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Abstract: This paper studies the use of three different approaches to reduce the dimensionality of a
type of spectral–temporal features, called motion picture expert group (MPEG)-7 audio signature
descriptors (ASD). The studied approaches include principal component analysis (PCA), independent
component analysis (ICA), and factor analysis (FA). These approaches are applied to ASD features
obtained from audio items with or without distortion. These low-dimensional features are used as
queries to a dataset containing low-dimensional features extracted from undistorted items. Doing so,
we may investigate the distortion-resistant capability of each approach. The experimental results
show that features obtained by the ICA or FA reduction approaches have higher identification
accuracy than the PCA approach for moderately distorted items. Therefore, to extract features from
distorted items, ICA or FA approaches should also be considered in addition to the PCA approach.

Keywords: PCA; ICA; FA; dimension reduction; MPEG-7 audio signature descriptor; audio identification

1. Introduction

It is very useful for many applications to reduce the dimensionality of data for higher
processing speed, if the dimension-reduced data, also called features, can faithfully preserve
important information from the original data. For example, in the feature-based object
recognition problem [1], one important step, known as the feature extraction step, is to
find a set of low-dimensional features to represent the underlying high-dimensional image.
Doing so can significantly reduce the recognition time as well as storage space.

Another application of performing dimensionality reduction is to increase the pro-
cessing speed. For example, a music identification system can significantly speed up the
identification speed with the multi-resolution approach [2,3]. In this approach, a set of
low-dimensional features is derived from the higher-dimensional features of a query audio
clip. Based on the low-dimensional features, a small set of candidate objects are identi-
fied. Next, high-dimensional features are used to pick the best match among the chosen
candidates. By comparing only a small set of candidates with high-dimensional features,
the computational cost is dramatically reduced. However, to maintain high recognition ac-
curacy, the low-dimensional features should have sufficient discriminant power. Thus, it is
important to retain more useful information while performing dimensionality reduction.

In many applications, we use the short-time Fourier transform (or other time-frequency
transformations) to observe the frequency characteristics of the signal along time [4] for a
piece of signal, such as speech, music, or seismic wave. The computed coefficients, known
as spectrogram, are a type of spectral–temporal features. Usually, this type of feature
is arranged in a block (matrix) form, with one axis representing time and the other axis
frequency. In this paper, the spectral–temporal features under consideration are the ISO’s
(International Organization for Standardization) MPEG-7 (motion picture expert group)
audio signature descriptors (ASD), which are shown to be effective for music identification
(also to be covered in Section 2) [2,3,5].
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The independent component analysis (ICA) [6,7] has been shown to effectively solve
the cocktail-party problem, where several speech signals are mixed together. Recently,
it is also used as a processing step in the recognition of EEG (Electroencephalography)
waves [8,9]. Due to the underlying algorithm, components decomposed with ICA have
the sign, scale, and permutation ambiguities. Therefore, we are unable to know which
independent component has higher energy. With the scale ambiguity, it is not possible
to choose the ICA-decomposed components based on component energy to perform
dimensionality reduction. Therefore, we suggest an approach to walk around this difficulty
and show the experimental results in this paper.

For many instances, we would like to investigate the factors affecting the observation.
While this type of analysis can be carried out by the careful design of experiments, it can
also be accomplished statistically by using factor analysis (FA). According to Reference [10],
“ . . . factor analysis is to describe the covariance relationships, if possible, among many variables
in terms of a few underlying, but unobservable, random quantities called factors”. FA has many
applications, such as anomaly detection [11,12]. Despite its popularity, only a few papers
study the use of this method as a general dimensionality-reduction technique. In this
paper, we will present our results of using FA as a reduction method and show the relative
strength and weakness of this approach.

Although a complete survey of available dimension-reduction methods is available in
the literature [13], unfortunately, the survey does not contain any quantitative comparison
among the approaches. Previously, we have studied some dimensionality-reduction meth-
ods for MPEG-7 ASD, such as PCA (principal component analysis) [2,3]. In these papers,
we use PCA, but not ICA or FA, to decompose the feature matrix, and then keep large
components and discard smaller ones. Unfortunately, if an audio item is distorted, such as
an air-recorded item, the distortion may also be present in large components. Therefore,
the dimension-reduced features cannot faithfully preserve important information in the
feature matrix. Previously, we have applied ICA for this problem and the results show
that the ICA has better accuracy [14]. In this paper, we extend the work of Reference [14]
to include FA in the comparison and to provide a detailed explanation for each of the
compared approaches. To the best of the author’s knowledge, we have not read any paper
conducting experiments with a similar comparison. In addition, although the experiments
apply reduction techniques only to the MPEG-7 ASD, the presented approaches, never-
theless, are general approaches and can be easily applied to other types of features and
application scenarios.

This paper is organized as follows: Section 2 covers the basics of the MPEG-7 features,
which will be used in the experiments as the full-dimensional data. Section 3 describes
how to perform dimensionality reduction with the PCA, ICA, and FA methods. Section 4
covers experiments and results. Finally, Section 5 is the conclusion.

2. Music Identification and MPEG-7 Audio Signature Descriptors
2.1. Music Identification

Music identification [2,3,15] is a technique to identify an audio clip from a large set
of soundtracks based on the signal waveform. Therefore, even if the same person sings
the same songs two times, these two audio works are considered as different. In terms
of copyright protection, this distinction is actually an advantage, as there are many cover
songs available in the market. Other applications of music identification also include
query-by-exact example, broadcasting program monitoring, and so on [2].

Although the waveforms of different soundtracks are different, it is not possible to
perform a comparison based on PCM (pulse code modulation) samples in the soundtracks
because the computational cost is way too high [2]. Therefore, instead, we perform com-
parison based on some unique features extracted from the waveform. There are many
proprietary schemes available to extract the features, as Shazam [16]. Other than the propri-
etary fingerprinting schemes, the ISO’s MPEG-7 audio standard also provides high-level
tools to compute audio features suitable for music identification, known as audio signature
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tool. This tool computes ASD for each segment of the audio waveform. It is shown that the
descriptors have satisfactory accuracy when used for music identification [2,3]. Unfortu-
nately, as the dataset contains such a huge number of soundtracks, directly using the ASD
would still require a lot of computation.

To cope with the high computational complexity, multi-resolution detection has been
proposed [2], as shown in Figure 1. Firstly, low-resolution features are used to find a list
of possible candidates. Second, the full-resolution features (fingerprints) are used only
to compare the candidates in the list. By doing so, the computational cost can be greatly
reduced.
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 Figure 1. A multi-resolution approach [2].

2.2. Overview of MPEG-7 Audio Signature Descriptors

The MPEG-7 audio standard has many tools for audio feature extraction, audio
identification, and audio recognition [5]. Some of the audio features are directly derived
from the waveform of the audio signal. These low-level features can be used standalone
or to construct high-level descriptors. The high-level descriptors may be used for more
complicated tasks such as musical instrument recognition. In this paper, we use the ASD,
one of the high-level descriptors, as the full-dimensional features to be reduced. To be
complete, the computational steps of the ASD computation are given below.

• Perform time to frequency conversion. This step uses 4096-point FFT (fast Fourier
Transformation) to obtain the spectral components of every segment of windowed
audio samples. The chosen window is a Hamming window. The default window
duration is 90 ms with 30 ms hopping step.

• Compute the flatness measure for each spectral band. A spectral band has a bandwidth
of (1/4) octave, starting from 250 Hz and ending at 16 kHz. The flatness measure is
the ratio of the geometric average to the arithmetic average of spectral components in
a band.

• Computing the statistics of the flatness measure. Once the flatness measure is obtained,
the final step is to compute the average and standard deviation (SD) of the measures
over a period of time for each spectral band. The obtained average and SD values are
called audio signature descriptors. In this paper, we only use the average values and
discard the SD values in the experiments.
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After the above computational steps, the obtained ASD can be represented in a matrix
form, as depicted in (1), for a piece of 14-s audio. In the matrix, the horizontal direction
represents frequency and the vertical direction represents time:

A =

 a1,1 · · · a1,24
...

. . .
...

a29,1 · · · a29,24

 =

 ↑ ↑
a1 · · · a24
↓ ↓

 (1)

3. Dimensionality Reduction Approaches to Be Compared
3.1. Overview of 2-D PCA Computation

PCA has been widely used for reducing the dimensionality of features for many
years [11]. In this paper, we have features arranged in a 2-D array form, not in a vector
form. Therefore, we need to conduct the PCA reduction two times: first time in the vertical
direction and the second time in the horizontal direction. For illustration purposes, we use
the entire feature matrix to explain the computation steps. Suppose that the training dataset
contains A(1), · · · , A(N) feature matrices. To conduct PCA, we follow [17] and treat each
column of A(k) as one measurement from a trail. By combining all A(k) together, we have
the following matrix:

B =
[

A(1) · · · A(N)
]
=

 ↑ ↑
b1 · · · b24N
↓ ↓

. (2)

In this representation, each column vector bk is one vector subject to be mapped to a
lower-dimensional space. The PCA computational steps are as follows:

(a) Remove means from the dataset. Let b be the vector of average for all bk. We compute:

xk = bk − b (3)

to remove means. Note that it is not needed to make unity variances for elements in
xk.

(b) Construct X matrix as:

X =

 ↑ ↑
x1 · · · x24N
↓ ↓

. (4)

(c) Decompose XXT matrix as:
XXT = VΛVT , (5)

where T denotes transpose, Λ is a diagonal matrix containing eigenvalues of XXT

arranged from large to small, and:

V =

 ↑ ↑
v1 . . . vp
↓ ↓

 (6)

is an orthonormal matrix that contains the corresponding eigenvectors with p = 29
(d) Use only p = 3 in (6) to perform reduction and denote the resultant matrix as Ṽ.

Then, compute dimension-reduced matrix R, size of 24N × 3, from full-dimensional
features X by:

R = XTṼ, (7)

(e) After this step, the reduction in row direction of A(k) is complete. The next step is to
perform a reduction in the horizontal direction. To do so, we treat RT as X in (5) and
repeat the computational steps one more time to complete the 2-D reduction.
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In our previous paper, we have shown that a variation of 2-D PCA is slightly bet-
ter. Thus, in the experiments, we use a slightly different method to compute the low-
dimensional features [3].

3.2. ICA Reduction Technique
3.2.1. Introduction to ICA

The basic ICA algorithm consists of three main steps: centering, whiting, and maxi-
mizing non-Gaussianity [6,7]. Suppose that each ak in (1) is one vector subject to ICA, then
the ICA is computed as follows.

(a) Centering: Centering is to remove the average from the received samples. This step is
equal to (3) in PCA.

(b) Whitening: This step is used to remove the correlation between components through
the covariance matrix. Its computational steps are similar to that of the PCA except a
scaling. Specifically, we use:

1
24N − 1

XXT = VDVT (8)

to compute the diagonal matrix D containing eigenvalues. Then:

zk = VD−
1
2 VTxk (9)

is the resultant vector after the whiting step. It can be easily verified that if zk
is an observation (outcome) of a random vector z, then E

{
zzT} = I, where E{·}

is the expectation operation [6]. Note that (9) is used only to compute whitened
measurements zk. Further steps are necessary to obtain the transformation matrix to
compute the final results.

(c) Maximizing non-Gaussianity: Since we assume that the components of interests
are not Gaussian distributed, it is natural to maximize non-Gaussian components.
There are two widely used methods to measure the level of non-Gaussian, namely,
kurtosis and negentropy. Please note that maximizing non-Gaussianity is not the
only approach to perform ICA. Another widely used criterion is minimizing mutual
information [7].

The kurtosis of a random variable x is computed as:

Kurt(x) = E
{
(x− µ)4

}
− 3·E

{
(x− µ)2

}2
, (10)

where µ is the mean value of x. According to (10), a Gaussian random variable has a
kurtosis of zero. Therefore, the procedure of maximizing non-Gaussian is to maximize the
absolute value of kurtosis. Specifically, let:

y = wTz, (11)

where the vector w is a transformation vector. Note that we use the random vector z in (11)
because (10) involves the expectation operation. The objective function in this case is:

J1(y) = |kurt(y)|. (12)

The problem now becomes maximizing J1(y) with respect to a vector w with ‖w‖ = 1
for all observations of z, totally 24N vectors. If more than one component is needed,
we can compute multiple w vectors to form a transformation matrix W. This constraint
optimization problem can be solved numerically, say, by fixed-point iteration.

The entropy of a random variable x with a density function f (x) is computed as:

H(x) = −
∫ ∞

−∞
f (x) log f (x)dx. (13)
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It can be shown that the Gaussian distribution has the highest entropy among all
distributions. Based on (13), we define the differential entropy, or negentropy, as:

J2(x) = H(xG)− H(x) ≥ 0, (14)

where xG is a Gaussian random variable with the same variance as x. The goal of maximiz-
ing non-Gaussian can then be achieved by maximizing the negentropy. To use this concept,
we let the objective function be J2(y), where y is given in (11), and want to maximize J2(y)
with respect to the vector w. In the practical implementation, (14) is difficult to compute.
Therefore, we use an approximate equation, such as:

J2(y) = [E{G(y)} − E{G(v)}]2, (15)

where v is zero-mean, uni-variance Gaussian random variable and G is a function chosen
from some candidate functions, such as:

G(y) =
1
α

log cosh(αy), (16)

where α is a constant. The optimization problem in (15) can also be numerically solved by
the fixed-point iteration algorithm.

3.2.2. Proposed ICA Reduction

As mentioned previously, the components obtained by the ICA has scaling ambiguity.
Therefore, we are unable to directly use the ICA components with large energy as the
dimension-reduced features. After second thoughts, we decide to reduce the dimensionality
in the whitening step, detailed as follows:

1. Perform the centering and whitening steps. Simply following (8), we have:

V =

 ↑ ↑
v1 · · · v29
↓ ↓

. (17)

2. Keep only eight components in V to reduce the dimensionality. As before, the eigen-
values in (8) are arranged from large to small. Thus, we have a 29 × 8 matrix:

Ṽ =

 ↑ ↑
v1 · · · v8
↓ ↓

. (18)

3. The next step is supposed to compute the whitening version of xk. However, we are

unable to use Ṽ in the VD−
1
2 VT term because Ṽ is not a square matrix. To overcome

this problem, we follow (24) in the proposed FA approach (to be discussed later),
which in the present form is:

z̃k =
(

ṼD̃
1
2

)T
xk = V̂xk, (19)

where D̃ is a 8 × 8 diagonal matrix containing the eigenvalues associated with vj in
(18), and z̃k has a size of 8 × 1. Recall that there are 24 xk vectors derived from one
feature matrix A.

4. Perform the maximizing non-Gaussianity step. In this step, eight w vectors are
obtained to form a transformation matrix W (size of 8 × 8). Then, compute:

yk = Wz̃k (20)
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5. Treat yk as xk and repeating the whitening procedure again. However, this time we
keep only one vector in (18) to compute the final low-dimensional features.

The sizes of matrices involved in the proposed ICA approach are given in Figure 2.
The V̂ matrix is computed from (19) and the W matrix is from non-Gaussian step. Recall
that the computation of V̂ is closely related to the PCA approach. Therefore, the ICA
reduction is an extension of the PCA approach, with the maximum non-Gaussian step in
between two PCA computations.
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3.3. Overview of 2-D FA Computation
3.3.1. Introduction to Factor Analysis

Factor analysis includes exploratory factor analysis and confirmatory factor analy-
sis [18,19]. In this paper, we only consider exploratory factor analysis [20]. In addition,
there are many different types of factoring, such as principal component analysis and
canonical factor analysis [12]. We use the principal component analysis method in this
paper. This type of factor analysis is also called principal component factor analysis [12].

Suppose that there are m observable random variables, x1 to xm, with respective mean
values of x1 to xm under investigation. Furthermore, suppose that there are unknown
constants `i,j with unobservable random variables ej with i from 1 to m and j from 1 to n,
where n is less than m. We then can have the following expression: x1 − x1

...
xm − xm

 =

 `1,1 · · · `1,n
...

. . .
...

`m,1 · · · `m,n


 e1

...
em

+

 ζ1
...

ζn

, (21)

where ζ j is random noise. Sometimes, we write (21) in short form as:

x− x = Le + ζ. (22)

It is a common practice to assume that e and ζ are independent, ej = 0, and the
covariance matrix of e is the identity matrix. In addition, all random variables in ζ are inde-
pendent with finite variances. To find any solution to (22), we add additional constraints to
obtain [13]:

Cov(x) = LLT + H, (23)

where Cov(•) denotes the covariance matrix and H is the covariance matrix of ζ. As ζ
contains independent random variables, H is a diagonal matrix. The computed e is called
the factors and L is called the loading matrix.



Information 2021, 12, 1 8 of 12

3.3.2. Proposed FA Reduction

To use FA, we need to find the loading matrix L. By using the principal compo-
nent factor analysis [8], the steps to compute the proposed FA reduction approach are
given below.

(a) Follow the ICA computation in (17) to obtain V matrix, and then choose p components
to construct Vp matrix.

(b) Construct the loading matrix L̂ by:

L̂ =

 ↑ ↑√
λ1v1 · · ·

√
λpvp

↓ ↓

. (24)

In the simulation, we use p = 3.
(c) Compute the factor scores for one vector xk by:

fk =
(

L̂T L̂
)−1

LTxk. (25)

Then, the obtained fk is a dimension-reduced vector in one direction (i.e., time infor-
mation is lost).

(d) To further reduce the dimensionality of the features in another direction, we perform
the same steps a second time by treating fk as xk.

When completing the procedure, we have an 3 × 3 matrix as the factor scores for one
feature matrix A. In the simulation, we discard the element of (3, 3) and use the rest of
8 elements.

4. Experiments and Results
4.1. Experimental Settings

The experiments were carried out by computer simulations. To do so, we collected 750
soundtracks with various genres from different CD titles. The genres of the soundtracks
included classical music, piano solo, soft music, pop music, and so on. The duration of each
excerpted soundtrack was 30 s. These soundtracks served as the reference (database) items.
Next, testing (or query) items with a duration of 15 s were excerpted from the reference
items with random starting points. We used random starting points to simulate the actual
recording situation. These items were referred to as the original testing items. The original
testing items were subject to some widely encountered distortion attacks, such as audio
compression and recording, to be described below.

To evaluate the detection accuracy after audio compression, we encoded the original
test items with MP-3 (MPEG-1 layer 3) [21] in 192 kbps (kilo bit per second) and 96 kbps
bitrates, respectively. As the original test items were stereo audio, they were encoded in the
joint stereo mode. Then, the compressed items were decoded to PCM items. These items
were downmixed from stereo to mono before testing.

To further investigate the identification accuracy under the actual recording envi-
ronment, we also collected recorded items. Specifically, we played the original test items
with a notebook and recorded the audio signal through two different paths, as shown in
Figure 3. In the first path, the audio output port of the notebook is directly connected
to the audio input port of a desktop computer. Thus, the signal-recording path contains
a digital-to-analog converter, an analog-to-digital converter, and associated anti-aliasing
and reconstruction filters. The obtained testing items are called wire-recorded items in
the following. In the second path, the audio item is played back through a loudspeaker,
and the acoustical signal is recorded by a microphone. The test items recorded with the
microphone are referred to as the air-recorded items. Another set of testing items are
obtained by adding −20 dB and −10 dB AWGN (additive white Gaussian noise) to the
original testing items. The noise energy is relative to the signal energy.
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The reason that we used both wire and acoustic recordings is to study the impact of
the distortion sources. For wire-recorded signals, the distortion is mainly due to the signal
processing blocks inside the personal computer, such as the anti-aliasing filter and the
analog-to-digital converter. Thus, the amount of distortion may be reasonably small. For
the air-recorded items, the distortion sources include the loudspeaker distortion, the room
impulse response, the ambient (environmental) noise, and possibly the microphone re-
sponse. When compared with the wire-recording items, it is reasonable to guess that
air-recorded items have much higher distortion.

Before conducting the identification task, the reference items and all sets of testing
items were converted to MPEG-7 ASD. To have the highest possible accuracy, the high-
frequency bands (higher than 4 kHz) were removed before reduction [2,3]. These descrip-
tors are referred to as full-dimensional (FD) features. Next, low-dimensional features were
obtained from the FD features by using the PCA, ICA, and FA approaches mentioned in
Section 3. Finally, the low-dimensional features were presented as queries to the database
as the testing items. Recall that the database contains only undistorted reference items.

The identification of a query item is carried out based on similarity, which is the
Euclidean distance between a reference item and the query item. From Figure 1 we know
that whether a query item is inside or outside the database is determined by using FD
features, therefore, all LD query items are assumed to be excerpted from the reference items.
The performance measure of the reduction approaches is based on accuracy. A candidate list
is constructed based on the first i-th shortest distances. For example, the 15-th list contains
15 song titles. If the test item is actually in the list, the item is called correctly identified.
By doing so, we can compute the accuracy. Recall that the low-dimensional features
are used only to find candidates in the multi-resolution approach, and full-dimensional
features will be used to identify the test item among the candidates. Thus, practically it
is more important to consider the accuracy in the, say, 15-th match than in the 1-st match.
Furthermore, in the present application, it is not so much useful to compute the average
ranking for a method.

4.2. Comparison between Kurtosis and Negentropy Criteria

Because there are two widely used criteria to maximizing non-Gaussianity in comput-
ing ICA, we would like to know if these two have comparable performance. We know that
a query item is more difficult to identify if it has some distortion. To this end, we compute
the low-dimensional query items using these methods for test items that undergone MP-3
compression. The accuracy between the kurtosis and the negentropy approaches is given
in Table 1. In the table, the accuracy is computed as:

Acc =
Ni−th
Ntotal

, (26)

where Ntotal is the total number of test samples, and Ni−th the number of test samples
within the i-th shortest distances. The results show that the negentropy function is not as
good as the kurtosis one, especially in 1-st match. Therefore, we will drop the negentropy
approach from further experiments and will only use the kurtosis criterion in the following
experiments.
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Table 1. Identification accuracy between kurtosis and negentropy in ICA.

Distortion i-th Match Kurtosis Negentropy

192 k MP-3
1 94.0 74.9

15 99.9 98.0

96 k MP-3
1 91.6 66.4

15 99.7 97.5

4.3. Comparison between Various Approaches

The identification accuracy for the examined reduction methods is presented in Table 2.
In the table, the FD column means the query items use full-dimensional features (only re-
moving high-frequency components, as mentioned previously). This accuracy determines
the accuracy upper bound of the multi-resolution approach. Based on the accuracy in the
FD column, we know that it is easy to identify MP-3 compressed items. For air-recorded
or wire-recorded items, the accuracy may be marginally acceptable, depending on the
applications. For a query item severely impaired by white noise (−10 dB), the MPEG-7
ASD does not provide enough identification capability.

Table 2. Identification accuracy for various approaches.

Distortion i-th Match FD PCA ICA FA

Original 1 100.0 99.3 94.3 95.5
15 100.0 99.9 99.9

192 k MP-3
1 100.0 99.1 94.0 95.5

15 100.0 99.9 99.9

96 k MP-3
1 100.0 90.1 91.6 93.5

15 99.6 99.7 99.9

Wire Rec
1 97.5 75.2 75.6 75.7

15 89.9 91.3 91.2

Air Rec
1 93.6 26.9 44.3 45.2

15 63.6 77.5 76.9

−20 dB AWGN
1 95.3 19.3 39.5 37.3
15 44.0 69.9 67.6

−10 dB AWGN
1 45.7 1.87 6.67 5.5
15 8.67 23.6 17.6

The results show that the PCA approach has a slight advantage if the test item is
distortionless (original) or only lightly distorted (192 k MP3). On the other hand, if the
distortion is moderate to heavy, the PCA approach does not perform well. Taking the
air-recorded items as an example, the ICA-based method has an accuracy of 77.5% in the
15-th match, whereas the PCA approach has only 67.6% accuracy. The accuracy difference
is also very large for items with −20 dB noise.

When comparing the ICA and FA approaches, we notice that both have comparable
performance. For heavily distorted items (−10 dB AWGN), the ICA is slightly better.
However, for such test items, both approaches have very poor performance. Therefore,
practically speaking, either ICA or FA approach is suitable for moderately distorted items.

When examining the accuracy of wire-recorded items, we notice that the accuracy of
FD features is not as high as expected, such as 99.5%. In contrast, the FD features have
100.0% accuracy for 96k MP-3 items. In a sense, it indicates that the signal processing
blocks along with the wire recording path significantly affect the identification accuracy of
MPEG-7 ASD. Therefore, this type of descriptors is not very robust to the wire-recording
attack.

Although the air-recorded items suffer from many types of distortion, their FD ac-
curacy is higher than expected (considering we use only the 1-st match). On the other
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hand, the studied approaches can only provide moderate robustness toward this type of
distortion. Therefore, for this type of distortion, better reduction techniques need to be
developed.

4.4. Discussion

When comparing the computational steps of PCA, ICA, and FA, we know that they
are all based on PCA. However, ICA and FA do not directly use the eigenvector matrix
Ṽ to compute dimension-reduced features. Instead, ICA has a procedure to maximize
non-Gaussian in order to find the transformation matrix. Similarly, FA uses the pseudo
inverse as the transformation matrix. Either method seems to be more robust to a certain
level of distortion. Therefore, we conclude that directly using PCA may not be sufficient in
terms of retaining important information for distorted items. Consequently, using ICA or
FA reduction methods becomes a better solution.

5. Conclusions

This paper compares three methods for reducing the dimensionality of a type of
spectral–temporal data, called MPEG-7 ASD. The simulation results show that the PCA
reduction method cannot effectively preserve important components for distorted items.
On the other hand, ICA and FA reduction approach can better preserve important informa-
tion of moderately distorted items. In conclusion, to extract low-dimensional features from
distorted spectral–temporal data, the ICA or FA-based approaches are better choices than
the PCA approach.
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