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Abstract: Evaluation of document classification is straightforward if complete information on the
documents’ true categories exists. In this case, the rank of each document can be accurately determined
and evaluated. However, in an unsupervised setting, where the exact document category is not
available, lift charts become an advantageous method for evaluation of the retrieval quality and
categorization of ranked documents. We introduce lift charts as binary classifiers of ranked documents
and explain how to apply them to the concept-based retrieval of emotionally annotated images as one
of the possible retrieval methods for this application. Furthermore, we describe affective multimedia
databases on a representative example of the International Affective Picture System (IAPS) dataset,
their applications, advantages, and deficiencies, and explain how lift charts may be used as a helpful
method for document retrieval in this domain. Optimization of lift charts for recall and precision is
also described. A typical scenario of document retrieval is presented on a set of 800 affective pictures
labeled with an unsupervised glossary. In the lift charts-based retrieval using the approximate
matching method, the highest attained accuracy, precision, and recall were 51.06%, 47.41%, 95.89%,
and 81.83%, 99.70%, 33.56%, when optimized for recall and precision, respectively.

Keywords: image classification; image retrieval; concept based retrieval; affective computing;
performance evaluation; lift charts

1. Introduction

The ever-growing size and complexity of unstructured information available on the World Wide
Web continuously motivate computer science researchers in the development of more useful data
description models and retrieval methods. Classification is a constituent part of every image retrieval
system. Efficient classifiers, which benefit from high information retrieval performance and correctness
metrics, such as accuracy, precision, fall-out, F-measure, mean average precision, or discounted
cumulative gain [1,2] will remove irrelevant results in the returned dataset and provide users only with
the information they actually requested. Because of the high data throughput requirements in online
document retrieval systems, classification speed is also very important for positive user experience.
Therefore, it is imperative to identify the classification models with the optimal set of characteristics.

Lift charts are typically used for the evaluation of machine learning models and the comparison of
one model’s performance to another [3,4]. As a type of diagram, a lift chart graphically represents and
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quantifies the improvement that a classifier provides when compared against a different classifier or a
random guess [3,4]. Lift charts have two main applications. Firstly, they are a well-known method for
high-quality evaluation of classification models used in data mining and machine learning [5]. With a
lift chart, it is possible to compare the accuracy of predictions for multiple models that have the same
predictable attribute. Furthermore, lift charts may be used to assess the accuracy of prediction either
for a single outcome (a single value of the predictable attribute) or for all outcomes (all values of the
specified attribute). Assuming the previous ranking of classification results (e.g., established with an
appropriate relatedness measure between a query and document descriptors), the construction of a lift
chart is algorithmically simple, with linear time complexity.

The second application of lift charts, which is very important and often overlooked, is in the
classification of ranked retrieval results. Such results may be optimized for either precision or recall.
This type of lift chart application is the subject of the paper. An example is provided in Figure 1 to
improve clarity. In this flexible approach, it is possible to arbitrarily increase the ratio of correctly
classified items without prior knowledge of the item classes at the expense of the end sample size.
Although this optimization method may be equally applied to concept-based [6] or content-based [7]
image retrieval for determining category boundaries, we will discuss in detail only the former
implementation for the sake of brevity and conciseness.

Information 2020, 11, x FOR PEER REVIEW 2 of 20 

 

positive user experience. Therefore, it is imperative to identify the classification models with the 
optimal set of characteristics. 

Lift charts are typically used for the evaluation of machine learning models and the comparison 
of one model’s performance to another [3,4]. As a type of diagram, a lift chart graphically represents 
and quantifies the improvement that a classifier provides when compared against a different 
classifier or a random guess [3,4]. Lift charts have two main applications. Firstly, they are a 
well-known method for high-quality evaluation of classification models used in data mining and 
machine learning [5]. With a lift chart, it is possible to compare the accuracy of predictions for 
multiple models that have the same predictable attribute. Furthermore, lift charts may be used to 
assess the accuracy of prediction either for a single outcome (a single value of the predictable 
attribute) or for all outcomes (all values of the specified attribute). Assuming the previous ranking of 
classification results (e.g., established with an appropriate relatedness measure between a query and 
document descriptors), the construction of a lift chart is algorithmically simple, with linear time 
complexity. 

The second application of lift charts, which is very important and often overlooked, is in the 
classification of ranked retrieval results. Such results may be optimized for either precision or recall. 
This type of lift chart application is the subject of the paper. An example is provided in Figure 1 to 
improve clarity. In this flexible approach, it is possible to arbitrarily increase the ratio of correctly 
classified items without prior knowledge of the item classes at the expense of the end sample size. 
Although this optimization method may be equally applied to concept-based [6] or content-based [7] 
image retrieval for determining category boundaries, we will discuss in detail only the former 
implementation for the sake of brevity and conciseness. 

 
Figure 1. An example of a realistic lift chart from the evaluation experiment described in Section 5. The 
dataset was queried with two keywords and instances were ranked by approximate lexical similarity. 
Optimal precision was achieved for the first 5% of emotionally annotated pictures in the set, while the 
optimal recall (>90% of true positive examples) was ensured by using the top 80% ranked results. 

The application of lift charts as classifiers is specifically directed towards affective multimedia 
databases that are used in experimentation with attention and emotion. These multimedia affective 
databases are a frequently used tool with numerous applications in the fields of psychology and 
neuroscience. Emotionally annotated multimedia are images, sounds, video, music and text 
documents with annotated semantic and emotional content. They are stored in affective multimedia 
databases. Apart from digital objects, these databases contain meta-data about their high-level 

Figure 1. An example of a realistic lift chart from the evaluation experiment described in Section 5.
The dataset was queried with two keywords and instances were ranked by approximate lexical similarity.
Optimal precision was achieved for the first 5% of emotionally annotated pictures in the set, while the
optimal recall (>90% of true positive examples) was ensured by using the top 80% ranked results.

The application of lift charts as classifiers is specifically directed towards affective multimedia
databases that are used in experimentation with attention and emotion. These multimedia affective
databases are a frequently used tool with numerous applications in the fields of psychology and
neuroscience. Emotionally annotated multimedia are images, sounds, video, music and text documents
with annotated semantic and emotional content. They are stored in affective multimedia databases.
Apart from digital objects, these databases contain meta-data about their high-level semantics and
the expected emotion that will be induced in a subject when exposed to a contained document.
Two important features distinguish affective multimedia databases from other multimedia repositories:
(1) the purpose of the multimedia documents and (2) the emotional representation of the multimedia
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documents [8]. In our approach, binary classifiers based on lift charts are applied to improve precision
and recall in text-based concept retrieval from these databases. Lit charts are a novel but by no means
universally optimal retrieval tool for affective documents. Other classifiers suitable for multimedia
retrieval may also be used for the retrieval of emotionally annotated images if they take into account
different emotional and semantic models in the databases.

The remainder of the paper is organized as follows: in the next section, an outline of affective
multimedia databases is given—what they are, how they are structured and how they are commonly
used. After that, in Section 3, the problem of concept-based image retrieval and binary classification
of images, where lift charts can be successfully applied, is formally defined. Lift charts and their
properties are described in Section 4. The evaluation of lift charts on a concrete image retrieval task from
the International Affective Picture System (IAPS) affective picture database is presented in Section 5.
Advantages and shortcomings of lift charts as classifiers and methods for evaluation of classifiers,
and how the performance of lift charts in the described setting may be improved, are discussed in
Section 6. Finally, conclusions are presented in the final section, at the end of the paper.

2. Affective Multimedia Databases: Definition, Architecture and Usage

Affective picture databases are most frequently employed in the controlled stimulation of
emotional reactions for experimentation in cognitive sciences, psychology, neuroscience, and different
interdisciplinary studies, such as human–computer interaction (HCI) [9–11]. Simply put, they are
experts’ tools designed for intentionally provoking targeted emotional reactions in exposed subjects.
They have many practical uses related to research in perception, memory, attention, reasoning,
and, of course, emotion. Many such databases have so far been developed. The most popular ones,
which are free for use by researchers, are: the International Affective Picture System (IAPS) [9,10],
the Nencki Affective Picture System (NAPS) [12] (with its extensions NAPS Basic Emotions [13] and
NAPS Erotic Subset [14]), the Geneva Affective Picture Database (GAPED) [15], the Open Library
of Affective Foods (OLAF) [16], the DIsgust-RelaTed-Images (DIRTI) [17], the Set of Fear-Inducing
Pictures (SFIP) [18], the Open Affective Standardized Image Set (OASIS) [19], and the most recent one,
the Children-Rated Subset to the NAPS [20]. In addition, a recent list of affective picture databases
with different emotionally-annotated multimedia formats and exemplars of the research conducted
with these database is available in [8]. An example of affective pictures from the OASIS database,
with semantic tags included, is shown in Figure 2. The OASIS employs similar emotional and semantic
models to the IAPS database.
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Figure 2. An example of 10 affective pictures with their tags from the Open Affective Standardized
Image Set (OASIS) database [19]. Pictures with high arousal and valence for inducing the emotion
of happiness (top row), and high arousal and negative valence for stimulation of fear (bottom row).
Reproduced with permission from Kurdi, B.; Lozano, S.; Banaji, M.R., Introducing the open affective
standardized image set (OASIS); published by Springer, 2017.
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New affective databases for provoking emotional responses are being continuously developed.
This trend is encouraged by the growth in the variety and complexity of, and in demands for intensity
and precision in, the experimentation by the researchers. Although they are invaluable tools in their
field of practice, the affective multimedia databases have two important drawbacks that can be at least
alleviated, if not completely eliminated, by utilizing methods from computer science and information
retrieval. These drawbacks are demanding and time-consuming construction and retrieval of affective
multimedia documents. Both are related to inefficient search of the databases, which is caused by their
rudimentary and inadequate semantic representation model.

It is hard to define a specific unitary structure of affective multimedia databases, since there is
no accepted standard for their construction. However, although they are different, some important
common, distinctive features may be established [8]. Most importantly, and in the context of this
paper, document semantic annotations use a sparse bag-of-words model. In the affective databases,
a single multimedia stimulus is tagged with an unsupervised glossary. Frequently, a document is
tagged with a single free-text keyword, and different tags are used to describe the same concept.
For example, a picture showing an attack dog in the IAPS database could be tagged as “dog”,
“attack”, “AttackDog”, or “attack_dog”, etc. Synonym tags such as “canine” or “hound” are also
used. Furthermore, semantic relations between different concepts are undefined. The lexicon itself does
not implement semantic similarity measures and there are no criteria to estimate relatedness between
concepts. For example, in such a model, it is difficult to determine that “dog” and “giraffe” are closer
to each other than “dog” and “door”. This is a huge flaw in the document retrieval process because a
search query must match the keywords only lexically. In this setting, a more semantically meaningful
interpretation of the query and annotating tags is not possible. The inadequate semantic descriptors
result in three negative effects that impair information retrieval: (1) low recall, (2) low precision and
high recall, or (3) vocabulary mismatch. Moreover, affective multimedia databases do not contain their
own hierarchical model of semantic labels and do not reuse external knowledge bases.

Unlike semantics, the description of multimedia affect is much more efficient and standardized
across the currently published affective multimedia databases. The two most common models of
emotion are the pleasure-arousal-dominance (PAD) dimensional [21] and discrete models [22].

2.1. The Please-Arousal-Dominance Emotion Model

The PAD dimensional model is defined with three emotion dimensions: valence (Val), arousal (Ar)
and dominance (Dom). Often, only the first two dimensions are used, because dominance is the least
informative measure of the elicited affect [23]. All dimensions are described with continuous variables
in bounded but closed intervals from 1.0 to 9.0 as al ∈ [1, 9] ∈ Val, ar ∈ [1, 9] ∈ Ar, and dom ∈ [1, 9] ∈ Dom.
These three affective dimensions have orthogonal meanings in psychology [21,23]. Valence describes
positivity and negativity of stimuli, while arousal specifies the intensity or energy level of a stimulus,
and dominance is the controlling and dominant nature of the emotion. Most often, dominance is omitted,
since it was experimentally established that it does not significantly contribute to discrimination of
stimuli. Thus, affective values in multimedia are commonly described as coordinates in a 2D Cartesian
space with the valence dimension representing the x-axis and arousal the y-axis. In such a model,
the distance between two emotions can be simply expressed as a Euclidian distance between two
points in the coordinate system. If pic1(val1, ar1) and pic2(val2, ar2) are two pictures with dimensional
emotion coordinates val1, val2 and ar1, ar2 representing their respective valence and arousal values,
then the emotion distance ddimensional

emo between pic1 and pic2 in the dimensional model is Equation (1):

ddimensional
emo =

∣∣∣pic1, pic2
∣∣∣ = √

(val1 − val2)
2 + (ar1 − ar2)

2 (1)

2.2. The Discrete Emotion Model

The discrete emotion model, also called emotion norms, is defined around an immutable set of
distinct emotional categories, where the intensity of each of these basic emotions is a unified pair.
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The intensity is represented with a real value between 0.0 and 1.0, where 1.0 represents the maximum
affective intensity. For example, the widely used Ekman’s model, also called “The Big Six”, defines six
different basic emotions: happiness, disgust, anger, fear, sadness, and surprise. However, researchers
do not unanimously agree on the right number of categories, and affective multimedia databases were
built on models with different numbers of discrete emotions. This makes the transformation of a
stimulus from one database to another, or unification of datasets from dissimilar databases, difficult.
In the discrete model difference between two affective pictures is a vector in n-dimensional space.
If pic1(be11, be12, . . . , be1n) and pic2(be21, be22, . . . , be2n) are two pictures with intensities of n discrete
emotions be11, be12, . . . , be1n and be21, be22, . . . , be2n, then the emotion distance ddiscrete

emo between pic1 and
pic2 in the discrete model is given with Equation (2):

ddiscrete
emo = ‖pic1, pic2‖ =

√√ n∑
i=1

(be1i − be2i)
2 (2)

where i represents the ordinal number or index of some emotion category.
The most comprehensive effort into the systematization of emotional models for usage in computer

data processing systems is represented by the EmotionML standard recommendation developed under
the umbrella of the W3C Consortium [24]. The Emotion Markup Language is written in XML and serves
as an annotation language for multimedia. It currently offers the most sophisticated emotion glossary,
which includes five category vocabularies, four dimension vocabularies, three appraisal vocabularies,
and one action tendency vocabulary. In studies from psychology and neuroscience, additional models,
apart from the PAD dimensional and the discrete ones, have been proposed, but these theories have
not been applied to the annotation of affective multimedia (see [24] for more information).

The semantics of affective multimedia databases was manually annotated by domain experts,
while the emotional content was estimated and verified experimentally. The elicited emotion values
are acquired with rigidly controlled experiments in which participants express, most commonly
in the form of a questionnaire, their subjective beliefs in elicited emotions. For instance, in the
construction of the latest version of the IAPS database, over 100,000 standardized self-reports were
collected and statistically analyzed to establish statistical distributions of emotional dimensions for
1195 pictures [9,10]. Hence, emotional reactions of around one hundred participants on average have
been aggregated per picture. A similar approach was used in other databases, while only some of
them additionally have recordings of subjects’ physiological signals in baseline and excited states.

3. Overview of Concept-Based Image Retrieval with Boolean Classification

In concept-based, also known as description-based or text-based, image retrieval, binary or
binomial classification is an essential step in the selection of true results [25]. In this process, lift charts
can be used in two different ways: (1) to determine the cutoff rank of retrieved items, and (2) to assess
the quality of the retrieval itself.

In concept-based document retrieval systems, as well as in image retrieval systems as their
subtype, a new search is started by entering a query that constraints the items that should be retrieved.
The query must be translated into the set of concepts that represents a set of documents being searched
for adequately well [1,2]. The formality and expressivity of the concept set depend on the chosen
knowledge representation model. Transformation of text to concepts may be trivial in the case where it
is performed as a series of search tags or keywords. The search may greatly benefit if an underlying
knowledge base is used that defines concept labels, their properties, and relationships between them [7].

In the next step, the query concepts must be brought into a functional relationship
and quantitatively compared with descriptions of images stored in the multimedia repository.
With a technique called “query by example”, the concepts are not entered directly, but fetched
from a description of an archetypical image, which was uploaded into the system instead of the
query [7]. In text-based systems, describing concepts must be provided together with the example
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image itself. This is usually accomplished by letting users choose one or more similar images already
in the repository [1,2].

After a search query has been entered, in the next step of the retrieval process, each concept in the
search text is compared to every concept ci in descriptions of images stored in the repository. A suitable
measure is then used to rank images according to their relatedness or similarity to the search query.
The similarity measure is a function sim

(
ci, c j

)
∈ [0, 1] : ci, c j ⊂ C, which takes two concepts from the

set of all concepts C as its domain and provides a real number in a closed interval between 0.0 and 1.0
as a measure of closeness between the two concepts ci and c j. Similarity measures between pairs of
concepts in the query qi, q j ⊂ C and image description di, d j ⊂ C are combined with an aggregation
function. The aggregation may be any suitable function, but usually it is a sum or product of individual
similarity assessments [26]. If items in the repository are described with labels from a knowledge base,
then it is possible to use concept distance measures, which are more formal and semantically more
meaningful than lexical measures. Examples of both sets of measures can be found in [1,2]. Apart from
the expressiveness of image description, the choice of the similarity and aggregation functions is crucial
for the quality of the retrieval.

The results, i.e., retrieved documents, are represented as an ordered list a1, a2, . . . , an. Each image is
assigned with a rank r ∈ Z, which is the sequence number of the image in the returned list. Consequently,
if M items are being returned, the first item a1 has the rank r1 = 1, the second one r2 = 2, and the rank
of the last item an is rn = |M|. For a search to be considered successful, documents closer to the posed
query should appear first, i.e., near the beginning of the returned results, and conversely, less related
documents should appear more towards the end of the list. In other words, items more relevant to the
query have a lower rank and those less relevant have a higher rank number. Ideally, the similarity of
items in the returned list should be a monotonically decreasing and continuous function. As users
browse through the list, from the first document towards the last, they expect their relevancy to
continuously decrease. It would be counterintuitive and indeed harmful if items being sought are
located at the end of the list. Such items may be unintentionally overlooked. Therefore, in an ideal
series Equation (3) is valid:

∀si ≥ si+1 : i = 1, 2, · · · , |M| − 1 (3)

where si ∈ R is the similarity of item ai. If a large number of documents are stored in the repository,
it would be costly to retrieve all of them at once. In such circumstances, only the best documents should
be presented, while others are disregarded. The decision boundary is set at a rank cutoff rc ∈ [0, |M|],
where items ai : i ≤ rc will be displayed to users and a j : j > rc will not. Preferably, the cutoff value must
be chosen so that precision and recall are maximized in order to display as many relevant documents
in the repository as possible. Finally, after the documents have been classified and ranked, they may be
extracted from the repository with their textual descriptions and presented to the user in the specific
order consistent with their appointed rank.

3.1. Evaluation Metrics

When dealing with two-class (i.e., binary) classification problems in picture retrieval, only one
class contains objects that match the search parameters and will be presented to users, while objects in
the other class are discarded as irrelevant. The first class is usually labeled “positive” or “true” and the
other “negative” or “false”.

The dataset always consists of P positive and N negative examples. The job of a classifier is to
assign a class to each of them. In realistic settings, some of the assignments will inevitably be wrong.
To assess the classification outcome, we have to count the number of: (1) true positives (TP), (2) true
negatives (TN), (3) false positives (FP) as negative, but wrongly classified as positive, and (4) false
negatives (FN) as actually positive examples that are classified as negative. By definition, positive and
negative results are related as in Equations (4) and (5):

P = TP + FN (4)
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and
N = TN + FP. (5)

In this regard, any classifier, either realistic or optimal, always assigns TP + FP examples to the
positive class and TN + FN examples to the negative class. However, in practice, information retrieval
systems do make mistakes: false negatives are retrieved and displayed, although they should be
rejected, while false positive images are not presented to a user by a retrieval system, although they
should be [27,28]. These classification errors are called Type I and Type II errors, respectively.

The most widely used measures of classifier performance and correctness are accuracy, precision,
recall, fall-out and F-measure. Precision and accuracy are often used to measure the quality of binary
classifiers. Precision, or positive predictive value (PPV) as it is also called, is defined in Equation (6) as
the proportion of accurately classified examples in a set of positively classified examples [27,28]:

PPV =
TP

TP + FP
(6)

Recall (R), also named sensitivity, hit rate, and true positive rate (TPR), is the proportion of
accurately classified examples in the set of all positive examples [27,28] as in Equation (7):

R = TPR =
TP

TP + FN
(7)

Precision may also be defined as the probability that a retrieved document is relevant, while recall
is the probability that a relevant document is retrieved in a search. Additional performance measures
for lift charts can be defined, as described in the next section. If classification is binary or binomial,
i.e., with only two classes, the term sensitivity is often used instead of recall. In this case, FP rate (FPrate)
is designated as FPR, and TP rate (TPrate) as TPR [29]. Fall-out is the proportion of non-relevant
documents that are retrieved out of all non-relevant documents, while F-measure (also F1-score or
F-score) includes precision and recall as its weighted harmonic mean. A lower result for fall-out
is better.

4. Binary Classification with Lift Charts

Lift charts are a type of charts, such as the receiver operating characteristic (ROC) curves and
precision-recall curves, which are often utilized in machine learning for visualization and evaluation
of classification models. They can be especially useful in cases where the number of false positive
observations is unavailable and, subsequently, more common machine learning evaluation methods,
such as the ROC curves, cannot be constructed. Lift charts are primarily used as a tool for observing
the improvement that a classifier makes against a random guess. In previously published literature
they are described in this respect [3,30,31].

However, the second use of lift charts—which is in the focus of this paper—is in the binary
classification of ranked results. In this application, lift charts can be optimized to increase retrieval
precision or recall. The difference in optimization is achieved with the choice of rank cutoff.
In optimization for precision, the cutoff is commonly set to a lower rank, while if classification
is adjusted for recall (i.e., better sensitivity), the cutoff is set at a higher rank. The exact choice of rank
depends on the data and the desired classification performance.

In the document retrieval experiment, the lift charts have been demonstrated to be a helpful
method for binomial classification in situations where ground truth annotations are inadequate
or unattainable and the precise rank of affective multimedia documents cannot be determined.
Ground truth annotations or labels are very important in concept-based retrieval, as they represent
the true description of documents. In fact, they specify an objective and complete knowledge about
document content in description-based retrieval paradigms. The annotations can be represented by any
adequately expressive model, such as keywords from supervised or controlled vocabularies as in the
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bag-of-words model [1,2]. Ground truth labels of images are always provided by a trusted authority.
The labels are added either by a human domain expert or automatically by image analysis, depending
on the complexity of the problem [32]. However, in some information retrieval applications, the labels
are not available or cannot be correctly defined. In such circumstances, both the true category and rank
of retrieved results cannot be known accurately and, subsequently, the search performance deteriorates.
In these cases, the capability to assign documents to the correct class becomes more important than the
effectiveness of finding the correct document rank [1,2]. The rationale is that if the rank is incorrect and
document order in the results list is inaccurate, at least they will be correctly classified and presented
to a user. In other words, it is better to retrieve a correct document albeit with an incorrect position in
the results list, than to not retrieve it at all. The lift charts can assist in improving precision and recall
in such settings.

It should be noted that the term “profit charts” is sometimes used in the literature instead of
“lift charts” (for example in [33]). However, the two are not completely identical. A profit chart contains
the same information as a lift chart, but also presents the estimated increase in profit that is related to a
specific model [3].

Formally, in document retrieval, a lift chart is a two-dimensional (2D) graph with its x-axis
representing the ranked number of results and its y-axis showing the true positive (TP) measure.
Such a lift chart may be defined as in Equation (8):

x = t, y = TP(t) (8)

where N is the total number of documents being classified, t ∈ [0, N] is the ranked document’s ordinal
number, and TP(t) ∈ [0, N] is the true positive value at position t.

However, for better convenience, relative ratios are often used for the definition of chart axes
instead of total numbers. In this approach, the x-axis represents the proportion of ranked results (%)
and the y-axis represents the true positive rate (TPR), which is the ratio of correctly classified instances
and total number of documents in the retrieved set, as was explained in Section 3.1. Consequently,
the lift chart function can be defined as in Equation (9):

x =
t
N

, y = TPR(t) (9)

where x ∈ [0.0, 1.0] represents the proportion of the result and TPR(t) ∈ [0.0, 1.0] is the value of the
true positive rate at ranked position t.

Therefore, a lift chart is created by calculating TP(t) or TPR(t) for specific values of t. In practice,
lift charts are not smooth but stepwise, i.e., each point on the graph defines a column (a step or an
increment) with the point in its upper left corner. To facilitate and precipitate the plotting process,
usually only representative values of t are considered in discrete increments, such as each 5% (t/N = 0.0,
0.05, 0.1, . . . , 0.95, 1.0) or 10% (t/N = 0.0, 0.1, 0.2, . . . , 0.9, 1.0) data segments. The convex curve
obtained by drawing the given points is called a lift chart. The coarseness of charts’ shapes is directly
proportional to their increment size. Smaller steps, as the difference between two consecutive values
of t, will have the effect of a smoother curve shape, while larger steps will produce wider discrete
columns and a coarser or step-like hull. Note that the curve can be at most calculated for each classified
item, which is not recommended if the retrieved set is very large.

An ideal classifier model will have TPR(t0) = 1.0 for t0 = 0, because a perfect retrieval
system will provide only TP documents to users, correctly disregarding TN, FN, and FP instances.
The corresponding lift chart is a vertical line along the left edge and a horizontal line on the top edge of
the plot area. On the other hand, the lift chart of a naïve classifier that categorizes documents just by
random guessing is a straight diagonal line from the lower left to the upper right corner. Such a lift
chart is defined by two points, TPR(t0) = 0.0, t0 = 0 and TPR(t1) = 1.0, t1 = 1.0.
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In binary settings, a random classifier classifies 50% of pictures to the “True” category and 50% to
the “False” category. As such, it has the worst performance of all possible classifiers and is used as a
preferable reference for the evaluation of machine learning models. Thus, it is commonly assumed that
the performance of any actual classification model is better than the classification performed simply by
chance and worse than that of an ideal classifier.

Three lift charts of a realistic classifier from the experiment in this paper, for ideal and random
classifiers with an increase of 5% in t, are shown in Figure 3.
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The improvement of a model is evaluated in terms of a numerical measure called the lift score or,
more commonly, the lift. By comparing the lift for all portions of a dataset and for different classifiers,
it is possible to determine which model is better, or even optimal, and which percentage of the cases
in the dataset would benefit from applying the model’s predictions. Classifiers may have similar or
even identical performance for some values of t/N, making the lift negligible or very small, but, at the
same time, their performance can be considerably different in other sections. Therefore, the lift must be
determined for all steps to establish the maximum score.

Formally, the lift is a measure of predictive model effectiveness calculated as the ratio between the
results obtained with and without the predictive model. The lift is commonly expressed in relative
terms as a percentage where, for example, a lift of 100% implies a double improvement in predictiveness
compared to a referent model, a lift of 200% a triple improvement, and so on.

The area under curve (AUC), or more precisely, the area under lift chart Ali f t can be used as a
measure of classification quality. Since, in practice, lift charts are not smooth, but stepwise, the sum of
all discrete columns in a stepwise lift chart is equal to Ali f t.

Using integration, it can be easily shown, as in Equation (10), that the random classifier has an
area under the curve equal to:

Ali f t =
1

P + N

(
P2

2
+ PN·AROC

)
; Ali f t ∈ [0, P] (10)
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where AROC is area under the curve of the same classifier [5]. It is defined in Equation (11):

AROC =
1

PN

∫ N

0
TP dFP; AROC ∈ [0, 1] (11)

The random classifier has Ali f t = P/2 and a perfect classifier has Ali f t = P. Therefore, the Ali f t
of actual classifiers lies between P/2 and P. Since Ali f t always depends on the P to N ratio, if P� N,
then it is possible to use the approximation Ali f t � AROC·P. Moreover, it should be noted that a random
classifier has AROC = 0.5, while a perfect classifier has AROC = 1. Classifiers used in practice should
therefore be somewhere in between, and preferably have an AROC close to the value of 1.

AUCs of the lift charts from Figure 3 are portrayed in Figure 4. In this case, with the relative
proportion in the dataset on the x-axis, numerical integration for the realistic classifier gives
Ali f t = 0.6714. This is 1.3428 times more than for the random guess (Ali f t = 0.5) and 1.4894 times less
than for a perfect classifier (Ali f t = 1.0).
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5. Evaluation of Affective Image Retrieval with Lift Charts as Binomial Classifiers in Ranking

In the experiment, binomial classification of images was evaluated with lift charts to provide
a real-life example and indicate benefits and drawbacks of their utilization in image retrieval.
The experiment demonstrated the application of lift charts as explained in Section 4. For this, a dataset D
consisting of N = 800 pictures was taken from the IAPS corpora [9,10]. This database was chosen because
it is the most frequently utilized one, and also one of the largest affective multimedia databases [8].
Moreover, its architecture may be considered typical for this type of datasets. Other repositories have
comparable semantic models with unsupervised annotation glossaries and sparse tagging. The selected
pictures are visually unambiguous with easily comprehensible content. The content of each picture
was described with one keyword wi ∈W from an unsupervised glossary W. The glossary contained
387 different keywords. The set of all queries Q applied in the evaluation consisted of different
keywords taken from the annotation glossary (Q ⊆W). For every query qi ∈ Q, a subset of documents
.

D ⊂ D with
∣∣∣∣ .
D

∣∣∣∣ = 100 pictures was randomly preselected and then classified using lexical relatedness

measures [34]. Each subset
.

D was queried three times: with one, two, or three different words.
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Only the terms from D were used as queries, which guaranteed that the retrieved sets were nonempty.
The setup for the experiment was reused from a previous research [34] but with the expanded dataset
D, which also resulted in a different glossary W, queries Q and assortment of all preselected subsets
.

D. Compared to [35], the additional images in the dataset provide greater credibility in the results of
this study.

Two lexical relatedness measures were used for ranking: naïve string matching and the Levenshtein
distance (i.e., edit distance) [34]. Each subset

.
D was classified once for each relatedness algorithm,

with rank cutoff independently optimized twice: first for precision and then for recall. The goal
of classification for precision was to maximize the fraction of pictures relevant to posited queries.
Classification for recall tried the opposite: to maximize the share of relevant pictures in

.
D. In practice,

the two optimization methods are contradictory: the former results in high accuracy and a small
number of retrieved samples, and the latter optimization returns a large share of samples, but with
considerably lower accuracy.

5.1. Similarity Measures and Ranking

The two ranking algorithms used in the experiment assigned a similarity score (i.e., measure of
lexical relatedness) between two text labels, a and b. This measure rel(a, b) ∈ [0, 1] with a, b ∈W has
the following properties in Equation (12):

rel(a, b) = 1, x = y
rel(a, b) < 1, x , y.

(12)

The string matching algorithm represents the most unassuming rule that merely checks if a
specific series of characters is a part of another character series. The output of this Boolean model is
binary (e.g., gives 0 or 1 as its output); either two terms do not match at all or they match completely.
The string matching and Levenshtein algorithms were chosen for the experiment since they are typical
and easy to understand representatives of two different types of lexical searching algorithms—exact
and approximate, respectively. The first algorithm does not allow errors in search terms, unlike the
latter, which permits users to search with wrong or imprecise terms and still get at least partially correct
results. The naïve matching algorithm is elementary and can be easily implemented. On the other hand,
Levenshtein is a popular approximate search algorithm that represents an entire group of edit distance
lexical metrics [34]. Aside from string matching and Levenshtein distance, many concept-based retrieval
methods exist in the literature that improve on and even surpass these two basic algorithms [36].
Therefore, the results from string matching and Levensthein distance algorithms can be regarded as
good indicators of the minimum performance that lift charts can provide in binary classification for
concept-based image retrieval.

As an example, the experiment picture 1019.jpg is tagged with k = “Snake” and the 1-word
search query was q1 = “Serpent”. The naïve method (i.e., exact matching) resulted in relexact(k, q1) = 0,
since k and q1 were not completely equal. For the same example, the Levenshtein measure, as an
approximate lexical matching algorithm, gave relapprox(k, q1) = 0.2. For a 2-word query q2 =

(
q1

2
∨

q2
2

)
,

where q1
2 = “Snake” and q2

2 = “Serpent”, and for the same picture keyword k, aggregation of separate
relevance scores was necessary. In the experiment, arithmetic mean, as the aggregation function,
was selected among a range of other relevance score combination methods [27]. Thus, for the 2-word
query q2 the exact matching is defined in Equation (13):

relexact(k, q2) =
1
2

(
relexact

(
k, q1

2

)
+ relexact

(
k, q2

2

))
=

1
2
(0 + 1) = 0.5 (13)

while approximate metrics provided a slightly higher score is in Equation (14):

relapprox(k, q2) =
1
2

(
relapprox

(
k, q1

2

)
+ relapprox

(
k, q2

2

))
=

1
2
(0.2 + 1) = 0.6 (14)
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5.2. Binomial Classification with Lift Charts

In the experiment, all queries qi returned
∣∣∣∣ .
D

∣∣∣∣ = 100 images sorted in descending order according
to the selected distance metric. It was essential to find the threshold value t that fixes the boundary
between categories, i.e., how the retrieved pictures will be classified. Given a picture pi ∈

.
D and its

rank ri ∈ [1, 100] in the retrieved results, where r j = 1 indicates the most relevant picture p j, the picture
pi was assigned to the category cati = {True, False} as in Equation (15):

cati = True, ri ≤ t
cati = False, ri > t

(15)

Thus, in every query, the retrieved corpus was binarily classified into two subsets: (1) the category
“True” with relevant pictures to the search query, and (2) the category “False” with irrelevant pictures.
The threshold value (i.e., rank cutoff) was set individually for every query with a lift chart.

For the maximum precision, the cutoff was assigned to the rank with the highest lift factor.
This adaptive approach assures a more objective ranking and better retrieval performance than a
constant classification threshold. For example, if a result set has the maximum lift factor for rank r = 10
to achieve the highest precision, only samples with r ≤ 10 should be classified as “True” and all others
with r > 10 as “False”.

This optimization approach contrasts with the fitting for recall (sensitivity), where the classification
threshold is set to a relatively high value to include as many true positives as possible. In the experiment,
the threshold was set at 90%. On the other hand, this approach will inevitably result in a lower
precision, because many false positives will also be retrieved. It is important to point out that by
using lift charts it is always possible to choose between higher precision or recall and customize the
classification accordingly.

In the experiment, the classifications were optimized twice for both goals and the lift charts were
split into 5% intervals. An example from the experiment is presented in Figure 5 below. Here, the dataset
was queried with a single keyword “man” and ranked using the Levenshtein algorithm.
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In Figure 5, the red curve represents the lift chart of the classifier used in the picture retrieval
study and a random classifier is designated with the black line. The orange marker represents the
maximum lift over a random classifier. As can be seen in Figure 5, the maximum lift of 769% was
achieved for t = 0.05 and TPR(t) = 0.38. All other data segments provided lower lifts.

Additionally, in Figure 5, the green marker at 0.92 TPR represents the cutoff of optimization
for recall because it indicates the lowest share of results (in this case 0.25 or 25%) where TPR ≥ 0.9.
Thus, in this application for optimal recall, the cutoff must be set as r = 25. Again, pictures with r ≤ 25
will be presented as search results, and all other pictures with r > 25 will be omitted. The recall was
increased, but in a trade-off, precision and accuracy were reduced.

In the experiment, ground truth annotations of images were available, but they were semantically
inadequate to fully describe the pictures and their content. Subsequently, domain experts could not
agree on the true rank of images and only the assignment into the two classes was possible. This kind of
problem is especially suited for lift charts, as they can be used to quantitatively evaluate and compare
different classifiers, even when document rank cannot be known.

The detailed progress of the lift depending on the results share t is displayed in Figure 6.
Consequently, the 5% point must be chosen for cutoff in optimization for precision: pictures with rank
r ≤ 5 should be assigned to the class “True” and displayed to users, and pictures with r > 5 to the
class “False“ and disregarded. With a cutoff at r = 5, TPR = 0.38, or in other words, only 38% of the
TP pictures in the set were retrieved. This contributes to poor performance in recall but improves
precision and accuracy.
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lift, as an improvement of 7.69 or 769% over random guess (black series), corresponds to the results
share of 0.05 (5%).

For better clarity, the entire affective multimedia retrieval process is displayed in the UML activity
diagram in Figure 7.
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used in the experiment.

The affective multimedia retrieval starts with a user querying the affective multimedia database
using an appropriate computer interface. The users enter free-text keywords as their query and
select which concept similarity measure will be used for matching. The system calculates semantic
similarity between the entered query and descriptions of multimedia in the database. This step could
be time-consuming, depending on the computational complexity of the chosen similarity algorithm.
The duration of the ranking also linearly depends on the size of the database. After ranking has
finished, affective multimedia documents are sorted in the order proportional to the similarity of their
describing concepts to the concepts in the posed query. Since documents are indexed, the sorting
should be less complex than the ranking. In the next step, the binary classification using lift charts is
performed. If the optimization for precision is desired, then the system will find the rank with the
maximum lift factor and set the cutoff at that value. Alternatively, if the search must be optimized for
recall while retaining the highest achievable level of precision, then the cutoff is set at a fixed rank
of 0.9. All documents with a rank less than the cutoff value are classified as positive, and all others
are classified as negative. The described binary classification of affective multimedia documents is
a very important step and therefore has been explained in detail in this section. Finally, in the last
step, the system will fetch all positively classified documents. All documents of positively classified
instances are retrieved from the multimedia repository and presented to the user. This action may also
be laborious and time-consuming, but its complexity hinges on the performance of storage and data
transfer subsystems and on the processor, like the ranking.

6. Experiment Results

The aggregated retrieval results optimized for recall are shown in Table 1, while those optimized
for precision are shown in Table 2. Each table presents five essential performance measures (accuracy,
precision, recall, fall-out, and F-measure) for two lexical similarity algorithms (exact and approximate),
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which were used with one-, two-, and three-word queries. Furthermore, results from the tables are
displayed as graphs in Figures 8 and 9. The experiment in [35] used a relatively similar portion
of the IAPS dataset (62%) compared to this experiment (66.95%), which explains why some values
obtained in these two experiments are identical. Statistically significant differences between exact
and approximate lexical similarity algorithms are marked in Tables 1 and 2. In Table 3, we show the
statistically significant differences between one-word, two-word, and three-word queries. Statistically
insignificant differences are not depicted.

Table 1. Aggregated retrieval performance measures in classifications optimized for recall.

Query Size Relatedness Measure Accuracy Precision Recall Fall-Out F-Measure

1
Exact 0.2821 0.1989 0.9468 0.0444 0.3287

Approx. 0.2775 0.2028 0.9589 0.0423 0.3348

2
Exact 0.3721 0.3364 0.9112 0.0673 0.4914

Approx. 0.3677 0.3275 0.9569 0.0529 0.4880

3
Exact 0.4611 0.4478 0.9209 0.0761 0.6026

Approx. 0.5106 * 0.4741 * 0.9586 * 0.0513 * 0.6344 *

* Statistically significant difference (exact vs. approximate), paired two-tailed t-test, α = 0.05.

Table 2. Aggregated retrieval performance measures in classifications optimized for precision.

Query Size Relatedness Measure Accuracy Precision Recall Fall-Out F-Measure

1
Exact 0.7720 0.7558 0.3356 0.6661 0.4648

Approx. 0.8183 0.6394 * 0.2668 0.7471 0.3765

2
Exact 0.7125 0.9086 0.1975 0.8189 0.3245

Approx. 0.6911 0.8933 0.2268 0.7883 0.3617

3
Exact 0.6845 1.0000 0.2374 0.7723 0.3837

Approx. 0.6629 * 0.9970 0.2072 * 0.8224 * 0.3430 *

* Statistically significant difference (exact vs. approximate), paired two-tailed t-test, α = 0.05.
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Table 3. Retrieval statistical pair tests for one-way ANOVA (α = 0.05); significant differences are marked
with square symbols (� ).

Paired Sets
Significant Measures

Accuracy Precision Recall Fall-Out F-Measure

Optimized for Recall

1-word vs. 2-word, Exact � �

1-word vs. 3-word, Exact � � �

2-word vs. 3-word, Exact � � �

1-word vs. 2-word, Approx. � �

1-word vs. 3-word, Approx. � � �

2-word vs. 3-word, Approx. � � �

Optimized for Precision

1-word vs. 2-word, Exact � �

1-word vs. 3-word, Exact � �

2-word vs. 3-word, Exact � �

1-word vs. 2-word, Approx. � �

1-word vs. 3-word, Approx. � �

2-word vs. 3-word, Approx.

As can be seen from Table 1 and Figure 8, with classifications optimized for recall, where cutoff

was set at 90% of TPR in the ranked results, multiword word queries performed better than single word
queries in general: the performance of the three-word queries was better than the two-word queries,
and they, in turn, were better than the queries with only one keyword. Particularly, from Table 3,
we observe that there were significant improvements in accuracy, precision and F-measure between the
single- and two-word queries, and between the two- and three-word queries, both for the exact and for
the approximate matching algorithms (only accuracy for one- vs. two-word queries for approximate
matching was insignificant). Because the classification was optimized for recall, the recall measure
remained continuously high throughout all queries, with statistically insignificant variations.

As can be seen from Table 1 and Figure 8, recall was very high, while fall-out was low for all
query sizes. This indicates that the retrieval algorithm is very capable of avoiding false negative
outcomes. Query results systematically showed far more false positives than false negatives. This can
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be explained with the prevalence of high cutoffs in optimization for recall, which entailed a small
proportion of images being classified as False. Thus, false positive rate and, consequently, fall-out
were almost negligible. Together, these results indicated that the retrieval optimized for recall was
better in discrimination of non-relevant documents, while slightly less efficient in the identification of
relevant documents.

The data in Table 1 constantly show a smaller difference in performance measures between
individual matching algorithms than between single- and multi-word queries. This would suggest
that the choice of a relatedness algorithm is less important to retrieval than the query size.
Indeed, when optimized for recall, all measures did not show statistically significant differences
in t-tests, except for three-word queries, where approximate matching achieved improved results.
This could be explained by examining the semantic model and how approximate matching is applied
to this model. Pictures are sparsely annotated with tags from an unmanaged glossary. When the query
size increases, it should be expected that individual queries are more probable to approximately match
with the picture tag. If the query size is smaller, this probability should also be proportionally lower.
Furthermore, since the cutoff in lift charts optimized for recall does not need to be set explicitly at 90%,
it is possible to change the threshold to other values (e.g., 75%, 80%, 85%, and 95%) and test how the
overall retrieval performance will be affected. This seems like an interesting direction for investigation
in subsequent experiments.

In the case where classification is optimized for precision—as can be seen in Table 2 and
Figure 9—with a cutoff set at the rank with the highest lift factor, the approximate matching algorithms
did not perform better than the naïve exact matching. Occasionally, the approximate matching results
were even statistically worse than for exact matching, especially for three-word queries. This may be
attributed to the fact that although the semantic model of the IAPS database contains many unique
keywords and every picture is semantically described with a single keyword, a considerable proportion
of pictures in the database are tagged with a common keyword. In other words, a small set of specific
keywords (e.g., “man”, “woman”, “child”) is shared among a number of pictures in the database.
If, on occasion, these very keywords appear in a query with exact matching, then it could be expected
that the retrieved set will show higher accuracy compared to other queries with different matching
methods. Regarding query sizes, only precision showed statistically significant improvement in results
between one-word and three-word queries, both for the exact and approximate matching algorithms.
Recall and fall-out showed statistically significant diminished results for one-word vs. two-word
queries and then improved results between two-word and three-word queries for the exact matching
algorithm. Overall, the results for multiword queries were diminished with respect to single word
queries for all measures except for precision, which was optimized. These results are unlike those
previously reported in optimization for recall. Indeed, precision for the three-word queries in Table 2
was very high, even reaching 100% when the exact matching algorithm was used. However, this should
be interpreted as an artifact of the experimental dataset, rather than a universal rule applying to all
affective multimedia databases. Such very high precision results are a consequence of a very low
classification threshold in almost all instances, of only 5% (i.e., the most closely related five images to the
search query in

.
D). In such a small sample, both algorithms could perform quite well and accurately

rank documents. It can also be seen that the exact matching benefited from the choice of search
keywords. Generally, in optimization for precision (in Table 2 and Figure 9), the one-word queries
fared better in accuracy, recall, fall-out, and F-measure, but the three-word queries showed statistically
significant better precision for both exact and approximate matching, as shown in Table 3. It could
be expected that, in a realistic setting, the users of a document retrieval system would add words to
queries if they would not be satisfied with the results. The results showed that, in such circumstances,
the optimization for the recall algorithm will give a satisfactory performance, because adding words to
query string improves recall in the text-based retrieval of affective multimedia documents.

The AUC for recall and precision depended on the shape of the lift charts. In the case of recall,
the curves were much flatter in appearance, because the cutoff was set at a relatively high rank to
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ensure that 90% or more TP images are returned. Conversely, lift curves adapted for precision had a
much more pronounced elbow (i.e., a point with a high positive gradient), where TPR significantly
increased. Such curves had a very high maximum lift. Subsequently, AUC for recall resembled more
that of a random classifier than in the case of optimization for precision.

The highest attained accuracies were 51.06% and 81.83%, achieved in optimization for recall and
precision, respectively. The first outcome was attained with a three-word approximate query and the
second with a one-word approximate query. To improve accuracy over these values, several different
actions are possible. Firstly, a semantic model could be upgraded by adding new unmanaged
picture tags or by aligning tags with a managed glossary. Additionally, the existing model could
be substituted with an entirely new model using linguistic networks, knowledge graphs or other
knowledge representation formalisms such as ontologies. Secondly, different matching algorithms
should be investigated. Correctly identifying semantic relationships between queries and image
descriptors should improve accuracy in retrieval. Finally, it seems reasonable to assume that moving
away from binomial logic towards reasoning with the imperfect (i.e., uncertain, imprecise, incomplete,
or inconsistent) information and knowledge, which better describes the real world, might help in
making a better system for retrieval of affective multimedia.

As already explained, the IAPS database may be regarded as a typical representative, or an
archetype, of affective multimedia databases. Semantic and emotional image annotation models of
almost all other such databases are virtually identical to IAPS. For these reasons, image retrieval
performance achieved with IAPS may be considered indicative for all comparable datasets developed
for experimentation in emotion and attention research.

In summary, the overall results suggest that tagging pictures with only one keyword from
unsupervised glossaries gives poor information retrieval performance regardless of the classifier
optimization. In such a sparse labeling approach, false positives and false negatives may be frequent.
Moreover, query expansion from 1 to 3 keywords per query was shown to univocally improve precision,
while better accuracy was possible only in classification optimized for recall. The recommended strategy
for the retrieval of affective pictures may be summed up in the following two rules. First, the optimization
for precision is the default type of retrieval if lift charts are used in the unsupervised mode for
concept-based image retrieval. Second, if higher accuracy is important, then the query must be expanded
with additional keywords and the classification optimized for recall should be the preferred choice.

7. Conclusions

Using a real-life problem situation of concept-based retrieval of emotionally-annotated images
from the IAPS database, we demonstrated that lift charts are helpful tools in the binary classification of
affective pictures, i.e., text-based retrieval of pictures from affective multimedia databases. Lift charts are
algorithmically inexpensive and can be universally applied to a range of concept-based and text-based
retrieval tasks. The classification can be adapted to achieve better accuracy or higher retrieval if
a larger proportion of true positive results or a higher number of all items is needed, respectively.
Apart from commonplace retrieval quality indicators, such as accuracy, precision, recall, fall-out,
F-measure, mean average precision, and discounted cumulative gain, individual classifiers may be
evaluated and mutually compared with lift charts using maximum lift factor and AUC measures,
thus providing additional useful information in the selection of optimal classifiers for specific retrieval
tasks. Newly developed databases, listed in Section 2, still suffer from an informal and weakly
expressive representation model. Retrieval methods implemented in these databases must cope with
these defects. Nonetheless, our experiment has shown that lift charts are a beneficial technique for
evaluating and improving retrieval performance even in such an unfavorable setting.

We have also shown that, although lift charts are very successful in assessment of classifiers’
performance, they cannot always be considered optimal in the rank retrieval of emotionally-annotated
images. In this regard, their performance highly depends on the context in which they are used,
i.e., external factors related to the characteristics and functioning of a retrieval system. For example,
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lift charts as classifiers cannot overcome problems that may arise from a vague or inadequate
representation of knowledge about the indexed documents and their content.

To conclude, lift charts are very helpful in the evaluation of classifiers in circumstances where true
categories of documents cannot be known. However, if they are used as classifiers, more caution is
necessary, and their real performance should be objectively analyzed post-hoc.
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35. Horvat, M.; Vuković, M.; Car, Ž. Evaluation of keyword search in affective multimedia databases. In Transactions
on Computational Collective Intelligence XXI; Springer: Berlin/Heidelberg, Germany, 2016; pp. 50–68.

36. Feng, D.; Siu, W.C.; Zhang, H.J. Multimedia Information Retrieval and Management: Technological Fundamentals
and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.brat.2016.11.010
http://www.ncbi.nlm.nih.gov/pubmed/27914317
http://dx.doi.org/10.3758/s13428-016-0797-y
http://www.ncbi.nlm.nih.gov/pubmed/27613018
http://dx.doi.org/10.3758/s13428-016-0715-3
http://dx.doi.org/10.1007/s43076-020-00029-z
http://dx.doi.org/10.1007/BF02686918
http://dx.doi.org/10.1016/j.intcom.2005.10.006
http://dx.doi.org/10.1007/s12144-014-9219-4
http://dx.doi.org/10.1016/j.is.2012.07.005
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1016/j.ins.2019.12.075
http://dx.doi.org/10.1016/j.eswa.2007.12.020
http://dx.doi.org/10.1109/ACCESS.2019.2914071
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Affective Multimedia Databases: Definition, Architecture and Usage 
	The Please-Arousal-Dominance Emotion Model 
	The Discrete Emotion Model 

	Overview of Concept-Based Image Retrieval with Boolean Classification 
	Evaluation Metrics 

	Binary Classification with Lift Charts 
	Evaluation of Affective Image Retrieval with Lift Charts as Binomial Classifiers in Ranking 
	Similarity Measures and Ranking 
	Binomial Classification with Lift Charts 

	Experiment Results 
	Conclusions 
	References

