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Abstract: Deep learning models have been applied for varied electrical applications in smart
grids with a high degree of reliability and accuracy. The development of deep learning models
requires the historical data collected from several electric utilities during the training of the models.
The lack of historical data for training and testing of developed models, considering security and
privacy policy restrictions, is considered one of the greatest challenges to machine learning-based
techniques. The paper proposes the use of homomorphic encryption, which enables the possibility
of training the deep learning and classical machine learning models whilst preserving the privacy
and security of the data. The proposed methodology is tested for applications of fault identification
and localization, and load forecasting in smart grids. The results for fault localization show that
the classification accuracy of the proposed privacy-preserving deep learning model while using
homomorphic encryption is 97–98%, which is close to 98–99% classification accuracy of the model
on plain data. Additionally, for load forecasting application, the results show that RMSE using the
homomorphic encryption model is 0.0352 MWh while RMSE without application of encryption in
modeling is around 0.0248 MWh.

Keywords: deep learning; homomorphic encryption; fault localization; smart grids; deep neural
networks

1. Introduction

The information layer embedded in the two-way communication electric smart grid has various
data sources, such as Advanced Metering Infrastructure (AMI), smart electrical measurement sensors,
smart meters, detectors, Phasor Measurement Units (PMU), Remote Terminal Unit (RTU), Supervisory
Control, and Data Acquisition System (SCADA), etc. [1]. These sources generate huge amounts
of data that satisfy the volume, velocity, variety, veracity, and value characteristics of big data [2].
The data that are generated from multiple sources are located at different nodes of an electric network.
However, electric utilities demand to preserve the security and privacy of the collected and used data.
The collected data represent the behavior of the customers and other network players. Those data
contain sensitive information about customers, electricity consumption, trading, and operation of
electricity distribution networks [3]. Those data can be utilized to develop machine learning algorithms
to improve the electrical utility operation in terms of demand response, peak load shaving, fault
analysis, etc.

Machine learning algorithms can be classified into two divisions; classical and deep learning
techniques [4]. There are merits and demerits of each division as compared to the other. Deep learning
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techniques have the merits of being more accurate, scalable with more data, no requirement of
complex feature engineering, adaptability, and transferability to different domains and applications
through transfer learning, etc. [5]. The classical machine learning techniques have the merits of higher
performance if the size of available data is small, lower requirements of computational resources,
simplicity, etc. [6]. However, all of the machine learning approaches require the data that are collected
for processing from several nodes in the electric network. The data are transmitted from the electrical
nodes to a unified central system to develop the data-driven models. This data transmission and
collection by model developers endanger the privacy and security of the information. Hence, security
approaches, such as homomorphic encryption and federated machine learning, which avoid the
movement of plain data can be considered as potential solutions for securing the collected data.
In recent years, many researchers have attained noteworthy progress in the field of encryption schemes.

In the past decade, the rate of generation of energy data from utilities has increased exponentially.
The number of smart meters installed globally is around 660 million in 2017 with the data generated at
a rate of 280 petabytes a year [7,8]. Furthermore, the number of people who have access to the data has
increased multi-fold. For business benefits, each of the teams of an entity has data scientists in-house
who develop machine learning models to recognize the patterns in the data and discover ways to
improve business. This brings the security of the confidential information in the collected data at risk
and may lead to sensitive information disclosure. It has been impartially assumed for decades that
the encryption garbles up the numbers in the data and no practical mathematical operations can be
executed on the encrypted data [9]. One of the earliest approaches to investigate the possibility of
performing computations on the underlying data without actually having access to the unencrypted
forms of data was presented by Rivest, Adleman, and Dertouzos in 1978 through their work entitled
privacy homomorphisms [10]. In 1996, Ajtai et al. proposed the use of lattice-based constructions as
an encryption scheme to develop a public-key cryptosystem [11]. The foundation of these works has
set in motion the advancement of first working Fully Homomorphic Encryption (FHE) in 2009 [12].
The FHE scheme allows for the mathematical operations and function mapping to be employed on
encrypted data.

The HE schemes have been applied with classical machine learning models initially and later
implemented with deep learning models. Earlier works on encryption schemes with deep learning
models presented works with activation function as high degree polynomials whose computations
are slow and require huge resources. The possibility of low degree non-linear polynomials (such as
square function, etc.) as activation functions in the network layers was presented in [13]. Additionally,
HE schemes allow the execution of non-polynomial functions on encrypted data. Later, bootstrapping
procedure and the use of sign function were introduced in later work with the aim to keep the scheme
complexity linear to the depth of the neural networks [14]. These developments enable the possibility
of use of HE schemes in the real-world scenarios for encryption.

In this work, the homomorphic encryption model is applied for two smart grid case studies.
namely: fault identification and localization data from the simulated IEEE 68 bus system in order to
develop a highly secure and accurate deep learning model for fault localization predictions, and real
distribution transformer energy consumption data to develop a machine learning model for load
forecasts. The main contributions of this work are classified into the following main categories:

1. Designing a secure and privacy-preserving deep neural network (DNN) model established on
homomorphic encryption for smart grid applications.

2. Proposing a fault classification and localization model that has favorable accuracy when
considering the fact that the model is trained on encrypted data. The encryption of the data
before modeling accentuates the need for data privacy and security. The accuracy of the model
trained on encrypted data is very close to the model trained on non-encrypted data.

3. Proposing a load forecasting regression model such that the accuracy of the predictions using
encrypted data is close to accuracy using non-encrypted data.
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The remaining of this article is divided into the following: Section 2 reviews the background work
on the security and privacy pillars needed for developing secure machine learning models. Section 2
also presents the literature and the research articles in the discipline of secure deep learning models.
Section 3 illustrates the proposed methodology on the homomorphic encryption-based machine
learning modeling for fault classification in electrical grids and paillier-based encryption scheme for
energy demand forecasting in distribution grids. The performance of the models proposed is validated
in Section 4 with extensive experiments and, finally, the conclusions are presented in Section 5.

2. Background & Related Work

In this section, we first present the security and privacy foundations required for secure machine
learning. Subsequently, the possible solutions to achieve the security foundations are discussed in
the subsequent parts. At last, we discuss the literature review and previous works in the field of
privacy-preservation of machine learning models while using homomorphic encryption.

The computational research community has been interested in privacy-preserving machine
learning to ensure that the data remains secure during all the stages of its processing i.e., from the
training stage to the predictions stage. There are four main pillars needed to achieve privacy-preserving
machine learning; namely, training data privacy, model input privacy, model weights privacy,
and model output privacy. They are shown in Figure 1 and summarized, as next.

• Training Data Privacy: the privacy and security layer should be in place that no malicious agent
can reverse engineer the training data from the model or the output.

• Model Input Privacy: the input data cannot be obtained by any third party, including the model
creator; the input data owner is assumed as different than the model creator.

• Model Weights Privacy: the model parameters and weights cannot be obtained or inferred by a
malicious party.

• Model Output Privacy: the output of the model cannot be observable by any third party, except for
the owner of the data.

Hence, there are multiple challenges that need to be addressed to achieve the aims of the four
pillars of privacy in machine learning, which is the goal of our paper. The following subsections
discuss various approaches to privacy-preserving machine learning.

Figure 1. Four Pillars of Privacy-Preserving Machine Learning.

2.1. Training Data Privacy

Although it is difficult to reverse engineer the training data from the model parameters and model
outputs, it is not impossible. In [15], the authors have indicated the leakage of information on training
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data while using reverse engineering on the machine learning models. The results of their work have
indicated that the generative sequence models can retain rare information from the raw data and that
this memorization peaks when the test loss is set to the minimum.

There are two major proposed solutions to prevent the memorization of training data in the
developed models: Differentially Private Stochastic Gradient Descent (DPSGD) [16] and Private
Aggregation of Teacher Ensembles (PATE) [17]. These solutions not only provide security to the data,
but also improve the generalizability of the machine learning models.

The memorization and exposure of private knowledge from training data can be reduced with
the use of DPSGD. The DPSGD solution adapts differential privacy into SGD to conserve the security
of training data while developing deep learning models [16].

PATE is a scalable alternative to DPSGD and it is an ensemble model. The components of the
ensemble model train on the independent and identically distributed (i.i.d.) subsets of the same dataset.
If most of the models in the ensemble have the same output, then it can be inferred that the models
and their output do not expose any secure information from the training data and, hence, can be
shared [17].

2.2. Model Input Privacy and Model Output Privacy

Input data and the outputs (predicted variable values) from the data should only be accessible to
the owners of the data and protected from other parties, including the model developers. There are
three solutions in the literature that have been successfully applied to preserve the model input and
output privacy. Those solutions are briefly discussed below:

• Federated Learning (FL) [18]: FL is machine learning on device. It can be made secure with the
use of differentially private stochastic gradient descent.

• Homomorphic Encryption (HE) [19]: homomorphic encryption makes provision for the use of
non-polynomial functions on encrypted data. With this capability of homomorphic encryption,
it is possible to apply classical machine learning algorithms such as linear or logistic regression,
naïve bayes, random forest, etc. and deep learning models on encrypted data for training and
obtain predictions [20]. However, initial works such as CryptoNets [20] have a limitation of
high latency. Additionally, the cryptonets do not support the popular activation functions (Relu
and Sigmoid) and the pooling functions (Max Pooling). The limitations of the use of activation
functions were later overcome in [21], which approximates the continuous functions of Sigmoid,
Relu, and Tanh to lower degree polynomials that are based on Chebyshev polynomials. Their
results indicated that the replacement of activation function with approximated lower degree
polynomials adopts neural networks to be effectively used with homomorphic encryption.

• Secure Multiparty Computation (MPC) [22]: when multiple parties are involved, they can decide
on functions to calculate outputs while using their private inputs. The inputs are not revealed
or exposed. The concept of secure MPC has been successfully used in generative models and
machine learning algorithms to protect the data from reverse engineering.

2.3. Model Weights Privacy

The model privacy is very crucial for companies who own data to avoid having their AI
applications and models easily copied or reverse engineered from inputs and outputs. Hence, model
privacy and model weights’ privacy are extremely crucial.

The FL, HE, and MPC solutions could also be used to enhance the model privacy. The solutions
for model weights privacy include the following:

• Differentially private stochastic gradient descent
• Homomorphic Encryption
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2.4. Related Work

Multiple methodologies have been utilized in the discipline of privacy-preserving machine
learning [23–25]. These methodologies include, but are not limited to, differential privacy [26],
federated machine learning [27], homomorphic encryption [28], multi-party computation [29],
etc. In this work, we utilize the homomorphic encryption, as it achieves the four pillars of
privacy-preserving machine learning for smart grid applications.

In [21], Hesamifard et al. proposed a framework, called CryptoDL, which aims to preserve the
security and privacy of the training data and the classification predictions generated by the Machine
Learning (ML) models especially Neural Networks (NN). The authors have applied CryptoDL to
different open datasets with encouraging and accurate results. The framework accepts the training
data in encrypted form, develop models, and generate classification predictions that are encrypted
under the data owner’s public key as well. Their experiments yield that the proposed approach of
approximating activation functions to low-degree Chebyshev polynomials outperforms other HE
methodologies and the developed models preserve the security of data.

In [30], Shokri et al. designed a privacy system that allows multiple parties to train the deep
learning models on their private data and share the knowledge from their learned models. The sharing
of the models improves the overall accuracy of the final averaged model while also preserving the
data privacy, because individual data is not shared between the multiple parties. Their system is based
on Distributed Selective Stochastic Gradient Descent (DSSGD) and parameter exchange protocol for
different parameters of the deep learning model.

In [9], the authors developed the classification models using decision trees, hyperplane decision,
and naïve bayes classifiers on encrypted data while using security constraints. However, the accuracy
of their classification models has not been reported in the article. The efficiency of the models is
evaluated in terms of classification time and they reported that their models take a few milliseconds to
a few seconds on large datasets.

A stable and significant implementation of fully homomorphic encryption was presented in [12].
The author presented a modular framework of FHE that supports the computations to a fixed
depth. Subsequently, he employed a bootstrap method to enhance the framework with successful
computations to a larger depth with a few constraints or assumptions. The decryption works
correctly if the noise in the encrypted text is small. For example, c1 → Enc(p1) and c2 → Enc(p2)

are cipher texts and these encrypted data have noise n1, n2 . Subsequently, during addition and
multiplication operations, these noise values increase to n1 + n2 and n1 · n2, respectively. Hence,
if the noise is significant after the encryption of data, this methodology performs well only in shallow
networks. The technique of bootstrapping is used to reduce the noise in the network after encryption
as it refreshes the cipher data. Consider that c1 ∈ Enc(p1) has large noise and a helper cipher
data ck → Enc(secretkey). A homomorphic evaluation of the decrypting function is performed
as Eval(Dec, Enc(ck), c1) which refreshes the cipher data, which encrypts Dec(ck, secretkey) = p1.
This bootstrapping technique is used to refresh the cipher data and removes the noise in it. The cipher
data are first calculated up to depth ’d’, which is efficient for fully homomorphic encryption.
Afterwards, bootstrapping is used to refresh the cipher data that are devoid of noise. Finally,
the encryption is performed starting from depth ’d’ to depth ’2d’, and bootstrapping is then applied at
depth ’2d’ and so on. Dijk et al. [31] simplified the complexity of Gentry’s somewhat homomorphical
bootstrappable encryption scheme and applied it over the integers.

There are a few technical challenges that are associated with the privacy-preservation of data [32].
These are listed, as below:

• The data might come from multiple sources that use different secret keys for encryption. In such
a case, the homomorphic encryption is not straight-forward. The solution to this will be MPC
and HE.
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• Additionally, developing deep learning models with homomorphic encryption may be hard when
compared to developing shallow models. However, in this work, the developed deep learning
models display high accuracy on testing.

There are multiple types of schemes in HE depending on the operations that they can perform.
The HE encryption schemes that can perform only one type of operation are called partially
homographic encryption schemes. El Gamal scheme [33] and RSA scheme [34] are partially HE
schemes, and these can perform only multiplication operations homographically whereas Paillier
scheme [35] can perform addition operations homographically.

MPC is similar to homomorphic encryption with an exception that the two users involved X (user
with data d) and Y (developer of function f) are required to interact over multiple iterations to train the
model f(d). For specific applications, MPC has proven to perform better than Homomorphic encryption.
However, MPC faces the difficulties of high bandwidth requirements and network latencies. Hence,
HE is more scalable for generalized smart grid applications.

In practice, there are multiple open-source implementations of homomorphic encryption schemes.
These libraries are described in Table 1.

Table 1. Open-source implementations of HE.

Implementation Description

HELib [36] the low-level library implements HE with faster evaluation time employing
optimized Brakerski-Gentry-Vaikuntanathan (BGV) scheme with bootstrapping.

cuHE [37] highly optimized GPU-accelerated library for Homomorphic encryption.

TFHE [38] open source gate-by-gate bootstrapping library which evaluates homomorphic
encryption of binary gates, negation, and MUX gate operations and performs
computation over encrypted data.

NFLlib [39] open-source Number Theoretic Transform based Fast Lattice Library which uses
low-level processor functionalities.

SEAL [40] an extensively employed open-source library from Microsoft that supports BGV and
Cheon, Kim, Kim, and Song (CKKS) encryption schemes.

Λoλ [41] open-source Haskell library for functional lattice-based cryptography.

PALISADE [42] open-source library for implementations of lattice-based encryption building
blocks and HE scheme.

HeaAN [43] open-source implementation of HE encryption scheme using approximate arithmetic
of numbers.

Lattigo [44] library for lattice-based cryptography and MPC, written in Golang (Go) language.

Our researched system attains significant security objectives in the context of deep learning
models applied for smart grid applications. It secures the training data before it is transferred to the
model developers. The model developers are enabled in order to control the learning objectives of the
data-driven deep learning models. The solution allows for the application of machine learning and
deep learning models along with generalization to a wide variety of electrical applications.

3. Proposed Methodology for Privacy-Preservation of Data-Driven Models

This section presents the proposed methodology for the application of deep learning over
encrypted data with the homomorphic encryption method. The main objective of this methodology is to
add additional security and privacy layer to deep learning models in smart grid electrical applications.
As observed in Figure 2, the encryption keys are used to encrypt the data on the server-side. Only the
encrypted data is communicated to the client-side or the model developers. The model is trained over
the encrypted data, and then the predictions are obtained. Moreover, the predictions are encrypted
which requires decryption performed at the server side to obtain the final predictions. It is important
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to note that the client or model developer does not have access to the encryption keys; therefore, the
client can neither decrypt the data nor decrypt the predictions. In some applications, the client is
provided with a previously trained model and encrypted test data to provide encrypted predictions
back to the server. In such cases, the previously trained model may have been trained on plain data
on the server-side. The homomorphic encryption allows for the privacy, reliability, and security of
training data, model inputs, weights, and outputs. However, the HE does not secure the data from
the point of generation to the server, but only after it reaches the server. The framework assumes that
the smart grid platform supports secure data acquisition from different data sources. The diverse
storage services and policies should enforce privacy and security between the points of data generation
and server.

Figure 2. Homomorphic encryption-based deep learning modeling for smart grid applications.

In the following sections, the main steps of the proposed methodology are described.

3.1. Data Description

Two datasets have been collected for evaluating the performance of machine learning models
employing homomorphic encryption. One of the datasets is the simulation data for fault localization
in a power system network and another dataset is the time-series load demand data at the distribution
grid level (transformers). The following section provides the description of the two datasets and the
pre-processing steps employed on the datasets.

3.1.1. Dataset 1

The data utilized are the fault localization simulation data from the IEEE 68 bus system, which
consist of 68 buses, 16 machines, 16 generators, and 20 transformers [45,46]. Figure 3 shows the
reduced-order 68-bus system test simulation model. The simulation data is PMU measurements
acquired for pre and during fault conditions for a subset of the grid buses in the system. The extracted
features that characterize the location and occurrence of the faults are determined to be the bus voltage
variations before and during the faults. The final feature set that is given as input to the classifier is
given by the imaginary part of the following Equation (1).

Ψ = Y0∆V (1)



Information 2020, 11, 357 8 of 17

where Y0 denotes the admittance matrix of the bus system before the faults and ∆V represents the
difference in the bus voltage before and during the faults.

The label of the data indicates the line number at which the fault occurs and, hence, there are
86 classes. 75% of the data are utilized as a training data set and 25% of the data are utilized as a
validation data set.

Figure 3. IEEE 68-bus system test simulation model.

3.1.2. Dataset 2

The second case study is on the load forecasting at the distribution level. The data acquired are
the time series hourly load demand data at the distribution transformers level for a real power grid
between January 2018 to December 2018. After data acquisition, the only features were time stamp,
transformer id, season, and hourly load demand values. In the pre-processing steps, the weather
data is extracted and added as features to this dataset using a freemium Application Programming
Interface (API) called Darksky [47]. The extracted features include maximum temperature, minimum
temperature, cloud cover, dew point, humidity, precipitation intensity, pressure, Ultraviolet rays (UV)
index, visibility, wind gust, wind speed, etc. This extraction introduces missing values that are filled
using an average of forward and backward fill for numerical features [48]. Additionally, the 24 lag
hour values are fed back to the dataset as additional features.

3.2. Homomorphic Encryption

The fully homomorphic encryption or simply homomorphic encryption is a category of encryption
methodology that differs from other classical methods in a way that enables the computations to
be executed on the encrypted data without having a requirement to access the secret encryption
key [49]. The output of such computations is also encrypted, and it can be decrypted with the help
of a secret key that the data owner possesses. A function f: R1 −→ R2 is said to be additive and
multiplicative homomorphic, if for every r1, r2 ∈ R1, it implies that f(r1 + r2) = f(r1)⊕f(r2) and
f(r1 · r2) = f(r1)⊗f(r2), respectively, where ⊕ and ⊗ are the operations in R2 [50].

A homomorphic encryption technique has a supplemental algorithm property, called Eval,
which can be executed or computed over encrypted data. Any party can run Eval function on the
encrypted data without requiring access to the private key with which data are initially encrypted.
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That is, the ciphertext need not be decrypted to allow computations on it in the evaluation function,
and this maintains the privacy of the underlying information in the encrypted data. Figure 4
illustrates the different mapping functions and computations that are involved in Homomorphic
Encryption Evaluation.

Figure 4. Homomorphic Encryption Evaluation.

The homomorphic evaluation of a deep neural network with discretized inputs and weights
involves two steps mainly. These steps are enumerated, as following:

1. Computation of multisum between the encrypted inputs that are given to the neurons and the
discretized weights at the respective neurons: the calculation of multisum uses homomorphic
addition as basic operation.

2. Extraction of the sign of the output at each neuron.

To make the neural network scalable in terms of the number of layers, the bootstrapping operation
is performed at every neuron in the layers to effectively encrypt the sign of the output and use it in
further computations to the next layers in the network.

For privacy-preserving machine learning, we use the orthogonal matrix transformations-based
homomorphic encryption in the classification case study. The secret key of the proposed matrix
transformations-based HE scheme is an invertible matrix (U1) of size m, where m is the number of
records in training data. Additionally, Paillier cryptosystem is utilized for the case study of regression.

Encryption of the Data

The data are encrypted using HE algorithm based on matrix transformations. The aim of the
encryption of the data is to generate highly accurate deep learning or machine learning models and
use the encrypted data for training or testing, so that the model developers do not have access to the
plain data all of the time.

In the first case study for fault localization, two sets of simulations have been conducted. In the
first set, the DNN model is developed when the training data is plain, and the model developer has
access to the plain data. Here, there are no privacy-preserving techniques involved. In the second set of
experiments, the first stage encrypts the fault identification and localization data using homomorphic
encryption on the source side. The data provided to the model developers are the encrypted version
of data. Accordingly, no information from the data can be leaked. The model developers develop
the DNN model while using the encrypted data and return the encrypted predictions to the source
side. The data owner then uses the keys to decrypt the encrypted predictions to obtain the final
predictions. These predictions are used to calculate the accuracy of the developed models using
ground truth values.

Algorithms 1–4 present the encryption and decryption steps that are used on the server-side in
the fault localization case study.
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Algorithm 1 Encryption of Train Data

1: function ENCRYPTIONTRAIN((X)mxn, (y)mx1)
2: Choose (Q1)mxm as orthogonal matrix.
3: if n > 1 then
4: Choose orthogonal Q2 of size n
5: else
6: Choose orthogonal Q2 of size 1
7: end if
8: (X)encrypted = Qᵀ

1 · X ·Q2
9: (y)encrypted = Qᵀ

1 · y
10: return (X)encrypted, (y)encrypted, Q1, Q2
11: end function

Algorithm 2 Decryption of Train Data

1: function DECRYPTIONTRAIN(X, y, Q1, Q2)
2: Choose (Q1)mxm as orthogonal matrix.
3: Xdecrypted = Qᵀ

1 · X ·Q2
−1

4: ydecrypted = Qᵀ
1 · y

5: return Xdecrypted, ydecrypted
6: end function

Algorithm 3 Encryption of Test Data

1: function ENCRYPTIONTEST(X, Q2)
2: Choose (Q1)mxm as orthogonal matrix.
3: if noO f Rows(X) > 1 then
4: Choose orthogonal Q3 of size noOfRows(X)
5: else
6: Choose orthogonal Q2 of size 1
7: end if
8: (X)encrypted = Q3 · X ·Q2

−1

9: return (X)encrypted, Q3
10: end function

Algorithm 4 Decryption of Test Data

1: function DECRYPTIONTEST(yencrypted, Q3)
2: ydecrypted = Q3

−1 · yencrypted
3: return ydecrypted
4: end function

In the second case study for load demand forecasting, a machine learning model is developed
while using the plain data where the model developers have initial access to data. The knowledge
gained i.e., model and its parameters can be transferred to points where load demand predictions
are required. At these points, access to the plain data is not required and it is encrypted during the
training phase. In this work, a paillier encryption scheme [35] is employed and public, and private
key pair is generated. The test data is encrypted using a public key and the predictions are generated
using the model on encrypted testing data. The load forecast values are encrypted and these can only
be decrypted with the help of private key which is available only to the data owner.

The homomorphic encryption can secure a multitude of electrical applications in smart grids by
providing the following advantages:
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1. Securing data stored in cloud server.
2. Enabling data analytics in regulated electric utilities.
3. HE protects the systems against eavesdropping attacks after the data has reached the server.

The HE potentially renders any data leaked through eavesdropping attacks or man-in-the-middle
attacks indecipherable to attackers.

4. HE can protect the data against unauthorized sharing.

4. Results

This section presents the efficacy of the proposed homomorphic encryption-based deep learning
models for fault localization and detection. Additionally, the results of another case study of Paillier
scheme for load demand predictions are presented.

The experiments have been conducted utilizing Python 3.7 for encryption and decryption schemes.
The execution was run on a computer with an Intel Core i7-7700HQ CPU @ 2.80 GHz with eight logical
processors, four physical cores, and 16 GB of RAM.

4.1. Case Study 1

The machine learning model utilized to train on plain and encrypted data is the deep neural
network (DNN). It comprises of three categories of layers—an input layer, an output layer, and hidden
layers. The inherent non-linear characteristics of the layers enable the DNNs structure to recognize
and generalize the underlying patterns and information in the data.

The size of the input layer of DNN is 64 and the size of the output layer is 86. The number of
neurons in each hidden layer is 70 neurons. The activation function utilized in the DNN model trained
on plain and encrypted data is hyperbolic tangent (tanh) activation. The input space is scaled to the
range of (−1, 1) and the tanh activation function ranges between the same values. It is also maintained
that the weights have discrete values over the domain of Z, as real-valued weights render the use of
homomorphic encryption incompatible. A dropout percentage of 20% is utilized for the model trained
on plain data. A dropout percentage of 50% is utilized for the model trained on encrypted data.

Table 2. Evaluation of homomorphic encryption deep learning model for classification problem
(fault localization).

Model Name DNN HE + DNN

Accuracy on the validation dataset 98.32 97.71
Accuracy on the test dataset 99.98 98.59
Execution time (s) 20.61 23.64
The computational complexity of activation function O(1) O(1)

As shown in Table 2, the performance of the deep learning model on encrypted data is close to
the performance of the model on plain data. The validation accuracy of the DNN model on plain data
of fault identification and localization is 98.32%. However, when the DNN model is trained on the
encrypted data, the validation accuracy is 97.71%. Additionally, a separate fault simulation data is
used as a test data set. Additionally, on the test data set, the accuracy of DNN model trained on plain
data is 99.98%, whereas the accuracy of the model trained on encrypted test data is 98.59%. Figure 5
shows the graphical representation of the results. Homomorphic encryption-based DNN takes more
time, but it effectively protects the data and generates a comparative accurate model.
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Figure 5. Accuracy-wise performance of the proposed methodology.

4.2. Case Study 2 (a)

The classical machine learning algorithm of linear regression is applied over the Paillier scheme
for the case study on load demand predictions. Mini-batch Gradient descent optimizer is used with
learning rate 0.01 and training epochs as 1000, as the data are big and the computational memory
is limited. Training of the model is performed on unencrypted data which is then transferred to the
encrypted testing data to make encrypted predictions. Only the server-side private key can be used to
decrypt the predictions. However, a public key can be used to encrypt any data. 80% of data is used
for training and 20% of data is used as a validation dataset.

Figure 6 depicts the training history in terms of mean square error against the number of epochs
of training. The smoothness in the graph indicates that the cost function of the machine learning model
keeps on decreasing over the set number of epochs and the model approaches to convergence with
minimum prediction error.

Figure 6. The mean square error as training progresses.

Figure 7 plots the predicted values of load demand in testing data set after decryption against the
true values of load demand. A point on the straight line through origin would indicate that there is no
error in the predicted value and it is the same as the actual load demand value. Thus, the homomorphic
encryption-based modeling was thus evaluated for the regression problem of load demand forecasting.
The results of the evaluation are displayed in Table 3. The results indicate that the machine learning
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model without encryption has a coefficient of variation (CV) of 7% and the CV is around 10% when
encryption is employed.

Figure 7. Predicted and actual values of load demand.

Table 3. Evaluation of homomorphic encryption for regression problem (load forecasting).

Model Name
Validation Dataset Test Dataset

RMSE (MWh) Coefficient of Variation (CV) (%) RMSE (MWh) CV (%)

LR 0.0248 7.49 0.0250 7.55
HE + LR 0.0352 10.63 0.0374 11.30

4.3. Case Study 2 (b)

In this set of experiments, a similar methodology, as in Section 4.2, is applied on a different
hourly load forecasting scenario with the aim to compare the results of our methodology to existing
work. The public data set is provided by PJM Interconnection LLC and consists of hourly energy
consumption data recorded by various distribution utilities in the Eastern Interconnection grid in the
United States. We utilized the data from the EIC grid for area AECO between the periods of 1 March
2019 and 19 June 2020. The time-series data contains 8713 records. In the feature engineering step,
twenty-four lag hour values of energy consumption are added as features to the data set. 90% of the
data are employed for training and 10% of data are used as a testing data set.

Table 4 presents the results of our experiments. As observed in the Table 4, the first forecasting
experiment is performed without any encryption on the data and this is a baseline to relatively compare
the results of encryption-based forecasting.

Table 4. HE for load forecasting problem—PJM dataset.

Model Name
Testing Dataset

RMSE (MWh) Mean Absolute Percentage Error (MAPE) (%)

LR 28.18 2.007
HE+LR 31.65 6.15

As per the results in Table 4, when the encryption-based methodology is applied, MAPE is
obtained as 6.15%. For the same data set, without any encryption involved, the load forecasting MAPE
is 2.007%. As the security of data is increased using encryption, the forecasting accuracy is definitely
decreased. However, we still obtain high accuracy with a high degree of privacy. The decrease in
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accuracy, after our proposed methodology is applied, is around 4.15% as against the 8.69% decrease in
accuracy, as reported by previous work [51] in the same load forecasting scenario.

5. Conclusions

In this paper, a privacy-preserving deep learning model that is based on homomorphic encryption
is presented for classification and a classical machine learning model based on the Paillier scheme
for homomorphic encryption is presented for regression. The proposed model can achieve machine
learning modeling in the encrypted domain. The simulations of the model on different datasets
indicate that the performance on encrypted data is as accurate as modeling on plain data. Application
of the proposed methodology in the smart grids data processing is promising and implies a wide
range of real-life electrical utility applications. Hence, data privacy can be maintained by the use
of encryption and the machine learning models can be trained on encrypted data and still achieve
the same accuracy and training. The main contribution of this work is a data-driven method that
benefits from the accuracy of classical and deep machine learning algorithms with the lucidity of
employing homomorphic encryption. The amalgamation of algorithms from cryptography, machine
learning, and electrical engineering has demonstrated a methodology that achieves the accuracy and
security of electrical data while maintaining high throughput for computations. However, there
is a scope of improvement in terms of computation time using Graphics Processing Units (GPUs).
Additionally, more effective encoding paradigms can be employed that require fewer parameters and
obtain accelerated computations.
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FHE Fully Homomorphic Encryption
FML Federated Machine Learning
GPU Graphics Processing Unit
HE Homomorphic Encryption
LSTM Long Short Term Memory
MAPE Mean Absolute Percentage Error
ML Machine Learning
MPC Secure Multiparty Computation
NFLlib Number Theoretic Transform based Fast Lattice Library
NN Neural Networks
PATE Private Aggregation of Teacher Ensembles
RMSE Root Mean Square Error
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