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Abstract: Forecasting the direction and trend of stock price is an important task which helps investors
to make prudent financial decisions in the stock market. Investment in the stock market has a big risk
associated with it. Minimizing prediction error reduces the investment risk. Machine learning (ML)
models typically perform better than statistical and econometric models. Also, ensemble ML models
have been shown in the literature to be able to produce superior performance than single ML models.
In this work, we compare the effectiveness of tree-based ensemble ML models (Random Forest (RF),
XGBoost Classifier (XG), Bagging Classifier (BC), AdaBoost Classifier (Ada), Extra Trees Classifier
(ET), and Voting Classifier (VC)) in forecasting the direction of stock price movement. Eight different
stock data from three stock exchanges (NYSE, NASDAQ, and NSE) are randomly collected and used
for the study. Each data set is split into training and test set. Ten-fold cross validation accuracy is
used to evaluate the ML models on the training set. In addition, the ML models are evaluated on
the test set using accuracy, precision, recall, F1-score, specificity, and area under receiver operating
characteristics curve (AUC-ROC). Kendall W test of concordance is used to rank the performance of
the tree-based ML algorithms. For the training set, the AdaBoost model performed better than the
rest of the models. For the test set, accuracy, precision, F1-score, and AUC metrics generated results
significant to rank the models, and the Extra Trees classifier outperformed the other models in all
the rankings.
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1. Introduction

Forecasting future the trend and direction of stock price movement is an essential task which helps
investors to take prudent financial decisions in the stock (equity) market. However, carrying out such
task is very exacting since factors (such as political events, economic factors, investors’ sentiments, etc.)
that influence the behavior of the equity market change constantly at a great pace, and they are greatly
affected by the high degree of noise [1]. For many years, investors and researchers were of the belief that
the stock price cannot be predicted. This belief came into existence due to random walk theory [2–4]
and the efficient market hypothesis (EMH) [5,6]. Supporters of the random walk theory have the belief
that stock prices will move along a random walk path and any forecast of the movement of stock will be
about fifty percent (50%) [7]. Also, EMH posits that, the equity market reflects every currently available
information, hence, it cannot be forecasted to consistently make economic gains that surpass the overall
market average. However, numerous research studies have provided evidence to the contrary, to show
that the equity market can be forecasted to some extent [8–11]. Investors have been able to gain profit
by beating the market [12]. Investing in equity markets has big risk associated with it due to the
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fact that financial market time series are non-parametric, dynamic, noisy, and chaotic. To be able to
minimize the associated risk of equity market investment, a foreknowledge on the future movement of
stock price is needed. A precise forecast of equity market movement is essential in order to maximize
capital gain and minimize loss, since investors are likely to buy or desist from stock whose future value
is expected to rise or fall respectively. Methods such as technical analysis, fundamental analysis, time
series forecasting, and machine learning (ML) exist to forecast the behavior of stock prices. In this
paper, we focus on the use of ML to predict stock price behavior as it is known from the literature that
ML models typically produce better results than statistical and econometric models [13–15], and it
captures the non-linear nature of the equity market better than the other methods. Also, with the
availability of huge amounts of stock trading data as a result of advances in computing, the task of
predicting the behavior of the equity market is too massive to be carried out with the other methods.
Moreover, with ML technique, individual models can be combined to obtain a reduction in variance
and improve the performance of the models [16]. Predicting stock price with ML models has two
approaches: (a) using the single ML model [9,17–21], and (b) using ensemble ML models [16,22–27].
Application of ensemble ML models has been reported in the literature by some researchers to produce
superior performance than single ML models [24,28,29]. Hence, in this article, we study tree-based
ensemble ML models in an effort to predict the direction of stock price movement. Thus, our goal is
to build an intelligent tree-based ensemble machine learning models that learn from the past stock
market data and estimate the direction of stock price movement. Precisely, we examine and compare
the effectiveness of the following tree-based ensemble ML models in forecasting the direction of stock
price movement: (i) Random Forest Classifier (RF), (ii) XGBoost Classifier (XG), (iii) Bagging Classifier
(BC), (iv) AdaBoost Classifier (Ada), (v) Extra Trees classifier (ET), and (vi) Voting Classifier (VC).

2. Experimental Design

In this experiment, stock data were acquired through the yahoo finance application programming
interface (API). Technical indicators that reflect variations in price over time are computed. The data
are subjected to two preprocessing steps: (i) data cleaning; to take care of missing and erroneous values;
(ii) data normalization; to enable the machine learning models to perform well. Feature extraction
technique is used to extract the relevant features for the machine learning models. The tree-based
ensemble machine learning models are trained and predictions made with them. The models are
evaluated and ranked using different evaluation metrics.

2.1. Data and Features

Eight stock data sets are randomly collected from three different stock exchanges (New York
Stock Exchange (NYSE), National Association of Securities Dealers Automated Quotations System
(NASDAQ), and National Stock Exchange of India Ltd (NSE)). The data for the following stocks are
used: Bank of America Corporation (BAC), Exxon Mobil Corporation (XOM), S&P 500 Index (INX),
Microsoft Corporation (MSFT), Dow Jones Industrial Average (DJIA INDEX), CarMax, Inc. (KMX), Tata
Steel Limited (TATASTEEL), and HCL Technologies Ltd (HCLTECH). Table 1 presents a description
of the dataset. Forty (40) technical indicators from four different categories of technical indicators
(namely, momentum indicators, volume indicators, price transform, and overlap studies) are computed
from the OHLCV data collected and used as input features. Details of the overlap studies, volume
indicators, price transform, and momentum indicators are provided by Tables A1–A4 respectively at
the Appendix A. Each dataset is divided into training and test sets for the purpose of this experiment.
The training set constitute the initial 70% of the data set, and the test set is made up of the final 30% of
the data set. Ten-fold cross-validation is used for the Training set. In the cross-validation, the data set
is split into 10 groups. To train the model, nine out of the 10 groups are used to train the model and the
remaining group is used to evaluate the performance of the model. This process is repeated 10 times
with a different 10th of the dataset used to test the remaining 9 groups during every run of the 10-fold
cross validation.
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Table 1. Description of the data sets.

Data Set Stock Market Time Frame Number of Sample

BAC NYSE 2005-01-01 to 2019-12-30 3774
DOWJONES INDEXDJX 2005-01-01 to 2019-12-30 3774
TATASTEEL NSE 2005-01-01 to 2019-12-30 3279
HCLTECH NSE 2005-01-01 to 2019-12-30 3477

KMX NYSE 2005-01-01 to 2019-12-30 3774
MSFT NASDAQ 2005-01-01 to 2019-12-30 3774

S&P_500 INDEXSP 2005-01-01 to 2019-12-30 3774
XOM NYSE 2005-01-01 to 2019-12-30 3774

2.2. Data Normalization

The different features do not have the same range of values. Therefore, we normalized the input
dataset to bring the values of all features in the same range. Standardization scaling (z-score) is applied
to normalize the feature set. The z-score transform features so that they have characteristics of a
Gaussian distribution with the values of each feature having a mean of zero and a unit-variance [30].

z(x) = (x[:, i] − µi)/σi (1)

where µi = mean of the ith feature, σi = standard deviation of the ith feature.

2.3. Feature Extraction

The final dataset comprises of 45 predictors (40 technical indicators and the OHLCV variables).
High dimensional data suffers from the curse of dimensionality which causes the performance and
accuracy of learning algorithms to reduce. Hence, dimensionality reduction process is essential in
the study. However, getting most of the information offered by the original features is of extreme
importance. PCA is applied in this study. PCA has been shown to improve the stability and performance
of models in stock prediction [31,32]. PCA operates with the aim of extracting and keeping only
the most relevant information of the original dataset. It achieves this aim by employing orthogonal
transformation to transform values of possibly correlated features into values of features that are
linearly uncorrelated. These new features are known as principal components (PC). The PCs are
linear combinations of features of the original dataset hence, the reconstruction error is greatly
reduced. PCA generates orthogonal components, implying that they are not correlated to each other.
The selection of the first PC is done in a way that reduces the distance between the data and its
projection onto the PC. By reducing the distance, we increase the variance of the projected points.
The subsequent PCs are chosen in a similar manner but with the added obligation that they should
be uncorrelated with the preceding PCs. In several instances, most variance within the dataset are
accounted for by the initial few PCs, therefore, the remainder of the PCs can be disregarded with only
a minor information loss. Our stock market dataset appears to have many highly correlated features,
hence, applying PCA helps us lessen the effect of strong correlations among features, while decreasing
the dimensionality of the feature space. We used PCs that preserve most of the variance (information)
of the original data, hence setting the threshold to 95%.

2.4. Machine Learning Algorithms

The effectiveness of tree-based ML ensemble models (Random Forest classifier, XGBoost classifier,
AdaBoost classifier, Bagging classifier, Extra Trees classifier, and Voting classifier) in forecasting the
direction of stock price movement is examined in the study. A brief discussion of these ensemble
tree-based classifiers is provided here.
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2.4.1. Base Classifier

In this study all the ensemble classifiers use decision tree classifier as the base classifier. A decision
tree (DT) makes predictions on a target variable based on a sequence of rules set in a tree-like structure.
It comprises of non-leaf node(s) representing test on an attribute, branches representing possible
outcomes of the test, and leaf nodes representing class labels. Decision tree classifies a new observation
by navigating them down the tree from the root to a leaf node, based on the output of the tests along
the path [33]. DT follows a similar approach that human beings generally follow in making decisions.
Hence, DT models are intuitive and can be explained easily.

2.4.2. Random Forest Classifier

Random Forest (RF) operates by constructing a group of decision trees to enhance the robustness
and performance of the decision trees [34]. This method merges the random selection of features
technique [35–37] and Breiman’s bagging sampling method [38], to build a group of decision trees
with controlled variation. Employing bagging, each decision tree within the group is created by means
of a sample with replacement from the training data. Each decision tree within the group acts as a base
estimator to establish the class label of an unlabeled instance. This is accomplished through majority
votes. Each of the base decision tree model casts a vote for the class label it predicted. The class label
that gets majority of the votes is used to classify the instance. RF is robust to noise and overfitting [39].
The Random forest algorithm has been applied in several fields by different researchers. Some of the
recent applications of random forest algorithm include random forest for label ranking [40], stock
selection with random forest [41], structured random forest for label distribution learning [42], clinical
risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data
analysis [43], and the application of random forest-based approaches to surface-enhanced Raman
scattering data [44].

2.4.3. AdaBoost Classifier

AdaBoost is a boosting machine learning technique that works by combining multiple weak
learners into a special classifier via a weighted linear combination. AdaBoost sequentially applies a
learning algorithm to reweighted samples of the original training data [45]. It is an iterative algorithm
and, in each iteration, the misclassified instances in a prior iteration are given more weight. Initially,
each instance is assigned equal weight and iteration by iteration, the weights of all wrongly classified
instances are raised and that of rightly classified instances are reduced. The algorithm iterates
repeatedly applying the base classifier on the training data with new weights. The final classification
model produced is a linear combination of all the models gotten in the different iterations [46].
AdaBoost fully considers the weight of every classifier, however, it is sensitive to outliers and noisy data.
The application of AdaBoost algorithm in the literature is very diverse. Recent usages of AdaBoost
include time series classification based on Arima and AdaBoost [47], an AdaBoost algorithmic method
for computational financial analysis [48], and an AdaBoost classifier using stochastic diffusion search
model for data optimization in Internet of Things [49].

2.4.4. XGBoost Classifier

XGBoost is a scalable and efficient variant of the gradient tree boosting algorithm. In the gradient
boosting algorithm, boosting is viewed as an optimization problem with the aim of minimizing the
loss function of the classification model by addition of one weaker learner at a time. The algorithm
continuously minimizes errors of the previous models in the direction of gradient to produce a new
model [50]. XGBoost algorithm incorporates the following features [51]: (a) regularized model to
prevent overfitting (b) sparsity-aware split finding algorithm to deal with different kinds of sparsity
patterns in the data (c) distributed weighted quantile sketch algorithm to deal effectively with weighted
data (d) column block structure for parallel learning (e) cache-aware prefetching algorithm to fetch
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and store the gradient statistics (f) blocks for out-of-core computation. Recent applications of XGBoost
in the literature include hard rock pillar stability forecast using GBDT, XGBoost, and LightGBM
algorithms [52], gene expression value forecast based on XGBoost Algorithm [53], and the enhancement
of diagnosis of depression using XGBOOST model and a large biomarkers Dutch dataset [54].

2.4.5. Bagging Classifier

A Bagging classifier is an ensemble meta-estimator. This algorithm creates multiple models
by fitting each base classifier on a random subsample of the original dataset and then combine the
results of all the models to determine the final prediction. The bagging classifier uses either the
greatest mean probability among the base classifiers or majority voting to establish the predicted
label. Since the original training dataset is re-sampled with replacement, certain instances may be
selected many times while others are not selected at all. The meta-estimator reduces the variance of
the base estimator through the introduction of randomization into the construction method and then
generating an ensemble from it [55]. The base classifiers are trained in parallel with the subgroup of the
training set generated via random selection with replacement from the original dataset. The training
dataset of every base classifier is independent of the others. The Bagging algorithm has also seen
extensive application in the literature. Some of the recent applications of the bagging algorithm
include comparative application of Bagging and Boosting ensemble machine learning approaches
for automated EMG signal classification [56], an enhancement of the performance of Bagging for
classification of imbalanced datasets with evolutionary multi-objective optimization by [57].

2.4.6. Extra Trees Classifier

The Extra-Trees classifier creates a group of unpruned decision trees in accordance with the
traditional top-down method. It essentially involves randomizing both attribute and cut-point selection
strongly while splitting a node of a tree. In the extreme situation, it creates fully randomized trees
having structures independent of the output values of the training sample. It mainly differs from
other tree-based ensemble methods on two counts, which are that it splits nodes by picking cut-points
fully at random, and it also uses the whole training sample (instead of bootstrap replica) to grow the
trees. The predictions of all the trees are combined to establish the final prediction, through majority
vote. The idea behind extra-trees classifier is that the full randomization of the cut-point and attribute
together with ensemble averaging will decrease variance better than weaker randomization strategy
used by other methods. The usage of all of the original training samples instead of bootstrap replicas is
to decrease bias. Computational efficiency is a major strength of this algorithm [58]. Like the other
algorithms, Extra trees algorithm has also seen an extensive and diverse application in the literature.
Some of the recent applications include classification of land cover using Extremely Randomized
Trees [59], and a multi-layer intrusion detection system with Extra Trees feature selection, extreme
learning machine ensemble, and softmax aggregation [60].

2.4.7. Voting Classifier

Voting classifier combines different types of machine learning classifiers, aggregating the output
of each classifier passed to it, and makes the final prediction of the class label of a new instance based
on voting. The voting may be either hard or soft. In the case of hard voting simple majority voting is
used. In this case, the class that gets the greatest number of votes will be selected (predicted). For soft
voting, a prediction is made by averaging the class-probabilities of each classifier. The class that gets
the best average probability is predicted. In this work, we adopted soft voting. Also, the tree-based
ensemble classifiers are used as the base estimators for the VC.

2.5. Evaluation Metric

To evaluate performance of the ensemble ML models the following evaluation criteria are used:
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(a) accuracy, (b) precision, (c) recall, (d) F1-score (e) specificity (f) area under receiver operating
characteristics curve (AUC-ROC). These metrics are classical quality criteria used to quantify
performance of ML models. Below are their definitions:

Accuracy: the percentage of entire instances rightly predicted by the classifier

accuracy =
tp + tn

tp + tn + f p + f n
(2)

Precision: the proportion of positive instances rightly predicted by the classifier out of all the
instances predicted by the classifier as positive.

precision =
tp

tp + f p
(3)

Recall: the proportion of positive instances rightly predicted by the classifier out of all the instances
that are actually positive.

recall =
tp

tp + f n
(4)

f1 score: presents a harmonic mean of precision and recall

f 1_score =
2× precision× recall

precision + recall
(5)

Specificity: the proportion of negative instances rightly predicted by the classifier out of the total
instances that are actually negative.

speci f icity =
tn

tn + f n
(6)

where tp = true positive, fp = false positive, tn = true negative, and fn = false negative,
AUC-ROC: ROC is a probability curve that displays in a graphical way the trade-off between

recall and specificity. AUC measures the ability of the classifier to distinguish between the positive and
negative classes. A perfect classifier will have AUC of one, and worst performing classifier will have
AUC of 0.5.

3. Results and Analysis

Table 2 presents the ten-fold cross validation accuracy scores of the tree-based ensemble ML
models on the training set. The scores of Random Forest range from 0.8131 to 0.8884. AdaBoost scores
range from 0.8157 to 0.9127. XGBoost scores range from 0.8122 to 0.8991. The accuracy scores range of
Bagging classifier is from 0.8034 to 0.8781. Extra trees classifier has an accuracy score range of 0.8087 to
0.9027. The Voting classifier scores range from 0.8191 to 0.9019. The accuracy score of AdaBoost is
the best on BAC, S&P_500, DJIA, KMX, TATASTEEL, and HCLTECH training datasets. Extra trees,
and Voting classifiers recorded the highest accuracy on MSFT, and XOM training data sets respectively.
In general, the mean accuracy of the AdaBoost model is the best among the tree-based ensemble
models. A boxplot of the ten-fold cross validation accuracy scores of the ML models on the training
data sets is presented by Figure 1.
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Table 2. Ten-fold cross validation accuracy score of the ML models on the training sets.

Data Sets RF Ada XG BC ET VC

BAC 0.8345 0.8452 0.8392 0.8277 0.8329 0.8444
XOM 0.8181 0.8157 0.8249 0.8034 0.8170 0.8269

S&P 500 0.8766 0.9004 0.8909 0.8607 0.8972 0.8960
MSFT 0.8388 0.8476 0.8478 0.8234 0.8531 0.8503
DJIA 0.8884 0.9127 0.8991 0.8781 0.9027 0.9019
KMX 0.8483 0.8626 0.8480 0.8273 0.8551 0.8519

TATASTEEL 0.8679 0.8720 0.8679 0.8472 0.8716 0.8674
HCLTECH 0.8131 0.8282 0.8122 0.8092 0.8087 0.8191

Mean 0.8482 0.8606 0.8538 0.8346 0.8547 0.8572
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Table 3 shows the accuracy results of the tree-based ensemble ML models on the test datasets.
The accuracy results of Random Forest range from 0.7565 to 0.8375. Adaboost has accuracy outcomes
that range from 0.7306 to 0.8702. XGBoost accuracy scores range from 0.7667 to 0.8498. Bagging classifier
accuracy results range from 0.7620 to 0.8391. The accuracy results of Extra Trees classifier range from
0.7889 to 0.8594. Voting Classifier accuracy results range from 0.7917 to 0.8552. AdaBoost produced
the highest accuracy performance on XOM and TATASTEEL data sets. Extra Trees recorded the
best accuracy performance on DJIA, and HCLTECH data sets. Voting classifier generated the best
performance on MSFT, and KMX data sets. The Extra Trees classifier, and the Voting classifier produced
the same and highest accuracy performance on BAC, and S&P_500 data sets. Overall, the Extra Trees
classifier generated the best mean accuracy performance. Figure 2 provides the box plot of the accuracy
scores of the machine learning models on the test data sets.

Table 3. Accuracy outputs of the tree-based ensemble ML models on the test datasets.

Data Sets RF Ada XG BC ET VC

BAC 0.8306 0.8435 0.8417 0.8306 0.8463 0.8463
XOM 0.8463 0.8639 0.8454 0.8222 0.8574 0.8463

S&P 500 0.8139 0.7926 0.8213 0.8120 0.8287 0.8287
MSFT 0.7565 0.7306 0.7667 0.7620 0.7889 0.7917
DJIA 0.8055 0.8278 0.8120 0.7731 0.8306 0.8148
KMX 0.8185 0.8361 0.8407 0.8138 0.8361 0.8426

TATASTEEL 0.8412 0.8702 0.8498 0.8391 0.8594 0.8552
HCLTECH 0.8375 0.8335 0.8355 0.8184 0.8527 0.8456

Mean 0.8188 0.8248 0.8266 0.8089 0.8375 0.8344
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Table 4 displays precision results of the tree-based ensemble ML models on the test datasets.
The precision scores of Random Forest range from 0.8033 to 0.9085. Adaboost precision scores range
from 0.8372 to 0.9277. XGBoost has precision scores ranging from 0.8242 to 0.8822. Bagging Classifier
precision results range from 0.7855 to 0.8841. The precision outcomes of Extra Trees range from 0.8298
to 0.9057. Voting Classifier precision scores range from 0.8297 to 0.8934. Random Forest recorded the
best precision value on XOM data set. AdaBoost produced the highest precision values on S&P_500,
MSFT, DJIA, and TATASTEEL datasets. Extra Trees generated the best precision scores on KMX,
and HCLTECH data sets. On the whole, AdaBoost recorded the highest precision mean score. Figure 3
presents the boxplot of the precision results of the tree-based ensemble machine learning models on
the test data sets.

Table 4. Precision results of the tree-based ensemble ML models on the test datasets.

Data Sets RF Ada XG BC ET VC

BAC 0.8392 0.8372 0.8378 0.8469 0.8429 0.8491
XOM 0.9085 0.8959 0.8822 0.8841 0.9057 0.8934

S&P 500 0.8421 0.9277 0.8592 0.8311 0.8664 0.8612
MSFT 0.8640 0.9021 0.8626 0.7855 0.8929 0.8822
DJIA 0.8630 0.9185 0.8803 0.8398 0.8891 0.8767
KMX 0.8457 0.8448 0.8389 0.8469 0.8687 0.8442

TATASTEEL 0.8033 0.8695 0.8242 0.8073 0.8298 0.8297
HCLTECH 0.8629 0.8470 0.8438 0.8577 0.8796 0.8623

Mean 0.8536 0.8803 0.8536 0.8374 0.8719 0.8624
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Table 5 presents recall outputs of the tree-based ensemble ML models on the test datasets. The recall
outputs of Random Forest range from 0.6622 to 0.9089. Adaboost has recall scores that range from
0.5731 to 0.8750. The recall outcomes of XGBoost range from 0.6857 to 0.8940. Bagging Classifier
has recall scores ranging from 0.7286 to 0.8962. Extra trees recall scores range from 0.7008 to 0.9089.
The Voting Classifier has a recall results ranging from 0.7176 to 0.8983. Random Forest recorded the best
recall value on TATASTEEL data set. AdaBoost produced the highest recall scores on BAC, and XOM
data sets. XGBoost generated the best recall values on KMX, and HCLTECH data sets. The recall
results generated by Bagging is the best on S&P_500, and KMX data sets. Extra Trees recorded the
highest recall values on DJIA, and TATASTEEL. In general, the Voting Classifier produced the highest
mean recall score. A boxplot illustrating the recall scores of the ensemble machine learning models on
the test data sets is given by Figure 4.

Table 5. Recall measure of the tree-based ensemble ML models on the test datasets.

Data Set RF Ada XG BC ET VC

BAC 0.8255 0.8600 0.8545 0.8145 0.8582 0.8491
XOM 0.7764 0.8291 0.8036 0.7491 0.8036 0.7927

S&P 500 0.8122 0.6734 0.8054 0.8240 0.8122 0.8190
MSFT 0.6622 0.5731 0.6857 0.7815 0.7008 0.7176
DJIA 0.7705 0.7554 0.7638 0.7286 0.7923 0.7739
KMX 0.7943 0.8372 0.8569 0.7818 0.8050 0.8533

TATASTEEL 0.9089 0.8750 0.8940 0.8962 0.9089 0.8983
HCLTECH 0.8324 0.8454 0.8547 0.7970 0.8436 0.8510

Mean 0.7978 0.7811 0.81488 0.7966 0.8156 0.8194
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Figure 4. Boxplot of recall scores of the tree-based ensemble ML models on the test data sets.

Table 6. shows F1 scores of the tree-based ensemble ML models on the test datasets. The F1 scores
of Random range from 0.7498 to 0.8529. AdaBoost F1 results range from 0.7009 to 0.8722. XGBoost has
F1 scores which range from 0.7640 to 0.8577. The F1 scores of Bagging Classifier range from 0.7803 to
0.8494. Extra Trees F1 scores range from 0.7853 to 0.8675. Voting Classifier has F1 score ranging from
0.7915 to 0.8627. AdaBoost generated the best F1 results on XOM, and TATSTEEL data sets. The Extra
Trees classifier generated F1 results superior to the rest of the models on BAC, DJIA, and HCLTECH
data set. The F1 values recorded by Voting Classifier is the highest on XOM, MSFT, and KMX data sets.
Overall, the Extra Trees Classifier has the highest average F1score. A boxplot of the F1 scores of the
tree-based ensemble machine learning models on the test data sets is illustrated by Figure 5.
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Table 6. F1 scores of the tree-based ensemble ML models on the test datasets.

Data Set RF Ada XG BC ET VC

BAC 0.8323 0.8484 0.8461 0.8304 0.8505 0.8491
XOM 0.8373 0.8612 0.8411 0.8110 0.8516 0.8401

S&P 500 0.8269 0.7804 0.8314 0.8275 0.8384 0.8395
MSFT 0.7498 0.7009 0.7640 0.7834 0.7853 0.7915
DJIA 0.8142 0.8290 0.8179 0.7803 0.8379 0.8221
KMX 0.8192 0.8410 0.8478 0.8130 0.8357 0.8488

TATASTEEL 0.8529 0.8722 0.8577 0.8494 0.8675 0.8627
HCLTECH 0.8474 0.8462 0.8492 0.8263 0.8612 0.8566

Mean 0.8225 0.8224 0.8319 0.8152 0.8410 0.8388

Information 2020, 11, x FOR PEER REVIEW 10 of 20 

 

KMX 0.8192 0.8410 0.8478 0.8130 0.8357 0.8488 

TATASTEEL 0.8529 0.8722 0.8577 0.8494 0.8675 0.8627 

HCLTECH 0.8474 0.8462 0.8492 0.8263 0.8612 0.8566 

Mean 0.8225 0.8224 0.8319 0.8152 0.8410 0.8388 

 

Figure 5. Boxplot of F1 scores of the tree-based ensemble ML models on the test data. 

Table 7 presents specificity of the tree-based ensemble ML models on the test datasets. The 

specificity results of Random Forest range from 0.7717 to 0.9189. AdaBoost specificity scores range 

from 0.8194 to 0.9366. XGBoost has specificity scores ranging from 0.8043 to 0.8887. The specificity 

outcomes of Bagging Classifier range from 0.7381 to 0.8981. Extra trees specificity scores range from 

0.8087 to 0.9132. Voting Classifier has specificity scores which range from 0.8109 to 0.9019. Random 

Forest generated the best specificity score on XOM data set. AdaBoost produced the highest 

specificity results on S&P_500, MSFT, DJIA, and TATSTEEL data sets. Bagging classifier recorded the 

best specificity performance on BAC data set. Extra Trees classifier generated the best specificity 

outcomes on KMX, and HCLTECH data sets. In general, AdaBoost classifier has the highest mean 

specificity score. Figure 6 presents the boxplot of the specificity scores of the tree-based ensemble 

machine learning models on the test data sets.  

Table 7. Specificity scores of the tree-based ensemble ML models on the test datasets. 

Data Set RF Ada XG BC ET VC 

AC 0.8358 0.8264 0.8283 0.8472 0.8340 0.8440 

XOM 0.9189 0.9000 0.8887 0.8981 0.9132 0.9019 

S&P 500 0.8160 0.9366 0.8405 0.7975 0.8487 0.8405 

MSFT 0.8722 0.9237 0.8660 0.7381 0.8969 0.8825 

DJIA 0.8489 0.9172 0.8716 0.8282 0.8778 0.8654 

KMX 0.8445 0.8349 0.8234 0.8484 0.8695 0.8311 

TATASTEEL 0.7717 0.8652 0.8043 0.7804 0.8087 0.8109 

HCLTECH 0.8436 0.8194 0.8128 0.8436 0.8634 0.8392 

Mean 0.8440 0.8779 0.8420 0.8227 0.8640 0.8519 

Figure 5. Boxplot of F1 scores of the tree-based ensemble ML models on the test data.

Table 7 presents specificity of the tree-based ensemble ML models on the test datasets.
The specificity results of Random Forest range from 0.7717 to 0.9189. AdaBoost specificity scores range
from 0.8194 to 0.9366. XGBoost has specificity scores ranging from 0.8043 to 0.8887. The specificity
outcomes of Bagging Classifier range from 0.7381 to 0.8981. Extra trees specificity scores range
from 0.8087 to 0.9132. Voting Classifier has specificity scores which range from 0.8109 to 0.9019.
Random Forest generated the best specificity score on XOM data set. AdaBoost produced the highest
specificity results on S&P_500, MSFT, DJIA, and TATSTEEL data sets. Bagging classifier recorded
the best specificity performance on BAC data set. Extra Trees classifier generated the best specificity
outcomes on KMX, and HCLTECH data sets. In general, AdaBoost classifier has the highest mean
specificity score. Figure 6 presents the boxplot of the specificity scores of the tree-based ensemble
machine learning models on the test data sets.

Table 7. Specificity scores of the tree-based ensemble ML models on the test datasets.

Data Set RF Ada XG BC ET VC

AC 0.8358 0.8264 0.8283 0.8472 0.8340 0.8440
XOM 0.9189 0.9000 0.8887 0.8981 0.9132 0.9019

S&P 500 0.8160 0.9366 0.8405 0.7975 0.8487 0.8405
MSFT 0.8722 0.9237 0.8660 0.7381 0.8969 0.8825
DJIA 0.8489 0.9172 0.8716 0.8282 0.8778 0.8654
KMX 0.8445 0.8349 0.8234 0.8484 0.8695 0.8311

TATASTEEL 0.7717 0.8652 0.8043 0.7804 0.8087 0.8109
HCLTECH 0.8436 0.8194 0.8128 0.8436 0.8634 0.8392

Mean 0.8440 0.8779 0.8420 0.8227 0.8640 0.8519
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Table 8 displays AUC values of the tree-based ensemble ML models on the test datasets. The AUC
values of Random Forest range from 0.8638 to 0.9340. AdaBoost has AUC values ranging from 0.8451
to 0.9436. XGBoost AUC values range from 0.8656 to 0.9392. Bagging Classifier has AUC scores
ranging from 0.8366 to 0.9245. Extra trees AUC scores range from 0.8898 to 0.9515. The AUC results
of Voting Classifier range from 0.8838 to 0.9428. AdaBoost generated the best AUC output on DJIA
data set. The Extra Trees classifier produced the highest AUC values on BAC, XOM, S&P_500, MSFT,
TATASTEEL, and HCLTECH data sets in Supplementary Materials. Overall, the Extra Trees classifier
has the highest average AUC score. Figure 7 provides the boxplot of the AUC measure of the tree-based
ensemble machine learning models on the test data sets.

Table 8. AUC of the tree-based ensemble ML models on the test dataset.

DataSet RF Ada XG BC ET VC

BAC 0.9143 0.9230 0.9241 0.9081 0.9280 0.9231
XOM 0.9340 0.9314 0.9283 0.9112 0.9378 0.9351

S&P 500 0.9109 0.9099 0.9176 0.8921 0.9250 0.9207
MSFT 0.8638 0.8451 0.8656 0.8366 0.8898 0.8838
DJIA 0.9014 0.9294 0.9133 0.8706 0.9243 0.9123
KMX 0.8950 0.8979 0.9087 0.8802 0.9219 0.9116

TATASTEEL 0.9335 0.9436 0.9392 0.9245 0.9515 0.9428
HCLTECH 0.9254 0.9023 0.9232 0.9042 0.9306 0.9293

Mean 0.9098 0.9103 0.9150 0.8909 0.9261 0.9198
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The ROC curve of all the tree-based ensemble ML on BAC, XOM, S&P 500, MSFT, DJIA, KMX,
TATASTEEL, and HCLTECH stock datasets are displayed by Figures 8–15 respectively. This presents a
model with good separability and ROC curve passing close to the upper left corner.
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A quantitative procedure utilizing Kendall W test of concordance is applied to rank the effectiveness
of the tree-based ML algorithms in predicting the direction of stock price movement. In the study,
we used a cut-off value of 0.05 for the significance level (p-value). We considered the Kendall’s
coefficient significant and capable of giving an overall ranking when p < 0.05. The critical value
for chi-square (χ2 ) at p = 0.05 for five (5) degrees of freedom is 11.071. The degrees of freedom is
equal to the total number of ML algorithms minus one. In this work, six ML algorithms are used
giving us 5 degrees of freedom. Table 9 shows the results of Kendall’s W tests in using accuracy of
the ten-fold cross validation on the training data sets. The outcomes of Kendall’s W tests in using
accuracy, precision, recall, F1-measure, specificity, and AUC metrics on the test data sets are displayed
by Tables 10–15 below respectively.

Analysis of Table 9 indicates that Kendall’s coefficient using the accuracy of the ten-fold
cross-validation on the training data set is significant (p < 0.05,χ2 > 11.071). The performance of AdaBoost
classifier is superior the rest of the ensemble models. The overall ranking is AdaBoost > VC > ET >

XGBoost > RF > BC.

Table 9. Rankings of Tree-Based Machine Learning Ensemble models based on Kendall W Test results
using accuracy measure of ten-fold cross validation on the training data set.

Measure W χ2 p Ranks

Accuracy 0.5496 21.9821 0.0005 Technique RF Ada XG BC ET VC

Mean
Rank 2.9375 5.1250 3.4375 1.125 4.0000 4.3750
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Analysis of Table 10 shows that Kendall’s coefficient using the accuracy measure on the test data
set is significant (p < 0.05, χ2 > 11.071). The performance of Extra Tree Classifier is superior to the rest
of the ensemble models. The overall ranking is ET >VC > Adaboost > XGBoost > RF > BC.

Table 10. Rankings of Tree-Based Machine Learning Ensemble models based on Kendall W Test results
using accuracy metric on the test data set.

Measure W χ2 p Ranks

Accuracy 0.5821 23.2857 0.0003 Technique RF Ada XG BC ET VC

Mean
Rank 2.5000 3.5625 3.3750 1.4375 5.1875 4.9375

Table 11. indicates that Kendall’s coefficient using the precision metric on the test data set is
significant (p < 0.05, χ2 > 11.071). Extra Tree Classifier is the foremost performer among the ML
ensemble models. The overall ranking is ET > AdaBoost > VC > RF > BC > XGBoost.

Table 11. Rankings of Tree-Based Machine Learning Ensemble models based on Kendall W Test results
using precision metric on the test data set.

Measure W χ2 p Ranks

Precision 0.3554 14.2143 0.0143 Technique RF Ada XG BC ET VC

Mean
Rank 3.2500 4.2500 2.1250 2.5000 5.1250 3.7500

An analysis of Table 12 shows that Kendall’s coefficient using the recall metric on the test data
set is not significant (p > 0.05, χ2 < 11.071), hence this measure cannot be used to rank the ML
ensemble models.

Table 12. Rankings of Tree-Based Machine Learning Ensemble models based on Kendall W Test results
using recall metric on the test data set.

Measure W χ2 p Ranks

Recall 0.1746 6.9821 0.2220 Technique RF Ada XG BC ET VC

Mean
Rank 2.8750 3.1250 3.8125 2.5000 4.3125 4.3750

Table 13 indicates that Kendall’s coefficient using the F1 score on the test data set is significant
(p < 0.05, χ2 > 11.071) and that the performance of Extra Tree Classifier surpass that of the other
ensemble ML models. The overall ranking is ET >VC > Adaboost = XGBoost > RF > BC.

Table 13. Rankings of Tree-Based Machine Learning Ensemble models based on Kendall W Test results
using F1 score on the test data set.

Measure W χ2 p Ranks

F1 Score 0.5696 22.7857 0.0004 Technique RF Ada XG BC ET VC

Mean
Rank 2.1250 3.6250 3.6250 1.6250 5.1250 4.8750

Analysis of Table 14 demonstrates that Kendall’s coefficient test using the specificity metric on the
test data set is not significant (p > 0.05, χ2 < 11.071), hence this measure cannot be used to rank the ML
ensemble models.
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Table 14. Rankings of Tree-Based Machine Learning Ensemble models based on Kendall W Test results
using Specificity metric on the test data set.

Measure W χ2 p Ranks

Specificity 0.2598 10.3929 0.0648 Technique RF Ada XG BC ET VC

Mean
Rank 3.3125 4.1250 2.1875 2.8125 4.8750 3.6875

Table 15 shows that Kendall’s coefficient using the AUC metric on the test data set is significant
(p < 0.05, χ2 > 11.071) and that the performance of Extra Tree classifier is ranked the highest among the
ensemble ML models. The overall ranking is ET >VC > XGBoost > Adaboost > RF > BC.

Table 15. Rankings of Tree-Based Machine Learning Ensemble models based on Kendall W Test results
using AUC metric on the test data set.

Measure W χ2 p Ranks

AUC 0.7429 29.7143 0.0000 Technique RF Ada XG BC ET VC

Mean
Rank 2.7500 3.1250 3.6250 1.1250 5.8750 4.5000

4. Conclusions

This paper evaluated and compared the effectiveness six different tree-based ensemble machine
learning algorithms in predicting the direction of stock price movement. Stock data were randomly
collected from three different stock exchanges. Each datum was split into two sets, the training set
and the test set. The models were evaluated with ten-fold cross validation accuracy on the training
set. In addition, the models were evaluated on the test set using accuracy, precision, recall, f1-score,
specificity, and AUC metrics. The Kendall W test of concordance was adopted to rank the effectiveness
of the tree-based ML algorithms. The experimental results indicated that for the ten-fold cross validation
accuracy of the training set, the AdaBoost model outperformed the other models. For the test data,
only accuracy, precision, f1-score, and AUC metrics were able to generate results significant to rank
the different models using Kendall W test of concordance. The Extra Tree model performed better
than the rest of the models on the test data set. A limitation of this study is that it considered only
tree-based ensemble models. Hence, in our future work, we will incorporate machine learning models
that involve the Gaussian process, a regularization technique, and kernel-based techniques.
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Appendix A

Table A1. Description of Overlap Studies Indicators used in the study.

Overlap Studies Indicators Description

Bollinger Bands (BBANDS) Describes the different highs and lows of a financial
instrument in a particular duration.

Weighted Moving Average (WMA) Moving average that assign a greater weight to more recent
data points than past data points

Exponential Moving Average (EMA)

Weighted moving average that puts greater weight and
importance on current data points, however, the rate of

decrease between a price and its preceding price is
not consistent.

Double Exponential Moving Average (DEMA) It is based on EMA and attempts to provide a smoothed
average with less lag than EMA.

Kaufman Adaptive Moving Average (KAMA) Moving average designed to be responsive to market
trends and volatility.

MESA Adaptive Moving Average (MAMA)
Adjusts to movement in price based on the rate of change

of phase as determined by the Hilbert
transform discriminator.

Midpoint Price over period (MIDPRICE) Average of the highest close minus lowest close within the
look back period

Parabolic SAR (SAR) Heights potential reversals in the direction of market price
of securities.

Simple Moving Average (SMA) Arithmetic moving average computed by averaging prices
over a given time period.

Triple Exponential Moving Average (T3) It is a triple smoothed combination of the DEMA and EMA

Triple Exponential Moving Average (TEMA)
An indicator used for smoothing price fluctuations and

filtering out volatility. Provides a moving average having
less lag than the classical exponential moving average.

Triangular Moving Average (TRIMA) Moving average that is double smoothed (averaged twice)

Table A2. Description of Volume Indicators used in the study.

Volume Indicator Description

Chaikin A/D Line (ADL) Estimates the Advance/Decline of the market.

Chaikin A/D Oscillator (ADOSC) Indicator of another indicator. It is created through application of
MACD to the Chaikin A/D Line

On Balance Volume (OBV) Uses volume flow to forecast changes in price of stock

Table A3. Description of Price Transform Function Indicators.

Price Transform Indicator Description

Median Price (MEDPRICE) Measures the mid-point of each day’s high and low prices.

Typical Price (TYPPRICE) Measures the average of each day’s price.

Weighted Close Price (WCLPRICE) Average of each day’s price with extra weight given to the
closing price.
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Table A4. Description of momentum indicators used in the study.

Momentum Indicators Description

Average Directional Movement Index (ADX) Measures how strong or weak (strength of) a trend is
over time

Average Directional Movement Index Rating (ADXR) Estimates momentum change in ADX.

Absolute Price Oscillator (APO) Computes the differences between two moving averages

Aroon Used to find changes in trends in the price of an asset

Aroon Oscillator (AROONOSC) Used to estimate the strength of a trend

Balance of Power (BOP) Measures the strength of buyers and sellers in moving
stock prices to the extremes

Commodity Channel Index (CCI) Determine the price level now relative to an average price
level over a period of time

Chande Momentum Oscillator (CMO) Estimated by computing the difference between the sum of
recent gains and the sum of recent losses

Directional Movement Index (DMI) Indicate the direction of movement of the price of an asset

Moving Average Convergence/Divergence (MACD) Uses moving averages to estimate the momentum of a
security asset

Money Flow Index (MFI) Utilize price and volume to identify buying and
selling pressures

Minus Directional Indicator (MINUS_DI) Component of ADX and it is used to identify presence
of downtrend.

Momentum (MOM) Measurement of price changes of a financial instrument
over a period of time

Plus Directional Indicator (PLUS_DI) Component of ADX and it is used to identify presence
of uptrend.

Log Return

The log return for a period of time is the addition of the log
returns of partitions of that period of time. It makes the
assumption that returns are compounded continuously

rather than across sub-periods

Percentage Price Oscillator (PPO) Computes the difference between two moving averages as
a percentage of the bigger moving average

Rate of change (ROC) Measure of percentage change between the current price
with respect to a at closing price n periods ago.

Relative Strength Index (RSI) Determines the strength of current price in relation to
preceding price

Stochastic (STOCH) Measures momentum by comparing closing of a security
with earlier trading range over a specific period of time

Stochastic Relative Strength Index (STOCHRSI)
Used to estimate whether a security is overbought or

oversold. It measures RSI over its own high/low range over
a specified period.

Ultimate Oscillator (ULTOSC) Estimates the price momentum of a security asset across
different time frames.

Williams’ %R (WILLR) Indicates the position of the last closing price relative to the
highest and lowest price over a time period.
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