown in Table 4. From the result in Table 4, the service designer can conclude that the
service design’s overall performance is 0.69, which is quite good for the first version of the
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design. The compatibility rate can be improved by increasing or reducing the abstractness
of the design. Concretely, the service designer should focus on Ld2

α and Ld3
α , which shows a

quite low compatibility rate for the whole group of sample devices. Therefore, the service
designer should recheck the abstractness of the humidity sensor and the HVAC controller.

Table 4. Evaluation of compatibility rate for a sample group of physical devices.

Device Assignment Device Compatibility Device-to-Device Compatibility Compatibility
Rate

d1 d2 d3 Ld1
α Ld2

α Ld3
α H(d1,d2) H(d3,d2)

Average
H̄

px
1 py

1 pz
1 0.50 1.00 0.66 0.75 0.83 0.72

px
1 py

2 pz
1 0.50 0.25 0.66 1.00 1.00 0.47

px
1 py

1 pz
2 0.50 1.00 0.66 0.75 0.83 0.72

px
1 py

2 pz
2 0.50 0.25 0.66 0.38 0.46 0.47

px
2 py

1 pz
1 1.00 1.00 0.71 1.00 0.86 0.90

px
2 py

2 pz
1 1.00 0.25 0.71 0.63 0.48 0.65

px
2 py

1 pz
2 1.00 1.00 0.71 1.00 0.86 0.90

px
2 py

2 pz
2 1.00 0.25 0.71 0.63 0.48 0.65

Average Performance 0.75 0.63 0.69 0.77 0.72 0.69

In terms of compatibility between devices, H (d1, d2) and H (d3, d2) show a good
performance which achieved an average of 0.77 and 0.72. Finally, between all candidates
of physical devices, a combination of devices px

2 , py
1 and pz

1 or px
2 , py

1 and pz
2 have a

compatibility rate of 0.9, which is very good for implementation of the devices. Therefore,
a service designer can refer to specific products as a recommendation to implement the
design.

A service designer can check the compatibility rate and evaluate the design using a
group of candidate devices. The compatibility rate represents the abstractness level of a
service design. Therefore, the service designer can consider increasing or decreasing the
service design by configuring the device’s constraint. There exists a trade-off between the
level of strictness and abstractness in specifying the service design. Therefore, a service
designer can leverage the trade-off to create a specific design or an abstract design that
can support more devices. However, note that a higher abstraction level can lower the
accuracy of the device specification. This shows the limitation in determining the level of
abstractness of a service design.

7. Implementation of Elgar Platform for Design Once, Provide Anywhere

The concept considers the following three perspectives: [26,27].

• Designer: The service designer role is to design the specification of the service. Spec-
ification includes a list of required logical devices and services, a description of the
service design, and the service’s data and control flow model. The designer selects
the logical device or service required for the service and designs the data control flow.
Register the designed documents in the marketplace and make them available to
manufacturers and users.

• Manufacturer: The device manufacturer produces Elgar Platform-compatible devices.
The compatible devices must be able to communicate with the platform through the
Elgar API. In order to manufacture a connectable logical device, an API connecting
the logical device and the platform is used.

• End-User: The end-user can purchase both service design and devices required
for the implementation of the IoT services from the marketplace. Using the Elgar
Platform, they can implement the in-a-box solution for the required IoT service. When
implementing the service, they download the necessary service design documents
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from the marketplace and connect the purchased logical device using the platform.
The user can adapt the service by inputting environmental parameters.

We developed a tool from three perspectives revolving around this platform. The first
tool is the designer’s tool, and the second is the manufacturer’s tool, and the third is the
end user’s tool.

7.1. Designer’s Tools

There are three tools that designers use. The first tool is the DPN tool for designing
service designs. The designer designs the service behavior with a control flow called Data
Petri Net (DPN) using a DPN tool that represents the input or output of data for DPN. The
designer can set the environmental parameters in the DPN using data nodes. Environment
parameters are entered by the user and set environment variables in the logical device.
Figure 11 shows the DPN tool. The DPN tool is saved in the graph display format GraphViz
and loaded into the Elgar platform. The devices in the service design are selected from the
list of registered devices input by the manufacturer.

Figure 11. Service Design and service implementation screen.

The description includes the device name, type of resource, quantity kind, unit, and
value of measurement range. The sample of Resource Description File (RDF) description
for the device list and its requirement is shown in the following listing:

1<?xml version="1.0" encoding="UTF -8"?>
2<service >
3<info>
4<creator xml:lang="en

">M.Anuaruddin , T.Tsujimoto , N.Yamaguchi , S.Yamaguchi </creator >
5<date xml:lang="en">2018 -12 -11</date>
6<description xml:lang="en

">An IoT service for smart tomato farm.</description >
7<title xml:lang="en">Smart Tomato Farm Service </title >
8<version xml:lang="en">0.4</version >
9</info>
10<device name="Temperature Sensor">
11<type resource="TemperatureSensor" />
12<hasQuantityKind resource="AirTemperature" />
13<hasUnit resource="DegreeCelsius" />
14<hasValue min=" -20" max="200"/>
15</device >
16<device name="Sprinkler">
17<type resource="IrrigationActuator" />
18<hasQuantityKind resource="WaterPressure" />
19<hasUnit resource="LitrePerHour" />
20<hasValue min="0" max="80"/>
21</device >
22</service >
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7.2. Manufacturer’s Tool

A manufacturer tool is a tool for making and referencing ontology used by the device
manufacturer. The ontology is called Elgar Ontology. Elgar Ontology [27] is displayed in
the ontology design tool. Elgar Ontology is based on the IoT-Lite Ontology registered in
W3C [28]. The difference from IoT-Lite is that the logical device function method that can be
expressed by DPN has been expanded. In addition, the entities of QuantityKind and Unit
have been expanded in accordance with this concept. Figure 12 shows the sample ontology
of the IoT system with attributes. The devices own their own attributes specified in the
ontology subtrees. If logical devices are chosen from the subclass of a superclass, it will be
a strict implementation of the device. In the case of a superclass, more physical devices
will be able to fit into the class for implementation.

Figure 12. Ontology tree of the IoT system with attributes.

The manufactured devices utilize an API called Elgar API. The API separates protocols
from the control flow, where the protocols are wrapped in the API wrapper. Therefore,
the manufacturer is free to use any protocols. The API is a library that invokes the basic
function and classes of Elgar API. We can configure the variable settings for specific devices
such as device name, model, device type, quantity type and unit based on the ontology tree.
The address of the broker (central platform server), port number, and time-to-live should
also be defined. The rest of the API components contains the executable function of the
device which are represented by the tasks specified in the service design Sspec configured to
the applications. For example, for an irrigation system, SprinkleWater specifies the function
to execute the sprinkle command based on Irrigation value received from the message
passing. The arguments of the function such as SprinkleWater take the input from a message
passing with a certain label, i.e., Irrigation. This means that Irrigation is received from a
different device that processes the value of Irrigation. Irrigation is specified as input or
output of devices in the service design. The default message passing protocol is based on
the MQTT protocol implementing the publish–subscribe protocol.

7.3. End-User’s Tool

An end-user tool is a tool for registering service design documents. A registration
screen is displayed on the platform designer screen. A Resource Description File (RDF)
file described in Extensible Markup Language (XML) is registered on this screen. The
registered design will be published in the marketplace. The end user’s screen is shown in
Figure 11.

8. Case Study and Discussion

In this section, we give the case study and discussion on the proposed method. We
focus on the following:
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(i) Implementation of service in different environments and evaluating the quality of
service.

(ii) Evaluating the rate of implementable ’things’ for a service design and comparing it to
the conventional method.

8.1. Implementation of IoT System with Environment Parameters

We implemented the Smart Tomato Farm service on the prototype platform and
applied them in different environments. We created a service instance, “Smart Tomato
Farm” from the service design.

For a tomato plant, the amount of water required per day is 3.4 L per plant (area
with 0.5 m2). Since we are targeting 20 plants in an area with 10 m2, a total of 68 L will
be required per day. The devices used in this implementation are a temperature sensor,
humidity sensor, single-type sprinkler, and double-type sprinkler. This includes a custom
scheduler for controlling the sprinkler based on the required amount of irrigation per day.

As an evaluation, we consider the platform in two smart farm environments located
in Japan, as shown in Figure 13. We take Akita Prefecture with low rain volume (shown in
Figure 13a,b) and Kagoshima Prefecture with high rain volume (shown in Figure 13c,d). The
precipitation and humidity data were obtained from the live weather forecasting service
OpenWeather [29]. First, we study the irrigation service of Akita Prefecture. Although
rainfall is low in this region, as shown in the graph on the left, the conventional schedule
does not consider rainfall and device performance, so the average daily irrigation rate was
often above 68 L when it rained. On the other hand, this platform’s scheduling method
was able to achieve an average of 68 L, although the types of devices and their capabilities
are different.

We tested an environment with a lot of precipitation, such as Kagoshima Prefecture.
Although rainfall is low in this region, the average daily irrigation rate was often well
above 68 L. In this implementation, we use a custom scheduler for the irrigation controller.
The traditional scheduler does not consider rainfall and device performance, as shown in
Figure 13a,c. On the other hand, after adapting the schedule on this platform, we achieved
an average of about 70 L, which are as close as the ideal volume required by the tomato
plants as shown in Figure 13b,d. We can see that the water sprinkled value (blue line) does
not exceed the average value (yellow line). Therefore, as long as the required minimum
irrigation is achieved, the high cost of water can be reduced, thus preserving plants’ quality
and minimizing the cost.

8.2. Evaluation of the Design Once, Provide Anywhere Concept

We evaluated our approach by showing the effectiveness of using ontology to ease
the implementation of devices into service design. In our evaluation, we give the rate of
implementable devices using conventional verification and compare the result with the
implementation rate of our approach.

We considered a service design that requires 35 actuators, 80 sensors, 18 tag devices,
and 20 software and services. We first evaluate the number of devices which is imple-
mentable without using our approach. The evaluation is based on the ontology of 120
classes of actuators and 150 classes of sensors, 60 tag devices, and 145 software and ser-
vices, which in total has 475 classes of devices. We use all 35 actuators and 80 sensors, 18
tag devices, and 20 software/services for the evaluation. Therefore, in the conventional
ways where the implementation is strict, the implementation rate of the actuators, sensors,
tag devices and software/services are 28%, 53%, 30%, 69%, and 43% each. The imple-
mentation rate improved to 56%, 75%, 82%, 68.9% and 69.2%. The results are shown in
Figures 14 and 15.
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(a) (b)

(c) (d)
Figure 13. Evaluation on the quality of adaptability for different environments. (a) Smart Farm A implemented without
Elgar Platform; (b) Smart Farm A implemented with Elgar Platform; (c) Smart Farm B implemented without Elgar Platform;
(d) Smart Farm B implemented with Elgar Platform.

Our verification method eases devices’ implementation by checking the subclass in
the ontology and checking the implementation rate. In the evaluation, we assume that
all classes and their subclasses inherit the devices’ behavior in the design. Therefore, we
only check the number of devices that exist in the ontology tree. The device’s behavior is
programmed by the manufacturer and made accessible by the platform through the API
that wraps the embedded program in the devices.

In the case study, we implemented the smart farm service in different environments
and evaluated its quality. We showed that the designed service could adapt to a different
environment where devices with different capabilities but in the same subclass are used.
This shows that the concept allows adaptability to different environmental parameters.
Next, we evaluated the rate of implementable ’things’ for a service design and compared
it to the conventional method. By utilizing ontology, we can create a knowledge-base for
compatible devices. The service designer can decide the implementation based on the
problem stated in Problem 1. By carefully selecting the devices for a design, the designer
can control the trade-off of implementation rate between the number of devices and type
of devices. The implementation rate will increase if the designer selects the higher class,
i.e., the main class. However, selecting the most general classes will make it harder to
define the design for the specific application. In this case, the designer should consider
the scope of the IoT service and carefully review the capability and compatibility during
implementation. On top of that, the ease of implementation of the end-user should also be
considered.
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Figure 14. Evaluation for implementable devices.

Figure 15. Evaluation for implementation rate.

9. Conclusions

This paper proposes a method to ensure compatibility between physical devices for
implementing a service design. The method supports the relaxation of strict implementa-
tion. It allows a set of compatible devices to be implemented instead of specifying specific
devices in the service design. This paper’s main contribution is the formalization of device
constraints using the device’s attributes and a method to check the compatibility between
devices. The method’s characteristic is that a service designer can decide the level of
strictness and abstractness of the design by adjusting the compatibility rate. We showed the
feasibility of the proposed method to achieve the goal of “Design Once, Provide Anywhere”
with an application example. We also evaluated the quality of service of the implemented
IoT service in a different environment using a platform called Elgar.

We showed that we could increase the implementation rate of devices by adjusting
the compatibility rate for a design. We also found that, by abstracting the class of device
types, we can increase the number of implementable devices, making the service design
more universal. Therefore, by allowing more devices to be used in different deployment
environments, the designer does not repeat the design stage. Therefore, this method
reduces the effort and time cost required for designing an IoT service.
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