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Abstract: The number of Internet of Things (IoT) devices is growing at a fast pace in smart homes,
producing large amounts of data, which are mostly transferred over wireless communication channels.
However, various IoT devices are vulnerable to different threats, such as cyber-attacks, fluctuating
network connections, leakage of information, etc. Statistical analysis and machine learning can play
a vital role in detecting the anomalies in the data, which enhances the security level of the smart
home IoT system which is the goal of this paper. This paper investigates the trustworthiness of the
IoT devices sending house appliances’ readings, with the help of various parameters such as feature
importance, root mean square error, hyper-parameter tuning, etc. A spamicity score was awarded to
each of the IoT devices by the algorithm, based on the feature importance and the root mean square
error score of the machine learning models to determine the trustworthiness of the device in the home
network. A dataset publicly available for a smart home, along with weather conditions, is used for
the methodology validation. The proposed algorithm is used to detect the spamicity score of the
connected IoT devices in the network. The obtained results illustrate the efficacy of the proposed
algorithm to analyze the time series data from the IoT devices for spam detection.

Keywords: IoT devices; spamicity score; machine learning; IoT security; smart home

1. Introduction

Advanced metering infrastructure (AMI) is one of the most principal components of the smart
grid, and it is comprised of hardware (smart meters) and software (data management systems and
communication networks) components. AMI enables two-way communication between the utilities
and the end customers. An AMI has structural similarities to a communication network; hence,
techniques utilized in communication networks to combat privacy breaches, malicious activities, and
monetary gain can be applied in the field of power grids [1]. The risk of the system infrastructure is
higher than the risk of aggregated component elements. As the count of elements susceptible to attack
increases in number, the system risk becomes more difficult and complex to trace [2]. Among the
various types of smart grid threats, those concerning smart meters involve threats to network hub
(poor isolation between meters power-line communication (PLC), and the smart meter’s outlet),
distributor’s servers, link, management networks (user injecting frames supplanting the network hub
identity), firmware updates, and hardware manipulation. In the case of the complete AMI, except
for the displays, all the operations are vulnerable to alterations such as protocol design, network
initialization, and key management and pose a threat to the AMI infrastructure. Threats interacting
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with the hardware to modify the memory are difficult to exploit. Meter tampering is one of the most
obvious risks which appears in the form of adjusting the smart meter reading to send inaccurate
information to the utility. This can result in inflated bills and providing wrong data for prediction
and management which may result in severe consequences. The smart meters produce large amounts
of data varied in terms of time and speed. Machine learning (ML) algorithms can be of noticeable
importance to ensure the security of the smart home systems [3]. Injection of false data is a typical
integrity attack and is a cyber-physical threat in modern smart grids. Automatic detection of faulty
Internet of Things (IoT) devices was proposed with the help of context extraction [4]. A robust ensemble
machine learning model was designed to detect the anomalies in the IoT devices based on the stored
data [5]. The method proposed in [5] targets to detect anomalous events in smart home datasets with
the help of ML model training. An analytical method was proposed to detect false data injection (FDI)
by employing a margin setting algorithm in a data-centric paradigm [6]. Detection of an integrity
attack such as false data injection (FDI) is possible with the help of analytical methods that utilize the
smart grid’s huge amounts of data. Various methods were applied in the literature for the detection of
anomalies in sensor data [5,7–9].

The addition of IoT devices to the smart home network adds challenges to the network elements
such as communication, sheer amounts of data, storage, security, and privacy. Analysis of the data
collected from the IoT devices can help in monitoring the energy consumption patterns and, in turn,
control the energy consumption more efficiently [10]. The benefits of improving energy efficiency
with the help of an AMI infrastructure is possible when the devices connected in the infrastructure
are trustworthy. The adverse effects of receiving incorrect readings can lead to various issues and
the energy management will tend to fail. The challenges faced in a smart home with IoT devices
connected to the infrastructure include the lack of reliable and scalable cloud infrastructure platforms,
ensured secure connections, information storage, and a lack of innovative products enabled with edge
computing. A spam detection framework was proposed with the help of machine learning models to
exploit the vulnerabilities in the smart IoT system [3].

This work is an extension of the work in [3], which assigns a spamicity score to the IoT devices.
This work enhances the algorithm to deal with the time-series regression model instead of a classification
model and can also execute ML models in parallel. This proposed paper focuses on determining the
trustworthiness of the IoT device in the smart home network sending readings of the home appliances
at a frequency of 1 min. The sensors’ readings were analyzed to find any anomalies by performing
autocorrelation analysis. The algorithm scores an IoT device with a spamicity score to secure smart
devices by detecting spam using different machine learning models. The main contributions of this
paper can be summarized as below:

1. Analyzing the time-series data of the smart home IoT devices to understand the underlying
structure of the data for better predictions.

2. Use of machine learning modeling to assign a feature importance score to the IoT device and
predict the total consumption of energy.

3. Calculation of a spam score of IoT devices to enhance the security of the smart home environment
with the help of feature importance scores and the errors in energy prediction.

The remainder of this article is summarized as follows: Section 2 discusses the moving averages,
followed by the machine learning models used in the analysis. The methodology of the algorithm used
in the paper is also described in this section, followed by the spamicity measure statistic. Section 3
analyses the time series smart home data and discusses the data statistics and the results of calculating
the spamicity score based on the algorithm described in Section 2. Section 4 concludes the paper.

2. Related Work

The home is a specific environment, and energy management is one of the IoT use cases with which
energy being sent out or consumed can be monitored. One can monitor each of the IoT appliances
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and how much power each of the devices is consuming, and easily switch between energy-efficient
appliances across the day. IoT security is a vital component to secure the IoT networks to protect against
cybercrime. IoT devices indulge in huge data flows over high-speed internet resulting in challenges to
control and manage the data flow. Artificial intelligence (AI) is claimed as one of the best solutions
for data management and control in the IoT [11]. In the past few years, deep learning techniques
have been explored and applied to the deluge of IoT devices [12]. Machine learning, a subset of AI,
adds to the IoT revolution in the smart homes learning patterns of the appliances connected to the
internet. An important motivation for the use of machine learning in the IoT security domain is to
not rely on IP addresses of the devices which can be spoofed but the use of device data from the
network. The field of cybersecurity utilized machine learning models for various applications such as
keystroke dynamics, malicious URL detection, combating adversarial attacks, software vulnerability
detection, automatic intrusion detection, spam email filtering, phishing URL detection, credit card
fraud detection, capturing network traffic, Distributed Denial of Service (DDoS) detection, botnet
traffic detection, etc. Ma et al. developed a framework by modeling the temporal sequence with the
help of support vector regression for anomaly detection [13]. Each detection result generated based on
the framework is designated with a confidence value. The authors worked on a variant of support
vector regressor (SVR) which utilizes the Lagrange multipliers to calculate the weights of the models
optimally. In the robust proposed online detection algorithm, the event duration n is chosen based
on a voting procedure. The experiments were verified on both real data from a Santa Fe Institute
competition with 1000-point time series and also synthetic data.

Several machine learning algorithms are used in the field of cybersecurity, broadly categorized
into supervised and unsupervised approaches. One of the popular supervised learning examples is
the detection of spam. Time series analysis and ensemble learning are two of the important concepts of
machine learning. These concepts are utilized to analyze the historical data, compare them with the
present, and detect any future deviations [14–17]. Makkar et al. developed a framework to detect web
spam with the help of long short-term memory techniques [3]. The approach for spam classification
in the IoT environment was also implemented in the research article to develop a framework for the
Pagerank algorithm [18]. Wireless sensors can be vulnerable to attacks such as malicious injections
creating fake events. Hau et al. proposed a framework to detect false data injections in heterogeneous
sensor data to ensure data integrity in the IoT network [19]. A review article on the strengths
and weaknesses of electrical power systems against malicious attacks has been discussed in [20].
Load altering attacks, data center attacks, and false command signals are some of the cyber-attacks
provided by IoT.

The work emphasized in this paper distinguishes the good or bad network connections with the
help of a spamicity score assigned to the IoT devices with the help of the algorithm. Various machine
learning models aid the regression problem discussed in the paper to predict the time series load
forecast. The related work emphasizes the fact that ML aids the detection of spam in the IoT devices by
analyzing the time series data generated by the IoT devices.

3. Materials and Methods

The use of machine learning models in the IoT has shown promising results for identifying
malicious internet traffic using anomaly detection research [21]. Moreover, either detection of anomalies
or the use of a spamicity score to track the security of the network components are motivated to have
a safe and secure network infrastructure. For the energy sector, a secure AMI infrastructure plays an
important role to enhance the overall security of the smart grids. In their paper, the authors discussed
the prospects of bridging the gap between smart home devices and the IoT-enabled cloud-based
environment [22]. Anomaly detection is an important step in the preprocessing data stages, as it helps
in observing unexpected behavior. In [23], Bakar et al. discussed the importance of anomaly detection
in the smart home environment as compared to other security domains. As the focus of this paper is
to assign a spamicity score to the IoT devices, this section focuses on the data handling procedures,
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statistical insights, detection of anomalies in the data, and ML models used for the prediction, followed
by the algorithm deployed to calculate the spamicity score.

3.1. Moving Average

Moving average forms, the basis of time series decomposition which is a commonly used technique
to smooth out fluctuations in the data. Based on the timeframe, there are short-term and long-term
moving averages which identify uptrend or downtrend of the data.

The easiest way to detect anomalies in time-series energy data is the use of moving averages
as they capture the previous day’s trend. A data point that deviates from the moving average will
be considered as an anomaly because the energy data do not expect a sudden rise and falls in the
consumption values. There are various methods of calculating moving averages depending on the
way the weight is added on the recent data points, such as:

• Simple Moving Average (SMA)

This is an average of a series of data points over a given period. Moving averages are used to
smooth out fluctuating data to identify overall trends and cycles. SMA is one the common averages
and is the mean of the x data points, where each data point is weighted equally in the simple moving
average, regardless of the occurrence the day before of x-1 days ago. The advantage of using an SMA
is that it is straightforward and has a simple average price calculation. Depending on the type of
application, the SMA might sometimes not be preferred due to the weight it gives to the old data and
is not preferred for some of the applications.

• Exponential Moving Average (EMA)

An EMA also takes an average of the data points over a given period; however, the weighting
of each data point is not equal, as in the case of SMA. More weight is given to the recent data and
the weighting is decreased as we go further back in time. EMA treats more recent data heavily as
compared to the historical data.

EMAt = (Vt ∗ α) + EMAy ∗ (1− α)

where α =
smoothing
1+Days , Vt—value today and EMAy—previous EMA

Cumulative and exponential averages on the data set are presented in Figure 1. The data is
resampled to a daily base using the sum to calculate the overall consumption in seven days. The benefit
of EMA is that it is useful to identify recent trends. It is clear from the moving averages that the load
consumption increased in the months of July, August, and September. However, the EMA signals are
also more prone to identify false signals due to greater sensitivity.

3.2. Machine Learning Models

The proposed algorithm is validated with the help of four ML models summarized below to
identify the spamicity score. Regression methods are widely used in the short-term and medium-term
power forecasting fields [24]. Several ML models are utilized for supervised machine learning; however,
this paper uses ensemble methods, a set of ML techniques based on decision trees. The machine
learning models utilized in the paper are described in Table 1.

(1) Extreme Gradient Boosting (XGBoost): This is a popular supervised machine learning model
with characteristics of distributed and out-of-core computation, efficiency, and parallelization [25].
The parallelization occurs for multiple nodes in a single tree and not across trees. The complexity
in XGboost is defined as:

Ω(f) = γT +
1
2
λ

T∑
j=1

w2
j
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The term Ω penalizes the complexity of the regression tree functions. γ is a constant (a larger value
of γ is associated with complex decision rules in which deeper nodes are penalized severely),
w the weight, and T the number of leaves in a tree. The regularization added term helps
in avoiding overfitting by smoothing the final learned weights. The main advantage of XGBoost
is its scalability and quick execution speed, and it usually outperforms the other ML models [26].

(2) Decision Trees: It employs a top-down approach, by utilizing standard deviation reduction to
partition the data into subsets of homogeneous values [27]. It incorporates mixtures of categorical
and numerical predictor variables with an integral part of the procedure to perform internal
feature selection. These are the reasons why decision trees have emerged as one of the most
popular data mining learning methods [28]. Decision trees can create an over-complex tree,
which does not tend to generalize the data well and can result in overfitting. Even though the
decision tree does not perform as well as neural networks for nonlinear networks, it is usually
susceptible to noisy data. Decision trees expect visible trends in the data and also perform well
on sequential patterns; if this is not the case, then decision trees have to be avoided for time series
applications [29].

(3) Random Forest: A supervised learning algorithm used for both classification and regression.
It is an ensemble of decision trees which helps in reducing the variance in decision trees [30].
It performs a balance between high variance and high bias by sampling with each tree fitted and
a sample of features at each split, respectively. The performance of random forest is dependent
on the suitable selection of the number of trees, N. As in the case of bagging, a greater value of N
does not necessarily overfit the data, and hence, a sufficiently large value of N can be chosen [31].

(4) Gradient Boosted regression model: This model is like random forests, but the key difference is
that the trees are built successively. The residual errors from the previous trees are fixed with the
next tree to improve the fit [32]. One of the noticeable features of gradient boosted trees is that
the algorithm detects the interactions among the features is detected automatically. However,
the performance of gradient boosted trees is based on careful tuning and performs better than
random forests if tuned appropriately. Gradient boosted trees are not preferred if the data consists
of a lot of noise and can result in overfitting.
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Table 1. Various machine learning (ML) models for time series analysis.

Model Tuning Parameter Result Package Method

Model 1 N_estimators, max depth 1000, 9 xgboost XGBRegressor
Model 2 Max depth 9 sklearn DecisionTreeRegressor
Model 3 Max features, max depth 10, 9 ensemble RandomForestRegressor
Model 4 Max features, learning rate 12, 0.1 ensemble GradientBoostingRegressor

The four models discussed in Table 1 along with the parameters tuned are validated in Section 4.5.
The R2 score and mean absolute error measure indicate the performance of the model;

1. a value closer to 100% indicates the model is highly correlated,
2. a value closer to 0 indicates the model to be perfect.
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3.3. Methodology

The efficiency of an IoT device is determined by the efficiency of transmitting data by connecting
wirelessly to the network. The efficiency increases if this data is stored, retrieved, and processed
efficiently. The occurrence of spam in these devices is determined with the help of the error statistic
spamicity score, as discussed in Section 3.4. The occurrence of spam is reduced by utilizing Equation (1).

min(S) =
→

I −
→
s (1)

where
→

I indicates data collected, and
→
s indicates the data related to spam. The lower the value of S,

the better the chances of collecting data for IoT devices free of spam.
The model is divided into two main steps of finding the feature weights and the choice of the

ML model. The flow chart in Figure 2 illustrates the methodology used in this paper. The flow chart
has three stages. Stage 1 involves the choice of ML model parameters for the prediction of energy
consumption using the R-squared (R2) statistical method. Each ML model with the best parameter is
used to predict the power consumption and to calculate the RMSE score. Stage 2 involves the scoring
of features based on the relative importance score of each of the input features. Stage 3 calculates
the spamicity score from the results in Stage 1 and Stage 2. The regression tree algorithm is used to
measure the feature importance, summarizing the calculated feature importance scores illustrated
in Table 2. The importance of the features’ array sums to 1 and is derived as the normalized total
reduction of the Gini criterion.Information 2020, 11, x FOR PEER REVIEW  7 of 16 
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Table 2. Results of attribute importance scores of regression tree 1.

Feature Attribute Importance

Solar [kW] 0.02406
Dishwasher [kW] 0.01054
Home office [kW] 0.01611

Fridge [kW] 0.01409
Wine cellar [kW] 0.00530

Garage door [kW] 0.35486
Barn [kW] 0.02593
Well [kW] 0.12521

Microwave [kW] 0.00646
Living room [kW] 0.03306

Icon 0.00292
Humidity 0.00210
Visibility 0.00147

Apparent temperature 0.00238
Pressure 0.00434
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Table 2. Cont.

Feature Attribute Importance

Windspeed 0.00336
CloudCover 0.00185

Wind Bearing 0.00296
PrecipIntensity 0.00048

DewPoint 0.05101
PrecipProbability 0.00030

SumFurnace 0.29437
AvgKitchen 0.01681

1 Gini index reduction method.

3.4. Spamicity Score

The validation of the proposed method is measured with the help of the spamicity score [3].
The spamicity score measures the trustworthiness and reliability of the IoT device. The spamicity score
of each of the IoT devices connected in the network is measured by the equation below.

RMSE[i] =

√√
1
n

n∑
i=1

(yi − yP)
2

S⇐ RMSE[i] ∗ Fi

where yi and yP are the actual and predicted values, n is the number of samples, RMSE[i] is the error
sample of each feature, Fi is the feature importance vector, and S is the spamicity score of each of the IoT
devices. The spamicity score is calculated as a product of the error rate and the feature importance score.
The complete procedure of calculating the spamicity score is iterated in Algorithm 1. The Spamicity
score of all the devices is tabulated in Table 6.

Algorithm 1 Calculation of Spamicity Score

Input Time series data
Output Spamicity score

f <- Features (data)
Target <- data
Model (Features, target) B Choice of ML model
importance <- model(feature importances)
for i, v
Fi <- enumerate(importance) B calculating the feature scores
end for
params <- {p1, p2, p3}
for i in params
model (params)
R2 score [i] B R2[i]=1− first sum of errors

second sum of errors
best parameter <- result
end for
def MLpool(i)
for m = 1 to count(Mi) do
model(best parameter)

RMSE[i] B RMSE[i]=

√
1
n

n∑
i,1

(
yi − yp

)2

end for
w <- workers
p <- pool(w)p (MLpool, f)
end def
for j = 1 to count(f) do S⇐ RMSE[i] ∗ Fi
end for
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4. Results

4.1. Data Description

A public dataset of smart home IoT devices with weather features was utilized in this paper
to perform the experiments [33]. The dataset ranges from 2016-01-01 08:00:00 to 2016-12-31 23:00:00
at a frequency of 1 min. The data statistic of power consumption [kW] is described below. Table 3
summarizes the dataset considered for the analysis. It helps us understand the variability (spread) of
the data. The mean is close to 1, which determines the estimate of the value of the complete dataset.
The standard deviation is also close to ≈1 and shows the average distance of the data points from
the mean.

Table 3. Descriptive statistics of the power consumption [KW].

Count 503,909

Average 0.858962
Standard deviation 1.058208

Minimum 0.000000
25% 0.367667
50% 0.562333
75% 0.970250
max 14.71456

The data includes the following appliances: Dishwasher’, ‘Home office’, ‘Fridge’, ‘Wine cellar’,
‘Garage door’, ‘Barn’, ‘Well’, ‘Microwave’, ‘Living room’, and ‘Solar’ and weather features as indicated
in Figure 3. It consists of smart home devices along with the weather information of the IoT devices
in the smart home network.Information 2020, 11, x FOR PEER REVIEW  9 of 16 
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Figure 3. Home data set features.

The power consumption patterns of the monthly resampled data indicated in Figure 4 illustrate
that the home office has the highest consumption and microwave has the lowest consumption.
The wine cellar shows a peak in September. The garage door also shows low energy consumption
levels. The home appliances such as microwave oven, garage door, and dishwasher, which are
directly linked to the human movements irrespective of the weather, show almost constant energy
consumption patterns.
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Figure 4. Consumption patterns (Home Office has the highest consumption).

4.2. Feature Selection

The feature selection is the first step to reduce the complexity of the model and to understand the
effect of the features on the overall energy prediction patterns.

Feature selection is the method of choosing the best subset of features by computing the significance
of each one of the features in the dataset [31]. Machine learning modeling also helps in assigning
a feature importance score to each of the features. Every machine learning model utilized to fit the
data is also used to evaluate its feature importance score. Table 2 lists the feature importance score of
all the features using regression trees.

4.3. Data Preprocessing

An important step in the process is to make sure that the data is complete and satisfies all the
requirements for data analysis. Any preprocessing step performed must be implemented vigilantly
to avoid corruption in the dataset. Missing values were replaced with the next valid observation.
The dataset was resampled to daily and monthly datasets based on the analysis requirements. Figure 5
is the autocorrelation plot of the data resampled to a monthly base. A value k is chosen based on the
time gap considered in the time series to understand the linear relationship between an observation
at the time t and its value at previous times. It can be depicted from Figure 5 that there is a strong
correlation at the early lag days, but this tends to decay near the lag variable value of 12 days.

4.4. Data Statistics

A combination of approaches, such as subtracting from the mean, differencing, log transformation,
measuring percentage change, etc., may be conducted to deserialize or detrend a time series. The density
of the observations shown in Figure 6 provides insights into the structure of the data by providing data
visualization over a continuous interval of time. The distribution is not suggested to be a Gaussian
distribution; the right long line suggests the observation to be an exponential distribution due to a peak
and exponentially decreasing values.
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Autocorrelation determines the similarity between the observations as a function of time lag by
performing a serial correlation of a time-domain signal with itself as a function of delay. The peaks
in the autocorrelation help in determining the anomalies/noise in the data. Figure 5 indicates the
autocorrelation of consumption.

The blue shaded region is the margin of uncertainty of the average of measurements and sticks
extending beyond the blue region are considered statistically significant to not have occurred by chance.

Time-series data set can be stationary and non-stationary. Before applying any analysis, data is
expected to be stationary, because a lot of analytical tools depend on it and expect the time series to
not change drastically over time. The augmented Dickey–Fuller (ADF) test has been utilized to test
the stationarity of the data, which claims as the null hypothesis that the data is non-stationary due to
the trend [34]. When the null hypothesis is rejected, we can claim that the time series is stationary.
The first difference (data at time t - data at time t-1) of the data is considered for the calculation of the
ADF analysis.

Referring to Table 4. the value of p is 0.0, which is less than the threshold of 0.05, and the absolute
value of the test statistic exceeds the absolute value of the 5% critical value. Hence, the null hypothesis
can be rejected, claiming that the p-value is statistically significant, and the series data can be claimed
to be stationary.

Table 4. Statistical details of the dataset.

Test Statistic Value

p-value 0.0
Test statistic −93.5733

1% Critical values −3.43036
5% Critical values −2.86154
10% Critical values −2.56677

4.5. Results of Machine Learning Models on the Smart Home Dataset

In Figure 7, orange indicates the projections of the test dataset and the blue the prediction on
the training dataset. The values show visually how good or bad the model is. The dataset was
trained on the four ML models discussed in Section 3.2, and the results are depicted in Table 5 below.
It provides a summary of the performance of the four machine learning models used in the experiments.
The results in Table 6; Table 7 illustrate the spamicity score of the IoT devices and the weather features,
respectively. The distribution of the spamicity scores of all four ML models is presented in Figures 8–11.
The evaluation was done using the R2 score test to choose the ML model and the feature importance
score of all the features under consideration. The spamicity score is a product of two numbers, RMSE
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and the feature importance. An RMSE score cannot be considered good or bad, but surely a lesser value
is always preferred. In the case of feature importance, a value closer to 1 is preferred, as the greater the
number, the more important the feature is. It is not easy to define a threshold, but a score value in the
range of e−3 can be considered as spam, as the values it records are of very low importance and also do
not help in predicting the power consumption. The spikes in Figures 8–11 in the vicinity of 0 indicate
the occurrence of spam in the data collected from both the IoT devices and the weather features.Information 2020, 11, x FOR PEER REVIEW  12 of 16 
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Table 5. Summary of the performance of ML models.

Model R2 Score Mean Absolute Error Explained Variance Score Distribution

Model—1 (XGBoost) 0.809 0.152 0.809 Refer—Figure 8
Model—2 (Decision Trees) 0.692 0.192 0.692 Refer—Figure 9
Model—3 (Random Forest) 0.789 0.186 0.790 Refer—Figure 10
Model—4 (Gradient Boosted regression) 0.798 0.176 0.799 Refer—Figure 11

Table 6. Spamicity score of the Internet of Things (IoT) devices.

IoT Device Model 1 Model 2 Model 3 Model 4

Solar [kW] 0.01756 0.01805 0.01298 0.01365
Dishwasher [kW] 0.00706 0.00748 0.00596 0.02428
Home office [kW] 0.01176 0.01273 0.00685 0.00740
Fridge [kW] 0.00972 0.00986 0.00355 0.00676
Wine cellar [kW] 0.00398 0.00435 0.00119 0.00534
Garage door [kW] 0.20937 0.21646 0.24176 0.16634
Barn [kW] 0.01919 0.02023 0.01334 0.01344
Well [kW] 0.08514 0.08765 0.09095 0.09633
Microwave [kW] 0.00510 0.05278 0.01580 0.24607
Living room [kW] 0.02347 0.02777 0.02019 0.01847

Table 7. Spamicity score of the weather features.

IoT Device Model 1 Model 2 Model 3 Model 4

Temperature 0.00213 0.00225 0.00043 0.00949
Humidity 0.00155 0.00160 0.00008 0.00012
Visibility 0.00109 0.00118 0.00019 0.00028
Apparent Temperature 0.00174 0.00179 0.00057 0.00568
Pressure 0.00321 0.00347 0.00019 0.00011
WindSpeed 0.00249 0.00272 0.00062 0.00002
CloudCover 0.00137 0.00141 0.00017 0.00002
WindBearing 0.00219 0.00228 0.00005 0.00008
PrecipIntensity 0.00036 0.00036 0.00000 0.00002
DewPoint 0.03724 0.03877 0.03218 0.07196
PrecipProbability 0.00022 0.00023 0.00000 0.00000
SumFurnace 0.18545 0.18840 0.21717 0.18320
AvgKitchen 0.01126 0.01143 0.00311 0.01108
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5. Conclusions

Efficient spam detection in the IoT devices has drawn significant attention from researchers,
developers of the industries, and academics in recent years. This paper determines the use of
the spamicity score to understand the trustworthiness of IoT devices in the smart home network.
The proposed algorithm is used to determine the spam score of all IoT devices. Through rigorous
tests and experiments, various ML models were utilized to analyze the time-series data generated
from smart meters. Various contribution levels of the IoT devices were determined with the help
of ensemble methods of machine learning by awarding a spam score to the IoT devices in a smart
home. The results show that the spamicity score of the devices helps in refining the conditions of the
successful IoT device functioning in the smart home.

The provided data from the smart home, along with the weather features, can be effectively
utilized to award a spam score and can help in determining the security of the IoT devices.
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