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Abstract: Intervertebral disc (IVD) localization and segmentation have triggered intensive research
efforts in the medical image analysis community, since IVD abnormalities are strong indicators
of various spinal cord-related pathologies. Despite the intensive research efforts to address IVD
boundary extraction based on MR images, the potential of bimodal approaches, which benefit from
complementary information derived from both magnetic resonance imaging (MRI) and computed
tomography (CT), has not yet been fully realized. Furthermore, most existing approaches rely on
manual intervention or on learning, although sufficiently large and labelled 3D datasets are not always
available. In this light, this work introduces a bimodal segmentation method for vertebrae and IVD
boundary extraction, which requires a limited amount of intervention and is not based on learning.
The proposed method comprises various image processing and analysis stages, including CT/MRI
registration, Otsu-based thresholding and Chan–Vese-based segmentation. The method was applied
on 98 expert-annotated pairs of CT and MR spinal cord images with varying slice thicknesses and pixel
sizes, which were obtained from 7 patients using different scanners. The experimental results had a
Dice similarity coefficient equal to 94.77(%) for CT and 86.26(%) for MRI and a Hausdorff distance
equal to 4.4 pixels for CT and 4.5 pixels for MRI. Experimental comparisons with state-of-the-art
CT and MRI segmentation methods lead to the conclusion that the proposed method provides a
reliable alternative for vertebrae and IVD boundary extraction. Moreover, the segmentation results
are utilized to perform a bimodal visualization of the spine, which could potentially aid differential
diagnosis with respect to several spine-related pathologies.

Keywords: intervertebral disc; CT/MRI segmentation; Otsu thresholding; Chan–Vese segmentation

1. Introduction

Intervertebral disc (IVD) localization and segmentation has triggered activity in the medical image
analysis community, since IVD abnormalities are strongly associated with various chronic diseases,
including disk herniation and slipped vertebrae [1]. Most works utilize magnetic resonance imaging
(MRI) due to its superior soft-tissue contrast and non-invasive nature [2]. On the other hand, computed
tomography (CT) often provides essential cues aiding diagnosis, leading to a minority of CT-based
methods [3–5]. Still, there is a lack of bimodal approaches, based on complementary information
derived from both MRI and CT imaging.
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Several works are devoted to IVD localization, either in semi-automatic or fully automatic fashion.
Zheng et al. employed the Hough transform (HT) to localize discs in videofluoroscopic CT images,
only to refine the manually determined IVD location [6]. Peng et al. employed MRI-derived intensity
profiles to localize the articulated vertebrae based on a manual selection of the ‘best’ MRI sagittal
slice [7]. Schmidt et al. proposed a part-based, probabilistic inference method for spine detection
and labelling [8]. Their method uses a tree classifier and relies on a set of manually marked lumbar
region disc from MRI images. The inference algorithm uses a heuristic-based A* search to prune the
exponential search space for efficiency. Similar models have been proposed by [9,10]. Stern et al.
proposed an automatic method for IVD localization, which starts by extracting spinal centerlines and
then detects the centers of vertebral bodies and IVDs by analyzing the image intensity and gradient
magnitude profiles extracted along the spinal centerline [11]. There are also localization methods using
Markov Random Field (MRF)-based inference. Donner et al. used MRF to encode the relation between
an IVD model and the entire search image [12]. Later, Oktay and Akgul described a supervised method
to simultaneously localize lumbar vertebrae and IVDs from 2D sagittal MR images using support vector
machine (SVM)-based MRF [1]. As a first step, their method uses the local image gradient information
of each vertebra and disc and locally searches for the candidate structure positions. As a second
step, the method takes advantage of the Markov-chain-like structure of the spine by assuming latent
variables for the disc and vertebrae positions. Kelm et al. introduced another machine learning-based
method employing marginal space learning for spine detection in CT and MR images [13]. Instead
of simultaneously estimating object position, orientation, and scale, they applied a classifier trained
to estimate object position, then a second classifier trained to estimate both position and orientation,
and a third classifier dealing with all parameters. They used this strategy for efficient IVD localization
and performed segmentation by means of a case-adaptive graph cut.

IVD segmentation was addressed by manual as well as by semi-automatic and fully-automatic
methods. Chevrefils et al. used texture analysis to extract IVD boundaries by automatically
segmenting 2D MR images of scoliotic spines [14,15]. Their watershed-based method exploited
statistical and spectral texture features to identify closed regions representing IVDs. Michopoulou et al.
proposed a semi-automatic method, which requires an interactive selection of leftmost and rightmost
disk points [16]. This information guides their probabilistic atlas-based segmentation algorithm.
A semi-automatic statistical method based on shape models was proposed by Neubert et al. [17].
Their method required an interactive placement of a set of initial rectangles along the spine curve. Later,
Neubert et al. proposed a segmentation method based on the analysis of the image intensity profile. As a
first step, they identify the 3D spine curve and localize IVDs using a Canny edge detector and intensity
symmetry [18]. As a second step, the 3D mean shape model is placed on the locations and iterative
refinement is conducted by matching the image intensity profile of each mesh vertex. Different types
of graph-based methods are also popular [19–22]. Law used the anisotropic oriented flux detection
scheme to extract IVDs, requiring minimal user interaction [23]. The segmentation step of this method
is performed using a level set-based active contour. Zhan used Haar filters, an Adaboost classifier
and a local articulated model for calculating the spatial relations between vertebrae and discs [24].
A combination of the wavelet-based classification approach, which employs Adaboost, and iterative
normalized cuts was proposed by Huang for detection and segmentation [3]. Glocker et al. used
random forest (RF) regression and hidden Markov models (HMMs) for localization and identification
of vertebrae in arbitrary field-of-view CT scans [25,26]. Later, Lopez Andrade and Glocker used two
complementary RFs for IVD localization, followed by a graph-cut-based segmentation stage [27].
The RF-based component of their method is based on [28] and requires training. Wang and Forsberg
used integral channel features, a graphical parts model, and a set of registered IVD atlases to obtain
combined localization and segmentation [29]. Korez et al. proposed a supervised framework for fully
automated IVD localization and segmentation by integrating RF-based anatomical landmark detection,
surface enhancement, Haar-like features, a self-similarity context descriptor, and shape-constrained
deformable models [30]. Chen et al. proposed a unified data-driven regression and classification
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framework to tackle the problem of localization and segmentation of IVDs from T2-weighted MR
data [31].

More recently, deep learning provided another course of effective methods for spinal image
analysis. Cai et al. proposed to use a hierarchical 3D deformable model for multi-modality vertebra
recognition, where multi-modal features extracted from deep networks were used for vertebra landmark
detection [32]. The recognition result guides a watershed-based segmentation algorithm. However,
their deep network is trained in a set of only 1200 pairs of CT/MRI patches, whereas there is no
convincing check for overfitting in the evaluation of the recognition part. Moreover, no actual details
are provided with respect to the segmentation algorithm, as well as no study on the dependency
between the segmentation quality and the recognition accuracy. Despite these shortcomings, the
method of Cai et al. is interesting in the sense that it combines information from CT and MRI data [32].
Similar criticism with respect to the size of the training dataset and overfitting applies on other deep
learning applications, such as those of [33], who used feed-forward neural networks on CT data and
Chen et al., who used 3D fully convolutional networks (FCNs) with flexible 3D convolutional kernels
on MRI data [34]. Overall, the main problem arising when considering deep learning is the availability
of sufficiently large 3D datasets. More so in the case of a potential bimodal approach which requires
pairs of CT/MRI data.

A recent comparative study of several state-of-the-art methods, focusing on MRI, both for
localization and segmentation, can be found in [5]. Most of these works, require human intervention,
whereas they operate on 2D sagittal images instead of 3D volumes. Most importantly, apart from the
work [32], all works operate on a single modality, either CT or MRI. Table 1 summarizes the advantages
and limitations of several state-of-the-art methods, including information originally presented in [5]
(in the case of MR methods). These methods are included in the experimental comparisons presented
in this work.

Table 1. Summary of limitations of state-of-the-art methods [5].

Method Advantages Limitations Average Run Time

CT

Huang [3]

Segment images with
intensity

inhomogeneity and
blurry discontinuous

boundaries.

Time depends on
iterations, 0.7–20.2 s,

2.79 GHz Matlab

Isaac [4]

A model of the
interspace between

objects to guaranteed
that the shapes are not

deformed.

Requires the manual
selection of the IVD center.

50 s per vertebra,
2.4 GHz C++

MR

Lopez Andrade and
Glocker [27]

Globally optimal
segmentation with
learned likelihood.

L5-S1 disc should be present.
Requires training.

3 min, 3.5 GHz 4-cores
Python and C++.

Wang and
Forsberg [29] Highly parallelizable.

Complexity depends on the
number of atlases.
Problems in the

segmentation of structures
deviating from atlases.

8.5 min, 3.2 GHz 4-cores
Matlab and Cuda.

Chen [35]

Leveraging flexible 3D
convolution kernels.

Fast volume-to-volume
classification.

Computationally intensive.
Memory cost is proportional

to image resolution.

3.1 s, 2.5 GHz 4-cores
Python.

Korez [30] Computationally
efficient and robust.

Computational complexity
proportional to the number
of voxels used for training.
Problems in the presence of

severe pathologies and
cropped image parts.

5 min, 3.2 GHz 4-cores
C ++ and Matlab.
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This work introduces a bimodal method for vertebrae and IVD boundary extraction. Although
it assumes the availability of both CT and MR images for each case, the proposed method derives
complementary information from both modalities and does not depend on learning or on the availability
of large datasets, whereas it requires a limited degree of human intervention. Moreover, it is capable
to obtain segmentation results of at least comparable quality to the ones obtained by state-of-the-art
methods, although it is not learning-based. Beyond segmentation, it offers a bimodal visualization
of the spine, which could potentially aid differential diagnosis with respect to several spine-related
pathologies. It is based on the observation that vertebrae are much more prominent in CTs. In this
light, each MRI image is geometrically transformed to be aligned with its CT counterpart. As a next
stage, vertebral regions are extracted from sagittal CT and projected on the corresponding sagittal MRI.
The projected vertebra regions naturally define the boundaries of IVD regions and thus can be used to
guide localization. In the final stage, segmentation is performed using a region-based active contour,
initialized and guided by the localization result.

The rest of this paper is organized as follows: Section 2 presents the various stages of the proposed
method, whereas Section 3 provides an experimental evaluation on actual CT/MRI pairs, as well as
comparisons with the state of the art. Finally, Section 4 discusses the main results and summarizes the
conclusions of this work.

2. Materials and Methods

The proposed method aims to extract IVD boundaries and provide a bimodal visualization of the
spine, using imaging data from both CT and MR images. It consists of six main stages, as illustrated
in Figure 1: (1) geometric transformation in order to derive the rules for the projection of structures
identified in CT in the context of MR, (2) CT segmentation for vertebral boundary extraction, taking into
account that vertebra are prominent and thus easier to identify in the context of this modality. Linear
gray level normalization and Otsu thresholding with 3 gray levels are applied at this stage, (3) vertebral
region projection on MRI, using the rules derived in stage 1, (4) IVD localization by means of a simple
heuristic, (5) CT/MRI-based segmentation for IVD boundary extraction, using the boundaries defined
by the vertebra projected in stage 3, the coarse IVD regions obtained in stage 4, and the Chan–Vese
active contour, (6) CT/MRI image fusion, offering a bimodal visualization of the spine. The proposed
method is based on 3D images (CT and MR), although some of its components are applied on 2D slices
of each 3D image.

Figure 1. Summary of the main stages of the proposed method.



Information 2020, 11, 448 5 of 15

2.1. Geometric Transformation

A pair of CT and MRI 3D images is used as the input and the user is asked to manually determine
a pair of 3D regions of interest (ROIs). Although these ROIs are selected to approximately match each
other, they have a different number of slices, as well as different pixel sizes. It should be remarked
that determining ROIs is the only human intervention required by the proposed method. The MRI
3D ROI is geometrically transformed to match the CT 3D ROI, by means of one-to-one evolutionary
optimization [36] and the geometric transformation method of Wells et al. [37], which is based on
mutual information (Figure 2). This method considers that both MR and CT are informative of the
same underlying anatomy and share mutual information. In this light, a transformation function T is
found by maximizing this mutual information, as quantified by means of entropy I:

T̂ = argmaxTI(u(x), υ(T(x)) (1)

in which:
I(u(x), υ(T(x)) ≡ h(u(x) + h(υ(T(x)) − h(u(x), υ(T(x)) (2)

where x are voxel coordinates, u(x) is a voxel of the reference volume (e.g., CT), υ(x) is a voxel of the
target volume (e.g., MR), h(u) and h(υ) are the entropies of random variables u and υ, respectively,
and h(u, υ) ≡ −

∫
p(u, υ)lnp(u, υ)dudυ is the joint entropy of random variables u, υ. The calculation

of entropies is based on estimating the underlying probability density function by means of Parzen
window density. Further details can be found in [36].

Figure 2. (a) Initial computed tomography (CT) image, (b) initial magnetic resonance imaging (MRI)
image, (c) register MRI, (d) fusion CT and MRI.s.

2.2. CT Segmentation for Vertebral Boundary Extraction

Taking into account that vertebral regions are much more prominent in CT, we focused on this
modality for vertebral boundary extraction. Still, there are several challenges for accurate vertebral
boundary extraction in CT, including the intensity inhomogeneity within each structure, which may
result in the identification of false ‘gaps’ as well as the presence of noise, which along with intensity
inhomogeneity may lead to segmentation artifacts. Linear gray-level normalization is applied on the
CT (Figure 3) as a pre-processing stage, aiming to further enhance the intensity distribution. In the
resulting pre-processed CT image, vertebral regions are even more distinguishable. In the following
step, the well-known Otsu’s thresholding with three classes is applied to extract vertebral boundaries.
Otsu’s thresholding is ‘a non-parametric, unsupervised method for automatic threshold selection’ [38].
The algorithm exhaustively searches k−1 thresholds for k classes, maximizing inter-class variance.
Its main stages are: (1) intensity distributions and probabilities of each class are initialized; (2) iteratively,
all possible threshold combinations are examined, class probabilities and mean intensity values for
each class are updated, and inter-class variance is calculated; (3) threshold values, corresponding to
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maximum inter-class variance, are selected. Figure 3 illustrates a flowchart for Otsu’s thresholding.
The three classes considered are associated with background, vertebral bodies, and vertebral contours
(Figure 4b). In this subfigure, the presence of ‘gaps’ as a result of intensity inhomogeneity is evident.
The regions marked with the latter two classes are maintained (Figure 4c).

Figure 3. Flowchart for Otsu thresholding.

Aiming to cope with the effects of intensity inhomogeneity in the results of Otsu thresholding, we
compactify the resulting regions by means of morphological closing operations, with a size of 10 × 10
and a disk-shaped structuring element with a radius equal to 2. At this stage, some segmentation
artifacts are generated in the form of ‘islands’ of background pixels, implausibly isolated on the z-axis.
Aiming to cope with this, we utilize the extra information of the third dimension and consider an
inter-slice window in the z-axis. The labels are corrected by means of a voting scheme, taking into
account all corresponding labels in the neighboring slices (Figure 4d,e). As a result, the ‘islands’ of
background pixels are re-labelled as parts of vertebral bodies. Note that only the central regions will
eventually be maintained, whereas the rest of the extracted regions (e.g., at the right of Figure 4d,e)
will be discarded in the following stage.

Figure 4. (a) Initial CT image, (b) Otsu thresholding with three labels, where label ‘1′ is assigned
to background (black) and labels ‘2,3′ are assigned to vertebrae (gray and white pixels), (c) binary
image, (d) resulting image after applying dilation and the inter-slice-based correction, (e) boundaries of
extracted vertebrae, marked as red.

2.3. Vertebral Region Projection on MRI

The sagittal MRI images are linearly normalized with respect to gray-levels. The vertebral regions
identified in CT, as described in stage 2, are projected on the pre-processed MRIs by means of the
geometrical transformation derived in stage 1, and the gray-levels associated with the projected
regions are set to zero (Figure 5). The accuracy of the subsequent IVD localization stage is inherently
determined by this stage.
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Figure 5. (a) The result of CT segmentation, (b) registered MRI image, (c) the result of masking between
the two previous images.

2.4. IVD Localization

IVD regions are localized by means of a simple heuristic applied on the result of stage 3: non-zero
regions (Figure 5c) within an empirically defined stripe approximating the spine are determined as
IVD regions. The stripe is defined by scanning the registered image from left to the right and marking
the first vertebra pixel. The same process is also performed reversely, from right to left. Eventually,
for each row, two pixels are marked defining the stripe (illustrated as red in Figure 6a). Although this
empirically determined stripe provides a rough approximation of the spinal regions, when combined
with the result of stage 3, the derived localizations are robust (Figure 6b,c). It should be stressed that
the localization result of this stage is a rough approximation used to initialize the Chan–Vese active
contour model described in the next sub-section.

Figure 6. (a) The boundary of vertebral stripe, which is marked as red, is derived by the boundaries
of the vertebrae, marked as green, (b) localization of intervertebral disk (IVD) positions, (c) the IVD
boundaries extracted after localization.

2.5. CT/MRI-Based Segmentation for IVD Boundary Extraction

Starting from the rough approximation of the spinal regions, which is obtained at stage 4, this stage
aims at accurately extracting IVD boundaries. For this task, the Chan-Vese active contour model [39] is
the segmentation approach of choice, since it is relatively insensitive to initialization and robust against
weak edges and noise. The steps followed at this stage are: (1) MR image enhancement by means
of the sharpening technique of Saleh and Nordin [40] (Figure 7a), (2) initialization of the Chan–Vese
model by the rough approximations of the spinal region derived at stage 4 (Figure 7b), (3) contour
evolution on contrast enhanced images (Figure 7c), (4) IVD boundary extraction after active contour
convergence (Figure 7d).
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Figure 7. (a) Unsharp mask applied to registered MR image, (b) binary image derived from stage 4,
used for active contour initialization, (c) active contour applied on contrast-enhanced images with
40 iterations, (d) IVD boundary extraction.

2.6. CT/MRI Image Fusion

Apart from the segmentation result, the proposed method provides a hybrid, CT/MRI-based,
visualization of the spine. Vertebral regions identified on CT (stage 2) are super-imposed on spinal
regions identified on MR (stage 5). Figure 8 illustrates an example of different views of such a
visualization, in which both vertebral (marked with gray) and IVD (marked with red) regions are
identified. This bimodal-based illustration of both regions provides a valuable tool, potentially aiding
differential diagnosis with respect to various spine-related pathologies.

Figure 8. Examples of 3D visualizations of vertebrae (marked with gray) and IVD (marked with red).

3. Experimental Evaluation

The proposed method was applied on 7 pairs of CT and MR images with 98 images using
different scanners. The pixel size and slice thickness differed within the ranges of 0.33–0.37 mm and
1.5–3 mm for CT and 0.47–0.55 mm and 3–4 mm for MRI, respectively. This dataset is publicly available
(http://spineweb.digitalimaginggroup.ca).

3.1. Evaluation Metrics

The method was quantitatively evaluated, using CT and MRI ground truth segmentations obtained
by a medical expert. The Dice similarity coefficient (DSC) [41] and Hausdorff distance (HD) [42]
were adopted to evaluate the segmentation accuracy. DSC depends on the number of common pixels
between the images compared, whereas HD is derived from distances of all pairs of pixels.

Let Sg and St be the binary images that are obtained from the manual and the proposed
segmentation, respectively. In both images, the pixels of the structures are set to 1 and the rest are set

http://spineweb.digitalimaginggroup.ca
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to 0. Let also Xg and Yt be the boundaries of structures in Sg and St, respectively. DSC and HD are
defined in Equations (3) and (4):

DSC
(
Sg, St

)
=

2
∣∣∣Sg ∩ St

∣∣∣∣∣∣Sg|+|St
∣∣∣ (3)

HD
(
Xg, Yt

)
= max

{
supx∈Xg in fy∈Yt d(x, y), supy∈Yt in fx∈Xgd(x, y)

}
(4)

where the metric d employed is the Euclidean distance.

3.2. Results and Discussion

The CT segmentation of the proposed method was quantitatively compared with the methods
of Huang and Isaac [3,4] (Table 2). The IVD segmentations obtained by the proposed method were
quantitatively compared with four state-of-the-art methods [5] (Table 3). Figures 9 and 10 illustrate
the results of Tables 2 and 3, respectively. Figure 11 illustrates the segmentation quality obtained
by all methods compared in both modalities. It can be noted that when considering both quality
measures, the proposed method is at least comparable to state-of-the-art learning-based methods in
both modalities. Apart from the dependency on training, the state-of-the-art methods compared have
also numerous limitations, which include difficulties in the presence of severe pathologies or when
certain structures are absent, memory requirements, dependency on atlases etc. These limitations are
summarized in Table 1. Figures 11 and 12 illustrate example CT and MRI segmentations obtained
by the proposed method. In Figure 11, it can be observed that the vertebra boundaries extracted are
plausible. This is also confirmed by a medical expert who was asked to qualitatively evaluate the
segmentation result. Similarly, in Figure 12, it can be observed that the IVD boundaries extracted are
plausible, whereas this is confirmed by the medical expert. Figure 13 presents example visualizations
obtained by the proposed method, marking vertebrae and IVDs with different colors.

Table 2. CT image segmentation quality of the proposed method and state-of-the-art.

Method Mean DSC (%) ± SD Mean HD (mm) ± SD

Huang et al. [3] 94.0 ± 2.0 10.1 ± 1.7
Isaac et al. [4] 90.0 ± 5.1 5.5

Proposed 94.8 ± 1.8 4.4 ± 1.6

Table 3. MR image segmentation quality of the proposed method and state of the art.

Method Mean DSC (%) ± SD Mean HD (mm) ± SD

Lopez Andrade and Glocker [27] 87.9 ± 3.4 4.9 ± 1.5
Wang and Forsberg [29] 90.0 ± 2.6 4.7 ± 0.9

Chen et al. [35] 88.4 ± 3.7 4.7 ± 1.4
Korez et al. [30] 91.5 ± 2.3 4.4 ± 0.7

Proposed 86.26 ± 2.1 4.5 ± 0.78

Figure 9. (a) Mean Dice similarity coefficient (DSC) (%) ± SD, (b) mean Hausdorff distance HD
(mm) ± SD from Table 2.
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Figure 10. (a) Mean DSC (%) ± SD, (b) mean HD (mm) ± SD from Table 3.

Figure 11. Segmentation results from our automatic method, illustration CT images from different data
with red color. The ground truth contours are described with green color.

Figure 12. Segmentation results from our method, illustration MRI images from different data sets with
red color. The ground truth contours are described with green color.
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Figure 13. Example visualizations obtained by the proposed method, marking vertebrae and IVDs
with gray and red, respectively.

Another set of experiments involved the evaluation of the robustness of the proposed
method against various parameters. Two different transformation types where tested: affine and
similarity-based. In addition, three different interpolation methods where tested: linear, nearest
neighbor, and cubic. Similarity-based transformation and linear interpolation led to the highest
segmentation quality with 100 iterations, a radius growth factor equal to 1.05, and an initial search
radius equal to 0.004. The DSC and HD of the segmentation result obtained for various settings of the
mask size for morphological filtering on CT (blue line) and MRI (red line) are illustrated in Figure 14a,b.
It can be observed that the differences in the accuracy obtained are less than 5% with respect to DSC
and less than 0.2 pixels with respect to HD, as this parameter ranges from 8 to 12. In the previously
presented experimental comparisons, this value was set to 10. In addition, the variances in DSC and
HD as the number of active contour iterations ranges from 20 to 65 are illustrated in Figure 14c,d.
It can be observed that the differences in the accuracy obtained are less than 6% with respect to DSC
and less than 1.5 pixels with respect to HD. In the previously presented experimental comparisons,
this value was set to 30. It should be remarked that, unlike these parameters, the thresholds involved
in CT segmentation (Section 2.2) are automatically selected.

As a final remark, for our suboptimal Matlab (Mathworks, MA, USA) implementation, the CT-based
and MR-based stages are currently applied sequentially, with an effect on overall time cost, which is
approximately 3 min. Parallelization of these stages is expected to drastically reduce time cost.

Figure 14. Cont.
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Figure 14. Sensitivity of segmentation quality with respect to DSC and HD against filter mask size (a,b)
and active contour iterations (c,d). MR with red lines and CT with blue lines. The second parameter
applies only to MR.

4. Conclusions

This work introduces a computational approach for vertebrae and IVD boundary extraction,
based on CT and MRI data. The proposed method (1) derives complementary information from
both modalities; (2) is not learning-based and is not dependent on the availability of large, labelled
datasets, unlike the vast majority of state-of-the-art methods; (3) is capable of obtaining segmentation
results of at least comparable quality to the ones obtained by state-of-the-art methods, although it
is not learning-based; (4) provides a bimodal visualization of the spine, which could potentially aid
differential diagnosis with respect to several spine-related pathologies. In addition, the proposed
method requires a limited amount of intervention. It starts from aligning corresponding CT and MR
images, whereas the CT images are segmented to extract vertebrae boundaries. The result of CT
segmentation is fused with MR images to guide the subsequent localization and segmentation stages.
The result of CT segmentation guides IVD localization and the exact IVD boundaries are extracted
by applying the Chan–Vese active contour model on a contrast-enhanced version of the MR image.
Finally, the extracted vertebrae and IVD boundaries can be used to provide a hybrid 3D visualization of
the spine. The proposed method was compared with state-of-the-art methods, with respect to: (1) CT
image segmentation for vertebrae boundary extraction, (2) MR image segmentation for IVD boundary
extraction. In both cases, the obtained segmentation quality, as quantified by means of the DICE
and HD measures, was at least comparable to the one obtained from state-of-the-art learning-based
methods. In addition, unlike competing methods, the proposed method requires no prior knowledge
in the form of an atlas or learning from annotated samples. On the other hand, the proposed method
depends on the availability of CT/MR image pairs, which could limit its applicability, taking into
account that several currently adopted clinical practices are single-modal. Moreover, our suboptimal
Matlab implementation is relatively slower than some of the state-of-the-art methods.

A research challenge for future work is the design of hybrid approaches that incorporate
learning-based components, which can take advantage of the potential availability of small-sized,
labelled CT/MR image pairs. Moreover, the development of an optimized implementation, as well
as additional experiments on clinically important cases, such as those involving the presence of
dehydrated discs, are the subject of our ongoing research.
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