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Abstract: Work-induced stress is widely acknowledged as harming physical and psychosocial
health and has been linked with adverse outcomes such as a decrease in productivity. Recently,
workplace stressors have increased due to the COVID-19 pandemic. This study aims to contribute
to the literature base in a couple of areas. First, it extends the current knowledge base by utilising
generative additive modelling (GAMs) to uncover the nature of the relationship between workload
(a key workplace stressor) and productivity based on real-world event logs. Additionally, it uses
recursive partitioning modelling to shed light on the factors that drive the relationship between
these variables. Secondly, it utilises a simulation-based approach to investigate the diffusion of
workload-induced stress in the workplace. Simulation is a valuable tool for exploring the effect of
changes in a risk-free manner as it provides the ability to run multiple scenarios in a safe and virtual
environment with a view to making recommendations to stakeholders. However, there are several
recognised issues with traditional simulation approaches, such as inadequate resource modelling
and the limited use of simulations for operational decision making. In this study, we propose an
approach which extracts the required parameters from an event log and subsequently utilises them to
initialise a workload-induced stress diffusion simulation model accurately. We also explore the effects
of varying the parameters to control the spread of workload-induced stress within the network. With
suitable amendments, this approach can be extended to model the spread of disease (e.g., COVID-19),
diffusion of ideas, among other things, in the workplace.

Keywords: process mining; simulation; workload-induced stress; Yerkes–Dodson Law

1. Introduction

Work-induced stress is defined as “the change in one’s physical or mental state in re-
sponse to workplaces that pose an appraised challenge or threat to that employee” [1]. The
impact of workplace stress includes “increased absenteeism, organizational dysfunction,
and decreased work productivity” [1]. Workplace stress has also been linked to higher
levels of alcohol consumption during retirement [2]. A key stressor in the workplace is
the workload and pace of work [3]. Numerous studies have explored the relationship be-
tween workload and productivity. For example, Ref. [4] proposed a quadratic relationship
between arousal (a proxy for workload-induced stress) and performance (see Figure 1).

Other studies have built on and extended this relationship, referred to as the Yerkes–
Dodson law. For example, Ref. [5] describe the widely accepted explanation of the rela-
tionship. The authors posit that when the workload is below the optimal level of arousal
and performance, performers are not as alert and hence do not perform at the optimal
level. However, as the workload increases, so does alertness until the optimum level of
performance is reached. Any increase in workload past this point results in decreased
performance as performers “need more time to process information, to take decisions
and, due to the high level of arousal, might make more mistakes”. They argue for a
“load-based work order release” system which feeds work into the system based on the
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existing workload on the shop floor and posit that this has a positive impact on increasing
work order throughput times. Ref. [6] also explores this relationship utilising a process
mining approach. Process mining describes a set of “techniques exploiting the information
recorded in audit trails, transaction logs and databases” to “discover processes, check
conformance, analyse bottlenecks and suggest improvements” [7,8]. Whilst [6] concluded
that “the relationship described by the Yerkes Dodson law of arousal really exists”, the
study stopped short of demonstrating the existence of the inverse U-shape relationship
arguing that “more sophisticated . . . techniques” were required to confirm this.
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That gap is what the first half of this paper attempts to address. Utilising a couple
of real-world event logs, we build generative additive models (GAMs) to uncover the
nature of the relationship between workload and productivity. GAMs enable us to fit
non-linear relationships to the data of interest and are relatively interpretable. In addition,
we build a couple of recursive partitioning models to shed light on the factors that drive
the relationship between these variables. Thus, this study contributes to the literature
by uncovering the nature of the relationship between these variables and the factors that
drive them.

The value of simulation as a way to rapidly explore the effect of changes in a risk-
free manner has long been understood. However, Ref. [10] highlights several issues with
traditional simulation approaches. Apart from the limited use of “existing artifacts such as
historical data and workflow schemas”, the modelling of process performers is inadequate
(e.g., the incorrect assumption that performers work at a constant speed or the assumption
that performers immediately work on incoming tasks when they are available). To address
these issues, Ref. [11] argues that “to adequately set these parameters and make sure that
processes are modeled accurately, . . . the information available in event logs” needs to be
exploited utilising process mining techniques. Ref. [10] highlights four pertinent types of
data, namely: “event log” which describes historical information about recorded events,
“process state” which represents information attached to cases, “process model” which
describes the sequencing and routing of activities, and the “resource model” which conveys
information about performers, roles, departments, etc.

Extending the link earlier established between workload and stress, the principle of
emotional contagion—the phenomena of having one person’s emotions trigger emotions
and related behaviours in others—has long been accepted [12,13]. More recent studies in
the field of neuroscience have established the neurological basis of these phenomena [14,15].
We posit that as co-workers interact as they execute common activities simultaneously,
stressed workers “infect” non-stressed workers and thus diffuse stress across the workplace.
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To identify a suitable simulation model for the spread of workload-induced stress,
we delve into the field of epidemiological research to examine models for exploring the
transmission of infectious diseases. Ref. [16] propose a “general stochastic framework for
modelling the spread of epidemics on networks”. This approach is an ideal choice for
combining simulation with processing mining as there exist several studies which have
successfully discovered social networks from event logs. For example, Ref. [17] proposes an
approach for discovering social networks from an event log and several metrics based on
potential causality, joint cases/activities, and special event types. They also apply these
concepts to a real-life event log. In [18], the authors build on these and extend the approach
to discover organisational models from event logs.

In the second half of this study, we discover a social (co-worker) network from an
event log and utilise the network properties to initiate a simulation model which explores
the spread of workload-induced stress. We further contribute to the literature base by
proposing a novel approach which investigates the diffusion of workload-induced stress
utilising an epidemiological simulation model initialised with parameters extracted from
an event log. Whilst the focus in this study is the diffusion of workload-induced stress,
with suitable amendments, the model can also be used to explore the spread of disease
(e.g., COVID-19) in the workplace or the diffusion of ideas, amongst other things.

The remainder of the paper is structured as follows. Section 2 defines vital terms built
on throughout the paper and describes the proposed approach, while Section 3 details
the evaluation results of the proposed approach. The penultimate section summarises
the findings and describes the threats to the validity of the study, while the final section
suggests further research areas for extending these.

2. Materials and Methods
2.1. Definitions
2.1.1. Event, Traces, and Event Logs

Definition 1. “Event”. Let ε represents the event universe and T the time domain, A represents
the set of activities, and P represents the set of performers (i.e., individuals and teams).

An event e is a tuple (#case_identifier(e), #activity(e), #start_time(e), #completion_time(e),
#attribute1(e)..#attributen(e)). The elements of the tuple represent the attributes associated with
the event. Though an event is minimally defined by the triplet (#case_identifier(e), #activity(e),
#completion_time(e)), it is common and desirable to have additional attributes such as #performer(e)
indicating the performer associated with the event and #trans(e) indicating the transaction type
associated with the event, amongst others. For each of these attributes, there is a function which
assigns the attribute to the event. e.g., attrstart_time ∈ ε→ T assigning a start time to the event,
attrcompletion_time ∈ ε→ T assigning a completion time to the event, attractivity ∈ ε→ A assigning
an activity label to the event, and attrperformer ∈ ε 9 P, a partial function assigning a performer (or
resource) to events. Note that attrperformer is a partial function as some events may not be associated
with any performers.

An event is often identified by the activity label (#activity(e)) which describes the work
performed on a process instance (or case) that transforms input(s) to output(s).

Definition 2. “Trace”. A trace is a (time-increasing) sequence of events, σ ∈ ε∗ such that each
event appears only once, i.e., for 1 ≤ i < j ≤ |σ|: σi 6= σj and σi ≤ σj.

Definition 3. “Event log”. Let C represent the set of all traces, both full and partial. An event log
is a set of traces L ⊆ C for a particular process such that each event appears at least once in the log,
i.e., for any σ1, σ2 ∈ L : ∀e1 ∈ σ1∀e2 ∈ σ2 e1 6= e2 or σ1 = σ2.

Definition 4. “Processing time”. Let e represent an event, #start_time(e), the start time associated
with the event, and #completion_time(e), the completion time associated with the event. The
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processing time for e., τproc = #completion_time(e)—#start_time(e). It indicates the time taken to
complete processing the event.

Definition 5. “Workload”. Let A represent the set of valid activity labels, W represent a time
window with start, Wstart, end, Wend, and event log L. The workload function is defined as:

workload(#activity(e), Wstart, Wend)→ N

where N is the set of natural numbers {0, 1, 2, 3 . . . }. This denotes the number of instances of a
specific activity present in time window W.

We further define attrcompleted (p, a)→ N ≤ workload for each performer/activity pair to
indicate the number of events (with activity label a) the performer p completed in the given time
window.

Definition 6. “Average processing speed”. Given a set of valid activity labels A, a time window W,
and a performer p, the processing speed is defined by:

s =
Σ τproc : #start_time(ei) ∧ #completion_time(ei) ∈W

completed (p, a)
(1)

This indicates the average processing speed for the performer/activity pair in the given
time window.

2.1.2. Social Networks and Network Models

Definition 7. “Co-worker network”. Let P represent the set of performers, E represents a set of
undirected edges, and φ : E→ {x, y : x, y ∈ P } represent an incidence function mapping edges
to vertices defined as follows:

coworker (x, y)

=


1, if #activity_label(ei) = #activity_label(ej) ∧

[#start_time(ei), #completion_time(ei)] ∩ [#start_time(ej), #completion_time(ej)] > 0

0, Otherwise

(2)

A co-worker graph is an undirected multigraph G = (P, E, φ). For our study, the incidence
function maps an edge when two performers are co-workers as well as the duration of each interaction.
Two performer x and y are considered co-workers if x completes ei, y completes ej, with both
events having identical activity labels and the processing time interval for both events overlaps
(see Figure 2).
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Definition 8. “Network model”. Let G denote an undirected graph representing the co-worker
network, P represent the set of performers. The partnership formation process for the network
simulation model is defined by:

logit [P(Gxy,t+1 = 1|Gxy,t = 0, Gc)] = θ
T
+

δ(g + (z)) (3)

where Gxy denotes the edge between vertices x,y ∈ P, P(G) denotes the probability distribution
of the network, z denotes the observed network, Gc denotes the rest of the network, θ denotes the
conditional log-odds of Gxy as a function of the number of configurations it creates and δ(g) denotes
change statistics that indicate how the count of configurations change when Gxy is toggled from 0 to
1. Note that Gxy is indexed by time and formation at time t+1 is conditional on Gxy existing by
time t [16].

The complimentary edge dissolution process is defined as follows:

logit [P(Gxy,t+1 = 1|Gxy,t = 0, Gc)] = θ
T
− δ(g− (z)) (4)

To illustrate the terms above, consider a process for reporting and remediating defects
to public goods. A snippet of the event log is shown in Table 1. The set of valid activity
labels is as follows: {‘Create Service Request’, ‘Initial Review’, ‘Assign Service Request’,
‘Assign Crew’, ‘Contact Citizen’, ‘Put Service Request On Hold’, ‘Close Service Request’}.

Table 1. Event Log Example.

Service Request ID Activity Start Time End Time Performer

XY4567 Create Service
Request

22/10/2017
18:34

22/10/2017
18:38 Citizen1

XY4567 Initial Review 25/10/2017
10:12

25/10/2017
10:14 Resource1

XY4567 Accept
Ownership

25/10/2017
10:16

25/10/2017
10:17 Resource1

XY4567 Assign Service
Request

25/10/2017
11:26

25/10/2017
11:29 Resource1

XY4567 Assign Crew 25/10/2017 16:01 25/10/2017 16:22 Resource2

XY4567 Contact
Citizen

27/10/2017
11:04

27/10/2017
11:09 Resource2

XY4567 Close Service
Request

27/10/2017
11:45

27/10/2017
11:55 Resource2

XY8910 Create Service
Request

21/10/2017
15:12

22/10/2017
15:20 Citizen2

XY8910 Accept
Ownership

22/10/2017
11:22

25/10/2017
11:25 Resource3

XY8910 Assign Crew 25/10/2017 16:12 25/10/2017 16:32 Resource4

XY8910 Close Service
Request

26/10/2017
12:23

26/10/2017
12:55 Resource4

Figure 2 illustrates the concept of “co-workers” (see Definition 7). We observe that the
processing time interval for #case_identifier(XY4567), #activity(Assign Crew) executed by
Resource2 overlaps by 10 min with the processing time interval for #case_identifier(XY8910),
#activity(Assign Crew) executed by Resource4 (see bold font). Thus an edge is formed be-
tween Resource2 and Resource4 in the co-worker network, and the duration of interaction
(or exposure) is 10 min (see dashed lines).

2.2. Evaluation

In this section, we describe the two sets of analyses performed to address the research
questions of interest in this study. In the first set of analyses, we evaluate the relationship
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between the workload and processing speed to determine whether it displays a quadratic
relationship (as predicted by the Yerke–Dodson law) and if so, under which conditions.
In the second set of analyses, we simulate a network model to investigate the diffusion
of workload-induced stress in a co-worker network. Specifically, we seek to address the
following research questions:

RQ1: Does the relationship between workload and processing speed exhibit a quadratic
relationship as proposed by the Yerkes–Dodson law?

RQ2: If so, when does this relationship hold and when not?
RQ3: Do network simulation approaches facilitate the discovery of successful inter-

ventions to mitigate the diffusion of workload-induced stress?
In the following section, we provide further details about the setup and how we

answer the research questions.

2.2.1. Datasets

Two real-life event logs from the Business Process Intelligence Challenge (BPIC) were
used as follows: BPIC12(W) [19], BPIC17(W) [20]. BPIC 12 contains event log data for a
credit (i.e., personal loan or overdraft) application process at a Dutch financial institution.
BPIC 17 contains data from the same process and institution; however from a different sup-
porting system. These logs were selected as they contained a significant proportion of cases
with both event start (#start_time(e)) and completion (#completion_time(e)) timestamps.
This enabled us to calculate the processing speed for these events

For the simulation exercise, we used a synthetic event log [21] which contains the
details for a repair process. This log was selected as, not only did it contain data which
enable calculation of processing speed, but also information about the role which was used
in the initialisation of the network simulation model.

See Table 2 for a summary of the logs used for the experiments.

Table 2. Event Log Overview.

BPIC 17(W) BPIC 12(W) Repairs Log

Number of events 768,823 170,107 15,486
Number of cases 31,509 9658 1104
Number of traces 10,701 2643 80

Number of distinct activities 8 7 8
Mean trace length 24.40 17.61 14.03

Mean throughput time (days) 21.89 11.68 0.05
Throughput time SD (days) 13.17 12.79 0.01

Domain Financial services Financial services IT Support

2.2.2. Experimental Setup

To investigate the first two research questions, we implemented a function in R
to calculate the daily workload and average processing speed for each performer (time
window start =00:00:00; time window end =23:59:59). We selected this window for the sake of
parsimony and due to the presence of activities in the log which complete late in the day
(e.g., after 23:00). Hence we decided not filter the log to a typical workday (.i.e., 08:0—18:00)
as the observed work pattern did not fit this. We considered calculating the daily workload
and processing speed per performer better to capture the true nature of the demand on
performers. However, we realised that the mean for different activities differed based
on activity complexity; as such, combining all the activities performers had completed
each day was likely to distort the average processing speed. As such, we adopted the
methodology used in [6] and calculated the total daily workload for each activity, the
number of activities each performer completed daily, and the average processing speed
per performer/activity. We also calculated the cumulative workload for each activity and
the number of activities each performer completed over the event log. We subsequently
fitted a generalised additive model (GAM) to uncover the relationship between total daily
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workload and processing speed. We smoothed the GAMs with the restricted maximum
likelihood method as this is widely acknowledged as most likely to produce stable and
reliable results. We created a GAM model for each performer/activity combination with
the average processing speed as the dependent variable and the total daily workload as the
independent variable. In addition, we extracted relevant statistics from each model such
as the expected degrees of freedom (edf) which indicates the complexity of the model’s
smooth, and the p-value, amongst others.

To answer the last research question, we created a social network from the co-worker
network of performers in the Repairs event log. We subsequently extracted the following
network properties from the co-worker network: the number of edges and vertices in the
network, the number of stressed edges, the number of homogenous edges, the number
of concurrent interactions, and the mean duration of interactions. Each performer was
assigned an appropriate state (stressed/not stressed) based on whether their daily workload
completed fell within the final quartile. As established earlier, based on findings in the
literature, we posit that a stressed performer (i.e., infected) can spread stress through the
co-worker network by “infecting” non-stressed performers via the process of emotional
contagion. Borrowing from the field of epidemiology, we created a susceptible-infected-
susceptible (SIS) model to simulate the diffusion of stress across the worker network.
We chose this model (as opposed to a susceptible-infected-recovered (SIR) model which
assumes immunity once recovered, for example) as a performer is again susceptible to
workload-induced stress after recovery. The extracted co-worker network properties were
used to initiate the SIS model. We concluded by executing multiple runs of the simulation
to determine the effect that varying the infection probability and recovery rate had on the
number of performers who were stressed at the end of the simulation run.

3. Results
3.1. Experimental Results

For the first set of results, to explore the relationship between workload and perfor-
mance, we filtered for the GAM models which were significant at the 90% confidence level.
Table 3 shows the distribution of the edf for the models. We observed that across both
datasets, 43% of models had an edf of 1 indicating a linear relationship, 18% an edf of
2 indicating a quadratic relationship, and 40% an edf greater than or equal to 3, indicating
a more complex smooth (see Figure 3a–d for example plots). We noted that there is partial
support for the inverse U shape in the literature as even the more complex smooths (i.e.,
edf ≥ 3) demonstrate this relationship. Note that the scale of the plots are shifted by the
value of the intercept to aid interpretability. Hence we can predict the output assuming
other variables are held at their average value. For example, for plot 3b, the predicted
productivity for User 11009 performing activity “W_Completeren aanvraag” at the daily
workload of 300 cases is 10 cases per day.

We explored further to uncover the factors which drive the nature of the relationship
between the average processing speed and the daily workload. Borrowing from the
approach adopted in [22], we built a couple of recursive partitioning model (rpart) from
the GAM model data. The rounded edf for each model was selected as the classification
target and the cumulative workload, activity label, and average processing speed were the
independent variables. Figures 4 and 5 show the binary tree representation of the model.
We expanded the GAM models to include all those significant at the 80% confident level to
broaden the dataset.

Table 3. Distribution of effective degrees of freedom (edf) for generalised additive models (GAMs).

1 2 ≥3

BPIC 12 (W) 44% 17% 39%

BPIC 17 (W) 41% 18% 41%
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We observed that for both datasets, the cumulative total workload or the cumulative
number of cases completed by a performer were the factors that influenced whether the
Yerkes–Dodson law is obeyed. Examining the rules that determine the classification for both
datasets, it appears that that the Yerkes–Dodson law is obeyed when a threshold value is
surpassed; otherwise it is not. For the cumulative number of cases worked, the threshold
value was the 28th percentile. Given that this attribute is a proxy for the individual experience
of the performer, the results would seem to suggest that less experienced performers tend to
obey the Yerkes–Dodson law. The other attribute is a proxy for the collective experience of
the performers. Given that the threshold value is 32nd percentile, the results would seem to
suggest that a less experienced workforce tends to obey the Yerkes–Dodson law.

These findings potentially have theoretical and practical implications. From a theoreti-
cal perspective, it potentially sheds light on the conditions under which the Yerkes–Dodson
law applies and adds to the empirical basis on which the law is built. From a practitioner
perspective, the findings have implications on work design, for example, in the design
and implementation of an effective load-based work order release system. However, we
recommend further research be undertaken to validate this with additional datasets and to
test the generalisability of these results.

For the second set of results, we examined the effect of varying the infection probability
and recovery rate on the number of performers who were stressed (i.num) at the end of
the simulation run (time step 500). Figure 6 shows the plot of incidence, and recoveries for
infection probability = 0.75 and recovery rate = 0.5. Table 4 shows the percentage of the
workforce who was stressed at the end of the simulation run as the infection probability
and recovery rate were varied.
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Table 4. Stress prevalence as a function of infection probability and recovery rate

Infection
Probability 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75 1 1 1 1

Recovery Rate 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1

% Stressed
(at t = 500) 76 50 25 0 74 50 25 0 78 49 28 0 75 50 25 0

We observed that the recovery rate had a more significant effect on reducing the
prevalence of stress in the workplace, such that for all values of infection probability,
at recovery rate = 1, the prevalence of stress in the workplace is eliminated. From a
policy perspective, this finding potentially has implications for the allocation of stress
management and intervention resources. Whilst intuitive reasoning might indicate that
allocating more resources to interventions designed to reduce the infection probability
are best (e.g., by making the workforce more resilient to “infection” by stress), the results
would appear to indicate that interventions designed to increase the recovery rate (e.g.,
by engaging in moderate exercise, incorporating mindfulness techniques, etc.) are more
effective [23,24] in reducing the prevalence of stress in the workplace.

It is worth noting that while there is a third model parameter that can be varied (act
rate, which measures the mean number of interactions between co-workers), we chose not
to vary this as we believe the adverse impact of reducing interaction (resulting in increased
isolation and reduction in knowledge diffusion) outweighs any advantages gained by
reducing stress prevalence

3.2. Threats to Validity

With regards to the first part of the study, we utilised two real-world datasets. These
were the only real-world data that we were able to identify which contained the start
and end timestamps for each activity, which was required to calculate the processing
time. However, the relatively low number of datasets adversely impacts the ability to
generalise these results. We would recommend repeating these experiments with additional
real-world data sets to validate the results further

In addition, we highlight the propensity of GAMs and recursive partitioning models
to overfit data as a limitation to these models as well as the added limitation that GAMs lose
predictability when the independent variable is from a range outside of the observed data.

For our simulation model, we utilised a constant quantile applied against the total
completed caseload for each performer to determine the stress status for the sake of
parsimony. However, based on the results on the first part of the study, we realise that the
determination of the stress status of each performer may differ (i.e., linear, quadratic, etc.)
with different inflection points. We do not believe this significantly affected the results of
the simulation as we visually examined the GAM plots for the performer/activity pairs
to determine the optimal value of the appropriate quantile. However, we recognise that
dynamically determining the optimal value for each performer/activity pair would be best.

Finally, our simulation model explored the effects of a single stressor (i.e., workload)
in isolation. We recognise that in the real-world, multiple stressors exist in the workplace
and they are likely to be in play simultaneously [3]. Our model does not consider these
non-workload stressors and the interrelationships between them which is likely to impact
the performance of the simulation model in a real-world setting (a known limitation of
simulation models).

4. Conclusions

This study has attempted to uncover the nature of the relationship between workload
(a key workplace stressor) and productivity from a couple of real-world event log utilising
GAMs. We further explored the factors which drive this relationship. Whilst we found
partial evidence for this law in the event log, this was in the minority, with the majority
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of the relationships being linear. We also found that the cumulative total workload or the
cumulative number of cases completed by a performer are factors that influence whether
the Yerkes–Dodson law is obeyed, and that this happened when a threshold value was
surpassed; otherwise it is not.

In the second part of the paper, we utilised a simulation-based approach to investigate
the diffusion of workload-induced stress in the workplace. We found that in terms of
stress management intervention, increasing the recovery rate yields better results vis-à-vis
reducing the resilience of the workforce to stress.

In terms of further research, we propose several areas for further exploration. Firstly,
we recommend that the study be repeated with different datasets and methodologies with
a view to replicating the results and triangulating the conclusions. This would shed some
more light on the generalisability of the results.

Secondly, in the event the thresholds we identified are replicated in further studies,
we propose an exploration of why the identified factors (cumulative total workload or the
cumulative number of cases completed by a performer) impact the Yerkes–Dodson law
and why these thresholds occur where they do.

Thirdly, we propose the development of more sophisticated stress simulation models.
For example, if the GAM model indicates a non-linear relationship between the workload
and productivity, the simulation model could dynamically determine the inflection point
at which productivity reduces. In addition, the model could simulate the impact of the
prevalence of stress on variables of interest (e.g., on overall and individual productivity).
Additionally, the model could factor in additional stressors such as the pace and variety of
work and shift patterns—all of which can be derived from the event log—and model the
interrelationships between them. Finally, we propose adding spatial context to the event
log. This would enable us to calculate the distance between performers and better model
the interaction between them. We can subsequently utilise these interactions to model the
spread of information, disease, etc. in the workplace.

In future work, we intend to attempt to tackle a number of these opportunities.
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