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Abstract: Intervertebral disc (IVD) localization and segmentation have triggered intensive research 

efforts in the medical image analysis community, since IVD abnormalities are strong indicators of 

various spinal cord-related pathologies. Despite the intensive research efforts to address IVD 

boundary extraction based on MR images, the potential of bimodal approaches, which benefit from 

complementary information derived from both magnetic resonance imaging (MRI) and computed 

tomography (CT), has not yet been fully realized. Furthermore, most existing approaches rely on 

manual intervention or on learning, although sufficiently large and labelled 3D datasets are not 

always available. In this light, this work introduces a bimodal segmentation method for vertebrae 

and IVD boundary extraction, which requires a limited amount of intervention and is not based on 

learning. The proposed method comprises various image processing and analysis stages, including 

CT/MRI registration, Otsu-based thresholding and Chan–Vese-based segmentation. The method 

was applied on 98 expert-annotated pairs of CT and MR spinal cord images with varying slice 

thicknesses and pixel sizes, which were obtained from 7 patients using different scanners. The 

experimental results had a Dice similarity coefficient equal to 94.77(%) for CT and 86.26(%) for MRI 

and a Hausdorff distance equal to 4.4 pixels for CT and 4.5 pixels for MRI. Experimental 

comparisons with state-of-the-art CT and MRI segmentation methods lead to the conclusion that 

the proposed method provides a reliable alternative for vertebrae and IVD boundary extraction. 

Moreover, the segmentation results are utilized to perform a bimodal visualization of the spine, 

which could potentially aid differential diagnosis with respect to several spine-related pathologies. 

Keywords: intervertebral disc; CT/MRI segmentation; otsu thresholding; Chan–Vese segmentation 

 

1. Introduction 

Intervertebral disc (IVD) localization and segmentation has triggered activity in the medical 

image analysis community, since IVD abnormalities are strongly associated with various chronic 

diseases, including disk herniation and slipped vertebrae [1]. Most works utilize magnetic resonance 

imaging (MRI) due to its superior soft-tissue contrast and non-invasive nature [2]. On the other hand, 

computed tomography (CT) often provides essential cues aiding diagnosis, leading to a minority of 

CT-based methods [3–5]. Still, there is a lack of bimodal approaches, based on complementary 

information derived from both MRI and CT imaging. 
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Several works are devoted to IVD localization, either in semi-automatic or fully automatic 

fashion. Zheng et al. employed the Hough transform (HT) to localize discs in videofluoroscopic CT 

images, only to refine the manually determined IVD location [6]. Peng et al. employed MRI-derived 

intensity profiles to localize the articulated vertebrae based on a manual selection of the ‘best’ MRI 

sagittal slice [7]. Schmidt et al. proposed a part-based, probabilistic inference method for spine 

detection and labelling [8]. Their method uses a tree classifier and relies on a set of manually marked 

lumbar region disc from MRI images. The inference algorithm uses a heuristic-based A* search to 

prune the exponential search space for efficiency. Similar models have been proposed by [9,10]. Stern 

et al. proposed an automatic method for IVD localization, which starts by extracting spinal centerlines 

and then detects the centers of vertebral bodies and IVDs by analyzing the image intensity and 

gradient magnitude profiles extracted along the spinal centerline [11]. There are also localization 

methods using Markov Random Field (MRF)-based inference. Donner et al. used MRF to encode the 

relation between an IVD model and the entire search image [12]. Later, Oktay and Akgul described 

a supervised method to simultaneously localize lumbar vertebrae and IVDs from 2D sagittal MR 

images using support vector machine (SVM)-based MRF [1]. As a first step, their method uses the 

local image gradient information of each vertebra and disc and locally searches for the candidate 

structure positions. As a second step, the method takes advantage of the Markov-chain-like structure 

of the spine by assuming latent variables for the disc and vertebrae positions. Kelm et al. introduced 

another machine learning-based method employing marginal space learning for spine detection in 

CT and MR images [13]. Instead of simultaneously estimating object position, orientation, and scale, 

they applied a classifier trained to estimate object position, then a second classifier trained to estimate 

both position and orientation, and a third classifier dealing with all parameters. They used this 

strategy for efficient IVD localization and performed segmentation by means of a case-adaptive graph 

cut. 

IVD segmentation was addressed by manual as well as by semi-automatic and fully-automatic 

methods. Chevrefils et al. used texture analysis to extract IVD boundaries by automatically 

segmenting 2D MR images of scoliotic spines [14,15]. Their watershed-based method exploited 

statistical and spectral texture features to identify closed regions representing IVDs. Michopoulou et 

al. proposed a semi-automatic method, which requires an interactive selection of leftmost and 

rightmost disk points [16]. This information guides their probabilistic atlas-based segmentation 

algorithm. A semi-automatic statistical method based on shape models was proposed by Neubert et 

al. [17]. Their method required an interactive placement of a set of initial rectangles along the spine 

curve. Later, Neubert et al. proposed a segmentation method based on the analysis of the image 

intensity profile. As a first step, they identify the 3D spine curve and localize IVDs using a Canny 

edge detector and intensity symmetry [18]. As a second step, the 3D mean shape model is placed on 

the locations and iterative refinement is conducted by matching the image intensity profile of each 

mesh vertex. Different types of graph-based methods are also popular [19–22]. Law used the 

anisotropic oriented flux detection scheme to extract IVDs, requiring minimal user interaction [23]. 

The segmentation step of this method is performed using a level set-based active contour. Zhan used 

Haar filters, an Adaboost classifier and a local articulated model for calculating the spatial relations 

between vertebrae and discs [24]. A combination of the wavelet-based classification approach, which 

employs Adaboost, and iterative normalized cuts was proposed by Huang for detection and 

segmentation [3]. Glocker et al. used random forest (RF) regression and hidden Markov models 

(HMMs) for localization and identification of vertebrae in arbitrary field-of-view CT scans [25,26]. 

Later, Lopez Andrade and Glocker used two complementary RFs for IVD localization, followed by a 

graph-cut-based segmentation stage [27]. The RF-based component of their method is based on [28] 

and requires training. Wang and Forsberg used integral channel features, a graphical parts model, 

and a set of registered IVD atlases to obtain combined localization and segmentation [29]. Korez et 

al. proposed a supervised framework for fully automated IVD localization and segmentation by 

integrating RF-based anatomical landmark detection, surface enhancement, Haar-like features, a self-

similarity context descriptor, and shape-constrained deformable models [30]. Chen et al. proposed a 



Information 2020, 11, 448 3 of 16 

 

unified data-driven regression and classification framework to tackle the problem of localization and 

segmentation of IVDs from T2-weighted MR data [31]. 

More recently, deep learning provided another course of effective methods for spinal image 

analysis. Cai et al. proposed to use a hierarchical 3D deformable model for multi-modality vertebra 

recognition, where multi-modal features extracted from deep networks were used for vertebra 

landmark detection [32]. The recognition result guides a watershed-based segmentation algorithm. 

However, their deep network is trained in a set of only 1200 pairs of CT/MRI patches, whereas there 

is no convincing check for overfitting in the evaluation of the recognition part. Moreover, no actual 

details are provided with respect to the segmentation algorithm, as well as no study on the 

dependency between the segmentation quality and the recognition accuracy. Despite these 

shortcomings, the method of Cai et al. is interesting in the sense that it combines information from 

CT and MRI data [32]. Similar criticism with respect to the size of the training dataset and overfitting 

applies on other deep learning applications, such as those of [33], who used feed-forward neural 

networks on CT data and Chen et al., who used 3D fully convolutional networks (FCNs) with flexible 

3D convolutional kernels on MRI data [34]. Overall, the main problem arising when considering deep 

learning is the availability of sufficiently large 3D datasets. More so in the case of a potential bimodal 

approach which requires pairs of CT/MRI data. 

A recent comparative study of several state-of-the-art methods, focusing on MRI, both for 

localization and segmentation, can be found in [5]. Most of these works, require human intervention, 

whereas they operate on 2D sagittal images instead of 3D volumes. Most importantly, apart from the 

work [32], all works operate on a single modality, either CT or MRI. Table 1 summarizes the 

advantages and limitations of several state-of-the-art methods, including information originally 

presented in [5] (in the case of MR methods). These methods are included in the experimental 

comparisons presented in this work. 

Table 1. Summary of limitations of state-of-the-art methods [5]. 

 Method Advantages Limitations 
Average Run 

Time 

CT 

Huang [3] 

Segment images with 

intensity inhomogeneity 

and blurry discontinuous 

boundaries. 

 

Time depends 

on iterations, 

0.7–20.2 s, 2.79 

GHz Matlab 

Isaac [4] 

A model of the interspace 

between objects to 

guaranteed that the shapes 

are not deformed. 

Requires the manual 

selection of the IVD 

center. 

50 s per 

vertebra, 2.4 

GHz C++  

MR 

Lopez 

Andrade 

and Glocker 

[27] 

Globally optimal 

segmentation with learned 

likelihood. 

L5-S1 disc should be 

present. 

Requires training. 

3 min, 3.5 GHz 

4-cores Python 

and C++. 

Wang and 

Forsberg 

[29] 

Highly parallelizable. 

Complexity depends on 

the number of atlases. 

Problems in the 

segmentation of structures 

deviating from atlases. 

8.5 min, 3.2 GHz 

4-cores Matlab 

and Cuda. 

Chen [35] 

Leveraging flexible 3D 

convolution kernels. 

Fast volume-to-volume 

classification. 

Computationally 

intensive. 

Memory cost is 

proportional to image 

resolution. 

3.1 s, 2.5 GHz 4-

cores Python. 
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Korez [30] 
Computationally efficient 

and robust. 

Computational 

complexity proportional 

to the number of voxels 

used for training. 

Problems in the presence 

of severe pathologies and 

cropped image parts. 

5 min, 3.2 GHz 

4-cores C ++ and 

Matlab. 

This work introduces a bimodal method for vertebrae and IVD boundary extraction. Although 

it assumes the availability of both CT and MR images for each case, the proposed method derives 

complementary information from both modalities and does not depend on learning or on the 

availability of large datasets, whereas it requires a limited degree of human intervention. Moreover, 

it is capable to obtain segmentation results of at least comparable quality to the ones obtained by 

state-of-the-art methods, although it is not learning-based. Beyond segmentation, it offers a bimodal 

visualization of the spine, which could potentially aid differential diagnosis with respect to several 

spine-related pathologies. It is based on the observation that vertebrae are much more prominent in 

CTs. In this light, each MRI image is geometrically transformed to be aligned with its CT counterpart. 

As a next stage, vertebral regions are extracted from sagittal CT and projected on the corresponding 

sagittal MRI. The projected vertebra regions naturally define the boundaries of IVD regions and thus 

can be used to guide localization. In the final stage, segmentation is performed using a region-based 

active contour, initialized and guided by the localization result. 

The rest of this paper is organized as follows: Section 2 presents the various stages of the 

proposed method, whereas Section 3 provides an experimental evaluation on actual CT/MRI pairs, 

as well as comparisons with the state of the art. Finally, Section 4 discusses the main results and 

summarizes the conclusions of this work. 

2. Materials and Methods 

The proposed method aims to extract IVD boundaries and provide a bimodal visualization of 

the spine, using imaging data from both CT and MR images. It consists of six main stages, as 

illustrated in Figure 1: (1) geometric transformation in order to derive the rules for the projection of 

structures identified in CT in the context of MR, (2) CT segmentation for vertebral boundary 

extraction, taking into account that vertebra are prominent and thus easier to identify in the context 

of this modality. Linear gray level normalization and Otsu thresholding with 3 gray levels are applied 

at this stage, (3) vertebral region projection on MRI, using the rules derived in stage 1, (4) IVD 

localization by means of a simple heuristic, (5) CT/MRI-based segmentation for IVD boundary 

extraction, using the boundaries defined by the vertebra projected in stage 3, the coarse IVD regions 

obtained in stage 4, and the Chan–Vese active contour, (6) CT/MRI image fusion, offering a bimodal 

visualization of the spine. The proposed method is based on 3D images (CT and MR), although some 

of its components are applied on 2D slices of each 3D image. 
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Figure 1. Summary of the main stages of the proposed method. 

2.1. Geometric Transformation 

A pair of CT and MRI 3D images is used as the input and the user is asked to manually determine 

a pair of 3D regions of interest (ROIs). Although these ROIs are selected to approximately match each 

other, they have a different number of slices, as well as different pixel sizes. It should be remarked 

that determining ROIs is the only human intervention required by the proposed method. The MRI 

3D ROI is geometrically transformed to match the CT 3D ROI, by means of one-to-one evolutionary 

optimization [36] and the geometric transformation method of Wells et al. [37], which is based on 

mutual information (Figure 2). This method considers that both MR and CT are informative of the 

same underlying anatomy and share mutual information. In this light, a transformation function T is 

found by maximizing this mutual information, as quantified by means of entropy I: 

�� = arg �����(�(�), �(�(�)) (1) 

in which: 

�(�(�), �(�(�)) ≡ ℎ(�(�) + ℎ(���(�)� − ℎ(�(�), �(�(�)) (2) 

where x are voxel coordinates, u(x) is a voxel of the reference volume (e.g., CT), υ(x) is a voxel of the 

target volume (e.g., MR), h(u) and h(υ) are the entropies of random variables u and υ, respectively, 

and ℎ(�, �) ≡ − ∫ �(�, �)���(�, �)���� is the joint entropy of random variables u, υ. The calculation 

of entropies is based on estimating the underlying probability density function by means of Parzen 

window density. Further details can be found in [36]. 
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(a) (b) (c) (d) 

Figure 2. (a) Initial computed tomography (CT) image, (b) initial magnetic resonance imaging (MRI) 

image, (c) register MRI, (d) fusion CT and MRI.s 

2.2. CT Segmentation for Vertebral Boundary Extraction 

Taking into account that vertebral regions are much more prominent in CT, we focused on this 

modality for vertebral boundary extraction. Still, there are several challenges for accurate vertebral 

boundary extraction in CT, including the intensity inhomogeneity within each structure, which may 

result in the identification of false ‘gaps’ as well as the presence of noise, which along with intensity 

inhomogeneity may lead to segmentation artifacts. Linear gray-level normalization is applied on the 

CT (Figure 3) as a pre-processing stage, aiming to further enhance the intensity distribution. In the 

resulting pre-processed CT image, vertebral regions are even more distinguishable. In the following 

step, the well-known Otsu’s thresholding with three classes is applied to extract vertebral boundaries. 

Otsu’s thresholding is ‘a non-parametric, unsupervised method for automatic threshold selection’ 

[38]. The algorithm exhaustively searches k−1 thresholds for k classes, maximizing inter-class 

variance. Its main stages are: (1) intensity distributions and probabilities of each class are initialized; 

(2) iteratively, all possible threshold combinations are examined, class probabilities and mean 

intensity values for each class are updated, and inter-class variance is calculated; (3) threshold values, 

corresponding to maximum inter-class variance, are selected. Figure 3 illustrates a flowchart for 

Otsu’s thresholding. The three classes considered are associated with background, vertebral bodies, 

and vertebral contours (Figure 4b). In this subfigure, the presence of ‘gaps’ as a result of intensity 

inhomogeneity is evident. The regions marked with the latter two classes are maintained (Figure 4c). 

 

Figure 3. Flowchart for Otsu thresholding. 

Aiming to cope with the effects of intensity inhomogeneity in the results of Otsu thresholding, 

we compactify the resulting regions by means of morphological closing operations, with a size of 10 

× 10 and a disk-shaped structuring element with a radius equal to 2. At this stage, some segmentation 

artifacts are generated in the form of ‘islands’ of background pixels, implausibly isolated on the z-

axis. Aiming to cope with this, we utilize the extra information of the third dimension and consider 

an inter-slice window in the z-axis. The labels are corrected by means of a voting scheme, taking into 

account all corresponding labels in the neighboring slices (Figure 4d,e). As a result, the ‘islands’ of 

background pixels are re-labelled as parts of vertebral bodies. Note that only the central regions will 
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eventually be maintained, whereas the rest of the extracted regions (e.g., at the right of Figure 4d,e) 

will be discarded in the following stage. 

     

(a) (b) (c) (d) (e) 

Figure 4. (a) Initial CT image, (b) Otsu thresholding with three labels, where label ‘1′ is assigned to 

background (black) and labels ‘2,3′ are assigned to vertebrae (gray and white pixels), (c) binary image, 

(d) resulting image after applying dilation and the inter-slice-based correction, (e) boundaries of 

extracted vertebrae, marked as red. 

2.3. Vertebral Region Projection on MRI 

The sagittal MRI images are linearly normalized with respect to gray-levels. The vertebral 

regions identified in CT, as described in stage 2, are projected on the pre-processed MRIs by means 

of the geometrical transformation derived in stage 1, and the gray-levels associated with the projected 

regions are set to zero (Figure 5). The accuracy of the subsequent IVD localization stage is inherently 

determined by this stage. 

   

(a) (b) (c) 

Figure 5. (a) The result of CT segmentation, (b) registered MRI image, (c) the result of masking 

between the two previous images. 

2.4. IVD Localization 

IVD regions are localized by means of a simple heuristic applied on the result of stage 3: non-

zero regions (Figure 5c) within an empirically defined stripe approximating the spine are determined 

as IVD regions. The stripe is defined by scanning the registered image from left to the right and 

marking the first vertebra pixel. The same process is also performed reversely, from right to left. 

Eventually, for each row, two pixels are marked defining the stripe (illustrated as red in Figure 6a). 

Although this empirically determined stripe provides a rough approximation of the spinal regions, 

when combined with the result of stage 3, the derived localizations are robust (Figure 6b,c). It should 

be stressed that the localization result of this stage is a rough approximation used to initialize the 

Chan–Vese active contour model described in the next sub-section. 
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(a) (b) (c) 

Figure 6. (a) The boundary of vertebral stripe, which is marked as red, is derived by the boundaries 

of the vertebrae, marked as green, (b) localization of intervertebral disk (IVD) positions, (c) the IVD 

boundaries extracted after localization. 

2.5. CT/MRI-Based Segmentation for IVD Boundary Extraction 

Starting from the rough approximation of the spinal regions, which is obtained at stage 4, this 

stage aims at accurately extracting IVD boundaries. For this task, the Chan-Vese active contour model 

[39] is the segmentation approach of choice, since it is relatively insensitive to initialization and robust 

against weak edges and noise. The steps followed at this stage are: (1) MR image enhancement by 

means of the sharpening technique of Saleh and Nordin [40] (Figure 7a), (2) initialization of the Chan–

Vese model by the rough approximations of the spinal region derived at stage 4 (Figure 7b), (3) 

contour evolution on contrast enhanced images (Figure 7c), (4) IVD boundary extraction after active 

contour convergence (Figure 7d). 

    

(a) (b) (c) (d) 

Figure 7. (a) Unsharp mask applied to registered MR image, (b) binary image derived from stage 4, 

used for active contour initialization, (c) active contour applied on contrast-enhanced images with 40 

iterations, (d) IVD boundary extraction. 

2.6. CT/MRI Image Fusion 

Apart from the segmentation result, the proposed method provides a hybrid, CT/MRI-based, 

visualization of the spine. Vertebral regions identified on CT (stage 2) are super-imposed on spinal 

regions identified on MR (stage 5). Figure 8 illustrates an example of different views of such a 

visualization, in which both vertebral (marked with gray) and IVD (marked with red) regions are 

identified. This bimodal-based illustration of both regions provides a valuable tool, potentially aiding 

differential diagnosis with respect to various spine-related pathologies. 



Information 2020, 11, 448 9 of 16 

 

 

Figure 8. Examples of 3D visualizations of vertebrae (marked with gray) and IVD (marked with red). 

3. Experimental Evaluation 

The proposed method was applied on 7 pairs of CT and MR images with 98 images using 

different scanners. The pixel size and slice thickness differed within the ranges of 0.33–0.37 mm and 

1.5–3 mm for CT and 0.47–0.55 mm and 3–4 mm for MRI, respectively. This dataset is publicly 

available (http://spineweb.digitalimaginggroup.ca). 

3.1. Evaluation Metrics 

The method was quantitatively evaluated, using CT and MRI ground truth segmentations 

obtained by a medical expert. The Dice similarity coefficient (DSC) [41] and Hausdorff distance (HD) 

[42] were adopted to evaluate the segmentation accuracy. DSC depends on the number of common 

pixels between the images compared, whereas HD is derived from distances of all pairs of pixels. 

Let ��  and ��  be the binary images that are obtained from the manual and the proposed 

segmentation, respectively. In both images, the pixels of the structures are set to 1 and the rest are set 

to 0. Let also �� and ��  be the boundaries of structures in �� and ��, respectively. DSC and HD are 

defined in Equations (3) and (4): 

DSC(��, ��) =  
2|�� ∩ ��|

|��| + |��|
  (3) 

HD(��, ��) =  max {����∈��
����∈��

�(�, �), ����∈��
����∈��

�(�, �)} (4) 

where the metric d employed is the Euclidean distance. 

3.2. Results and Discussion 

The CT segmentation of the proposed method was quantitatively compared with the methods 

of Huang and Isaac [3,4] (Table 2). The IVD segmentations obtained by the proposed method were 

quantitatively compared with four state-of-the-art methods [5] (Table 3). Figures 9 and 10 illustrate 

the results of Tables 2 and 3, respectively. Figure 11 illustrates the segmentation quality obtained by 

all methods compared in both modalities. It can be noted that when considering both quality 

measures, the proposed method is at least comparable to state-of-the-art learning-based methods in 

both modalities. Apart from the dependency on training, the state-of-the-art methods compared have 

also numerous limitations, which include difficulties in the presence of severe pathologies or when 

certain structures are absent, memory requirements, dependency on atlases etc. These limitations are 

summarized in Table 1. Figures 11 and 12 illustrate example CT and MRI segmentations obtained by 

the proposed method. In Figure 11, it can be observed that the vertebra boundaries extracted are 

plausible. This is also confirmed by a medical expert who was asked to qualitatively evaluate the 

segmentation result. Similarly, in Figure 12, it can be observed that the IVD boundaries extracted are 
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plausible, whereas this is confirmed by the medical expert. Figure 13 presents example visualizations 

obtained by the proposed method, marking vertebrae and IVDs with different colors. 

  

(a) (b) 

Figure 9. (a) Mean Dice similarity coefficient (DSC) (%) ± SD, (b) mean Hausdorff distance HD (mm) 

± SD from Table 2. 

Table 2. CT image segmentation quality of the proposed method and state-of-the-art. 

Method Mean DSC (%) ± SD Mean HD (mm) ± SD 

Huang et al. [3] 94.0 ± 2.0 10.1 ± 1.7 

Isaac et al. [4] 90.0 ± 5.1 5.5 

Proposed 94.8 ± 1.8 4.4 ± 1.6 

Table 3. MR image segmentation quality of the proposed method and state of the art. 

Method Mean DSC (%) ± SD Mean HD (mm) ± SD 

Lopez Andrade and Glocker [27] 87.9 ± 3.4 4.9 ± 1.5 

Wang and Forsberg [29] 90.0 ± 2.6 4.7 ± 0.9 

Chen et al. [35] 88.4 ± 3.7 4.7 ± 1.4 

Korez et al. [30] 91.5 ± 2.3 4.4 ± 0.7 

Proposed 86.26 ± 2.1 4.5 ± 0.78 
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(a) 

 

(b) 

Figure 10. (a) Mean DSC (%) ± SD, (b) mean HD (mm) ± SD from Table 3. 

    

Figure 11. Segmentation results from our automatic method, illustration CT images from different 

data with red color. The ground truth contours are described with green color. 
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Figure 12. Segmentation results from our method, illustration MRI images from different data sets 

with red color. The ground truth contours are described with green color. 

 

Figure 13. Example visualizations obtained by the proposed method, marking vertebrae and IVDs 

with gray and red, respectively. 

Another set of experiments involved the evaluation of the robustness of the proposed method 

against various parameters. Two different transformation types where tested: affine and similarity-

based. In addition, three different interpolation methods where tested: linear, nearest neighbor, and 

cubic. Similarity-based transformation and linear interpolation led to the highest segmentation 

quality with 100 iterations, a radius growth factor equal to 1.05, and an initial search radius equal to 

0.004. The DSC and HD of the segmentation result obtained for various settings of the mask size for 

morphological filtering on CT (blue line) and MRI (red line) are illustrated in Figure 14a,b. It can be 

observed that the differences in the accuracy obtained are less than 5% with respect to DSC and less 

than 0.2 pixels with respect to HD, as this parameter ranges from 8 to 12. In the previously presented 

experimental comparisons, this value was set to 10. In addition, the variances in DSC and HD as the 

number of active contour iterations ranges from 20 to 65 are illustrated in Figure 14c,d. It can be 

observed that the differences in the accuracy obtained are less than 6% with respect to DSC and less 

than 1.5 pixels with respect to HD. In the previously presented experimental comparisons, this value 

was set to 30. It should be remarked that, unlike these parameters, the thresholds involved in CT 

segmentation (Section 2.2) are automatically selected. 

As a final remark, for our suboptimal Matlab (Mathworks, MA, USA) implementation, the CT-

based and MR-based stages are currently applied sequentially, with an effect on overall time cost, 

which is approximately 3 min. Parallelization of these stages is expected to drastically reduce time 

cost. 
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(a) (b) 

  
(c) (d) 

Figure 14. Sensitivity of segmentation quality with respect to DSC and HD against filter mask size 

(a,b) and active contour iterations (c,d). MR with red lines and CT with blue lines. The second 

parameter applies only to MR. 

4. Conclusions 

This work introduces a computational approach for vertebrae and IVD boundary extraction, 

based on CT and MRI data. The proposed method (1) derives complementary information from both 

modalities; (2) is not learning-based and is not dependent on the availability of large, labelled 

datasets, unlike the vast majority of state-of-the-art methods; (3) is capable of obtaining segmentation 

results of at least comparable quality to the ones obtained by state-of-the-art methods, although it is 

not learning-based; (4) provides a bimodal visualization of the spine, which could potentially aid 

differential diagnosis with respect to several spine-related pathologies. In addition, the proposed 

method requires a limited amount of intervention. It starts from aligning corresponding CT and MR 

images, whereas the CT images are segmented to extract vertebrae boundaries. The result of CT 

segmentation is fused with MR images to guide the subsequent localization and segmentation stages. 

The result of CT segmentation guides IVD localization and the exact IVD boundaries are extracted 

by applying the Chan–Vese active contour model on a contrast-enhanced version of the MR image. 

Finally, the extracted vertebrae and IVD boundaries can be used to provide a hybrid 3D visualization 

of the spine. The proposed method was compared with state-of-the-art methods, with respect to: (1) 

CT image segmentation for vertebrae boundary extraction, (2) MR image segmentation for IVD 

boundary extraction. In both cases, the obtained segmentation quality, as quantified by means of the 

DICE and HD measures, was at least comparable to the one obtained from state-of-the-art learning-

based methods. In addition, unlike competing methods, the proposed method requires no prior 

knowledge in the form of an atlas or learning from annotated samples. On the other hand, the 

proposed method depends on the availability of CT/MR image pairs, which could limit its 

applicability, taking into account that several currently adopted clinical practices are single-modal. 

Moreover, our suboptimal Matlab implementation is relatively slower than some of the state-of-the-

art methods. 
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A research challenge for future work is the design of hybrid approaches that incorporate 

learning-based components, which can take advantage of the potential availability of small-sized, 

labelled CT/MR image pairs. Moreover, the development of an optimized implementation, as well as 

additional experiments on clinically important cases, such as those involving the presence of 

dehydrated discs, are the subject of our ongoing research. 
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